
ECE 45600 - Project 1

Nicholas Marks

35757791



1 Design Diagrams

1.1 Top-level Design

The Manchester Adder consists of three top-level blocks: the propagate-generate block, the carry
chain and the summation.

PGD-block

A(0, 11)

B(0, 11)

Carry chain

P (0, 11)

G(0, 11)

D(0, 11)

Cin

Cout

Sum

P (0, 11)

Cout(0, 11)

Sum(0, 11)

Figure 1: Top-level design of Manchester Adder

In Figure 1, A(0, 11) and B(0, 11) represent the two 12-bit input numbers to sum and P (0, 11) and
G(0, 11) represent the propagate and generate bits respectively.

We will now proceed to describe the low-level implementation for each block in turn.

1.2 PGD Block

From the lecture notes, we have that the propagate bit Pi and generate bit Gi are given by the
following equations:

Pi = Ai ⊕Bi (1)

Gi = Ai ∧Bi (2)

Di = Ai ∧Bi (3)

using the truth tables and content from the lecture slides.

To implement these two expressions in complimentary CMOS, we will generate a NAND gate and
an XNOR gate as shown below:

1



Figure 2: NAND gate output for generating
Gi

Figure 3: XNOR gate for generating Pi

The unit tests for each of these gates can be found in the Appendix. Since we have implemented
the compliments of each of these functions, we may need to include an inverter on the output
depending what block the output signal feeds into. We will see that in actuality no such inversion
is really required, since all subsequent blocks are themselves complimented.

As far as design is concerned, we use assume a minimum-size inverter ofWMOS : LMOS = 120n : 45n
and so each double-stacked NMOS or PMOS configuration, such as the pull-down network for Gi

has been sized up by a factor of two to account for the increased logical effort.

Finally, for the Di (delete) signal, we can reuse the NAND gate designed for Gi, this time inverting
the input. However, with the specification of increasing speed, it is faster to generate Di via de
Morgan’s Law as a NOR gate:

2



Figure 4: The NOR gate used to generate Di

1.3 Carry Chain

For the carry chain, the carry out of each bit addition is described by the logic function

C0 = Gi + PCi (4)

and can be generated by the following schematic, drawn from the lecture slides.

3



Figure 5: The schematic for generating the carry-out bit at each stage

The use of pass transistor logic here vs. complimentary CMOS enables for both a smaller design
area and faster performance. One change that is made from the above figure is to generate Pi

separately from Pi so that we can remove the delay of the input inverter above from the overall
propagation delay. By moving Pi to its own function, we do however increase the overall area of
the design.

1.4 Sum Block

Finally, for the sum bit Si at each stage and the carry-out of each stage C0,i we have the following
generating expressions:

Si = Pi ⊕ Cin,i (5)

C0,i = Gi + PCin,i (6)

The implementations of Si is given below:

4



Figure 6: Schematic for each summed bit

1.5 Full Adder and Verification

We now have all the pieces for testing a 1-bit adder. It would seem that if this works succesfully,
then generating the full 12-bit adder is simply a matter of concatenating 12 of these units together...

5



Figure 7: A 1-bit adder for two input bits A and B. Note that the block above the NAND gate
represents the delete block (see Figure 4) and the block to its right the carry-out block (see Figure
5

The test outputs for all possible 2-bit combinations is as follows:

Figure 8: Test outputs for the 1-bit adder. There are a few small bits of noise in the transition
regions when running A at a period of 1 ns.

In combining twelve 1-bit adders naively into a full 12-bit adder, it was found that the signal Cout,
being passed repeatedly through logic gates, was attenuated over time such that by the 12th bit, the
high voltage had become sufficiently weak so as to produce an incorrect value. By trialing different
combinations, it was found that splitting the full adder into three 4-bit adders each proceeded
by a buffer (double inverter) on the Cout line rectified the correctness of the output whilst still
maintaining low latency.

The 4-bit adder blocks look as follows:

6



Figure 9: A 4-bit adder block including the buffer on Cout

and the final 12-bit Manchester adder:

Figure 10: The Manchester adder built from three 4-bit adder blocks

2 Testing

Using the provided test cases in the project document, the adder clearly gives the correct input.
See the appendix for the vector file used.

7



Figure 11: The verification of the adder, digital signals provided at the bottom

The circuit could be run up to a period of 0.5 ns before incorrect output was registered. Above,
the circuit has been run at a period of 1.0 ns and the propagation delay can be calculated as 0.17
ns from the plots.

Figure 12: Running at a period of ≤ 0.5 ns causes incorrect outputs during the third-fourth and
fourth-fifth transitions

8



3 Power Consumption

The power consumption is calculated from the testing1as directed in the project notes. The power
consumption at the fastest possible, correct period (0.5 ns) was 53.6 µW. This was taken as the
average of the product between the source current IDD and the source voltage VDD.

Figure 13: Power consumpption of the adder - note the negative sign indicates a power draw.

4 Adder Comparison

An ideal prefix network would comprise lnN logic stages, a fanout ≤ 2 at each stage, and no larger
than one horizontal branch across a particular stage of computation. Each of the prefix adders
under examination here consist of 2 lnN stages, N/2 + 1 fanout and N/2 tracks between gates at
the same level.

If we break up the prefix adder into three steps,

1. Precomputation, the process of generating propagate (P ), generate (G) and delete (D) vectors
from the N -bit inputs A and B

2. Prefix, the generation of subsequent P , G and D bits from lower-order bits and

3. Postcomputation, the computation of the actual sum and final carry out

then each type of prefix adder (HC, BK, LF, KS and M (Manchester)) can be differentiated by
the particular approach to prefix computationHC, BK, LF, KS and M (Manchester)) can be
differentiated by the particular approach to prefix computation. There is generally a trade-off
between lower latency and design area. Designs like BK and HC opt for a greater number of logic
levels at the reward of reducing fanout by a factor of two. Reducing fanout can reduce the overall
wiring length of the design, thereby minimising (interconnect) capacitance in the synthesised layout.
LF, KS conversely minimise the number of logic levels at the expense of increased fanout.

Considering inverting static CMOS-logic congruent to that used in our Manchester adder, Harris
finds that with a wiring capacitance ratio of w = 0.5, the architectures in order of increasing delay
are: HC, KS, BK, LF. Knowles describes a similar result, namely that KS outperforms LF. It would
seem then that prioristing logic levels and layout over fanout produces performant adders.

As far as our Manchester adder is concerned, we have a fanout ≤ 2 as there is no point in our
design where one output drives more than two consequent inputs. The design has a logic depth
of 4, which means between these two factors our design is similar in respects to BK, but with a
slightly lower fanout meaning the overall adder has a larger area - as discussed in the preceding
paragraph, a lower fanout at the expense of design area generally results in a slower computation.

1Using the new test values for A and B

9



References

1. S. Knowles, “A family of adders,” in Proc. 14th IEEE Symp. Computer Arithmetic, Apr.
1999, pp. 277–281.

2. D. Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc. 37th Asilomar Conf. Signals
Systems and Computers, pp. 2213–2217, 2003.

5 Appendix

Note that throughout these test benches, I have assumed a VDD = 1.2V .

5.1 Sub-design Testing

Figure 14: Test of XNOR gate

10



Figure 15: Test of NAND gate

Figure 16: Test of generating Di

11



Figure 17: Test of generating Cout,i

Figure 18: Test of generating Si

5.2 Vector Files

5.2.1 4-bit Adder

12



1 ; Enable waveform output
2 output wf_0
3

4 ; RADIX specifies num of bits for each wire/bus
5 radix 4 4 4 1
6

7 ; VNAME for naming each vector
8 vname A<[3:0]> B<[3:0]> S<[3:0]> C0
9

10 ; IO specifies direction of wire/bus
11 io i i o o
12

13 ; tunit for each time value
14 tunit 1ns
15

16 ; CHK_window for where to check for output
17 ; chk_window -19 20 1 period=10
18

19 ; PERIOD of signal
20 period 1
21

22 ; TRISE and TFALL of signal
23 trise 0.2
24 tfall 0.2
25

26 ; VIH and VIL for input high/low voltages
27 vih 1.2
28 vil 0.0
29

30 ; VOH and VOL
31 voh 0.7
32 vol 0.5
33

34 ; Tabular test data
35 0 0 0 0
36 A B 5 1
37 F F E 1
38 D 5 2 1
39 5 5 A 0

5.2.2 12-bit Manchester Adder

1 ; radix specifies the number of bit of the vector.
2

3 radix 444 444 444 1
4

5 ; io defines the vector as an input or output vector.
6

7 io iii iii ooo o
8

9 ; vname assigns the name to the vector.
10

11 vname A<[11:0]> B<[11:0]> S<[11:0]> CO
12

13 ; tunit sets the time unit.
14

15 tunit 0.2 ns
16

17 ; trise specifies the rise time of each input vector.

13



18

19 trise 0.1
20

21 ; tfall specifies the fall time of each input vector.
22

23 tfall 0.1
24

25 ; vih specifies the logic high voltage of each input vector.
26

27 vih 1.2
28

29 ; vil specifies the logic low voltage of each input vector
30

31 vil 0.0
32

33 ; voh specifies the logic high voltage of each output vector
34

35 voh 1.0
36

37 ; vol specifies the logic low voltage of each output vector
38

39 vol 0.2
40

41 ; time per bit
42 period 1.0
43

44 ; data
45 BBC FF5 BB1 1
46 E9E 3F3 291 1
47 1FF 499 698 0
48 F01 AAF 9B0 1
49 E45 EC4 D09 1

14


	Design Diagrams
	Top-level Design
	PGD Block
	Carry Chain
	Sum Block
	Full Adder and Verification

	Testing
	Power Consumption
	Adder Comparison
	Appendix
	Sub-design Testing
	Vector Files
	4-bit Adder
	12-bit Manchester Adder



