
The Guide to
Creating a
Successful
Software
Product

Copyright 2020 WorkingMouse

Version

01 December

2020

1.0

Let’s get into it!

About this book

Software development is a complex industry in a state of
constant flux. It can be difficult for people new to the industry
to quickly understand the skills and mindset required to build a
successful product.

4

Contents.

Introduction 6

Why does product planning and measurement matter?

Scope timeline.

Starting with a problem 12

Adopting an MVP mindset

Finding your customer centric focus	

Using the lean UX canvas

The importance of user research	

Setting a growth strategy

Sales driven growth vs product led growth

Finding your solution 34

Identifying your buyer personas

Building in metrics

Qualitative vs quantitative measurements

Tools to consider

How they can be implemented

5

Release and grow 50

Synthesising your data

Aiming for the ‘tick’ of approval

Pivoting vs iterating

Build your solution 44

How to use agile feedback loops

Mastering testing

Getting on top of scope creep

6 The Guide to Creating a
Successful Software Product

Introduction
Over the past 9 years we’ve built plenty of software products.
For the majority of that time our mindset mirrored that of the
industry – we build to our clients requirements. This meant
washing our hands at the end of a project, knowing we
delivered what the client wanted but not knowing whether or
not the product succeeded.

On paper, it sounds fair enough. You pay someone to build a
house and as long as they build the house you designed, you
wouldn’t expect them to check in and see if you like it...

But as an industry and a company, we felt we had to do better.
Rather than build solutions blindly, we’re shifting the focus to
building successful products.

Good
thanks!

7Introduction

Why does product planning and
measurement matter?

It’s easy to look back at successful products and think, ‘of
course that worked, how could it not?’ Of course Uber worked,
people were fed up with the dominance of the taxi industry. Or,
of course Xero succeeded, people were favouring the cloud for
its flexibility. These observations are rarely as obvious at the
time these products were started. The mindset also neglects the
thousands of micro-decisions that had a big impact on their
success. A big reason why we wanted to create this book for our
audience is to unpack on a more granular level the activities,
decisions and measurements that can help create a successful
software product.

While some of the examples used in this book are household
names (Uber, Xero, Airbnb), that does not set the definition of
‘success’ as a multi-billion dollar application. These learnings
are just as important for a business implementing software that
streamlines their internal workflow as they are for a startup.
Every product has the potential to succeed or fail – regardless
of its scale.

8 The Guide to Creating a
Successful Software Product

We can spend the next ten pages outlining all the reasons why
product planning and measurement is important. But we’ll keep
it more succinct.

Proper planning allows you to build a unified, succinct solution.
We’ve seen products in the past suffer when planning wasn’t
prioritised and a number of pivots were required during the
build stage. Planning is not isolated to the product itself. It’s just
as important to plan and align your business strategy with your
product.

Measurements on the other hand are your pulse checks. Proper
planning will create a hypothesis. But only by releasing and
measuring the impact that a product has can we determine
whether that hypothesis was successful. Doing this poorly may
lead to making decisions based on only a segment of your
user base. Failing to measure altogether means there’s a lack
of insight into how the product is performing and where the
opportunities are to improve engagement.

9Introduction

How it impacts your business

There are a wide range of reasons as to why a business might
develop a software product. Some of the more common
themes we’ve seen are;
•	 To help scale up
•	 Improve engagement with customers
•	 Reduce licensing costs
•	 Create a new revenue stream, and;
•	 Create a point of difference over competitors.

While the reasons for developing software may be varied and
the products themselves differ, the framework for maximising
your chance to succeed remains consistent. That is the purpose
of this book – to communicate and demonstrate the framework
that can help your business create a successful product.

10 The Guide to Creating a
Successful Software Product

Without limiting the outcomes of a successful product, some of
the benefits are illustrated in the image below.

ENGAGED
USER BASE

LICENSABLE
PRODUCT

MAXIMISE
ROI

IDENTIFIED
EARLY

ADOPTERS

CLEAR
GROWTH

ROADMAP

ALIGNED WITH
BUSINESS
STRATEGY

11Introduction

Until you’ve
built a great
product,
almost nothing
else matters.

“

Sam Altman

12 The Guide to Creating a
Successful Software Product

Starting with
a problem

Start at the start, not the end.

This is an area that can trap a lot of products. So often we have
visions of the shiny, finished product in our head and race to get
there as soon as possible. We frequently see businesses come
to us with a complete requirements list, asking ‘can you build
this?’

The issue is they can’t answer the most fundamental question;
what problem is this looking to solve? Or, there are multiple
answers to that same question. Without a unified problem
statement understood by all stakeholders, there can be a
big gap in expectations. This doesn’t just pose a risk from an
internal (client) and external (development team) perspective.
A product can reach so many areas of a business there are
normally multiple stakeholders involved. The challenge is to
ensure that each stakeholder is satisfied with the problem
statement and clearly understands how it relates to their
function. The problem statement also gives us a north star to
keep everyone moving in the right direction.

13Starting with a problem

What didn’t work?

To fully comprehend the value delivered in this process it
is important to firstly understand the old way of building
software. The old process involved capturing what we define
as a list of ‘Epics’. These are large volumes of work that could
then be broken down and prioritised into smaller ‘User Stories’
during a designated scoping period. As mentioned above, this
encouraged the list of requirements based approach.

It often amounted to an unvalidated wish list based upon a
product owner’s vision. We found that designing a solution
based on this approach meant that too many assumptions
were made without any validation.

The issues that came from this approach were:
•	 Projects failing to truly capture customers needs and 	
	 provide a viable solution to their end-users.
•	 Differing expectations between the requirements list and 	
	 the scoped backlog.
•	 Building based on unvalidated assumptions
•	 Larger scoping periods which ultimately takes longer 	
	 and creates bigger minimum viable products (more on 	
	 this shortly).
•	 Didn’t properly leverage the skills and capabilities of the 	
	 development team.

14 The Guide to Creating a
Successful Software Product

Activity time
Time required: 2 hours

Team needed: All stakeholders (includes
internal and external development team)

Desired outputs:
•	 Develop the success criteria
•	 Problem statement and
•	 A contextual understanding of why the project is being

undertaken.

Method:
1.	 Map out the current user journey without your custom 	
	 software or other products available.
2.	 List all the problems you have to solve.
3.	 Prioritise these problems, from most pressing to least.
4.	 Ask why. Why do these problems exist? This will allow you 	
	 to document any assumptions you’ve made.
5.	 Align on a single problem statement to tackle first. This 	
	 should be framed around the highest priority problem 	
	 you’re looking to solve.
6.	 Iterate. If the first problem statement doesn’t satisfy
	 all stakeholders then iterate until the best statement 	
	 emerges.

15Starting with a problem

Adopting an MVP mindset

An MVP is the smallest version of your product with enough
features to satisfy your initial customer base. It goes by many
different names; minimum viable product, minimum valuable
product, most valuable player. Fine, that last one was a not
so subtle basketball reference. Regardless of the name, the
purpose of an MVP is to gain insights into your user’s behaviour
without having to fully develop your product.

The sooner you can get your product to market, the sooner you
can start gathering feedback direct from market. We want to
avoid the nightmare where millions of dollars are invested in
creating a polished, final version only to realise people aren’t
using it the way you thought they would.

The story of Clipchamp is a great example of why an MVP
mindset can be critical in finding success. Founded by a group
of former SAP employees in 2013, the company was originally
called TranscodeCentral and started out as an attempt to build
a distributed supercomputer using people’s browsers to speed
up the transcoding of videos (translating video from one code
to another) – an action that’s critical for online streaming.

The company launched, failed to attract any users. The team
developed a video compression and conversion tool as a small
part of this project, and while the supercomputer project didn’t
work out, the video compression tool was gaining popularity.

https://www.afr.com/technology/steve-baxter-backs-video-editing-for-dummies-start-up-20190507-p51kuj

16 The Guide to Creating a
Successful Software Product

The company rebranded to Clipchamp and recognised that
once their first version was launched, they had to adapt and
change in order to succeed. What made the initial tool so
popular was that users didn’t have to download or install
anything, “you could just record a video in the browser” and it
worked on any operating system.

Now the company has amassed a user base of over 6.5 million
people around the globe, including employees from major
corporations such as Google, Tesla, Microsoft, Deloitte and BHP.
While user research can help mitigate some of the product/
market fit risks, it isn’t as effective as releasing an MVP and
making live learnings.

Usable > likeable > lovable
The image below is a great way to conceptualise how to build a
product.

17Starting with a problem

The car example is quite popular and has been used to
illustrate the MVP mindset.

If we take the top roadmap as an example, it’s probably likely
that the brief was ‘to build a car.’ The development team then
went through the stages of building parts of the car until it was
finally assembled. Until the final version is finished, you have an
unhappy product owner since the car can’t be used.

Now let’s look at the bottom roadmap. Instead of asking for a
car, the brief was centered around a problem statement; ‘I want
to be able to travel faster.’ At every release the product can be
used and tested, even if it doesn’t yet match the final vision.
Sure, the product owner may not be happy with commuting
around using a skateboard but it’s infinitely more useful than a
wheel.

It all comes back to learning early and often. Ask yourself what
is the cheapest and fastest way you can start learning?

https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

18 The Guide to Creating a
Successful Software Product

Finding your customer centric focus

Starting with a problem is a fantastic mindset to have. However
to take the next step, it helps to add a framework to that
mindset. There are several tools that aim to do this, but our
personal favourite is the lean UX canvas.

Lean UX Canvas
It was first articulated by Jeff Gothelf and has undergone a
couple of version changes. In summary Jeff developed the
canvas for the following purposes:

•	 A customer-centric cross team facilitation tool.
•	 Help the team focus on ‘Why’ they are doing the work.
•	 A strong foundation for teams to adopt agile.
•	 Ensure learning takes place every iteration.
•	 To expose gaps in a team’s understanding.
•	 A first step to shift the conversation from outputs to 	
	 outcomes.

We found that the original canvas was a great starting point
– but ultimately made a few tweaks to better match it to
the software development industry. The process is actually
straightforward and following it yourself or with your own team
is a great framework for finding a customer centric problem
statement.

https://jeffgothelf.com/blog/leanuxcanvas-v2/

19Starting with a problem

The only way to
win is to learn
faster than
anyone else.

The Lean Startup

“

20 The Guide to Creating a
Successful Software Product

21Starting with a problem

22 The Guide to Creating a
Successful Software Product

Activity time
Complete the Lean UX Canvas

Time Required: 30 mins – 1 hour
Team needed: All stakeholders

Method:
Progress through the Canvas.
Here is more information on each of the steps:
1.	 Business problem: What problem does the business 	
	 have that you’re trying to solve?
2.	 Business outcomes: How will you know you solved
	 the business problem? What will you measure? (Hint: 	
	 What will your users be doing differently if your solutions 	
	 work? Consider metrics that indicate customer success 	
	 like average order value, time on site and retention rate)
3.	 Users: What types (personas) of users and customers 	
	 should you focus on first? (Hint: Who buys the product or 	
	 service? Who uses it? Who configures it?)
4.	 User outcomes & benefits: Why would your users seek 	
	 out your product? What benefit would they gain from 	
	 using it? What behaviour change can you observe that 	
	 tells you they’ve achieved their goal?
5.	 Solutions: What can you make that will solve your
	 business problem and meet the needs of your 		
	 customers at the same time? List product, feature or 	
	 enhancement ideas here.

23Starting with a problem

6.	 Hypotheses: List out any assumptions this project is 	
	 making in order to succeed.
7.	 What’s the most important thing you need to learn first:
	 Identify the riskiest assumption/hypothesis that 		
	 existsright now. It may be something that will cause the 	
	 product to fail if it’s wrong. (Hint: Focus on the risks to 	
	 value, rather than feasibility).
8.	 What’s the least amount of work you can do to learn 	
	 the most important thing?: Brainstorm experiments to 	
	 validate whether your riskiest assumption is true of false.

Focus of the MVP

1.	 Problem statement: Using the activity completed earlier, 	
	 populate your problem statement.
2.	 Top 3 business outcomes: Select the top 3 business 	
	 outcomes to focus on for the MVP. These metrics will be 	
	 measured to evaluate the success of the product.
3.	 Top 3 user outcomes: Select the top 3 user outcomes 	
	 to focus on for the MVP. These metrics will be measured 	
	 to evaluate the success of the product.

Using the Lean UX Canvas to align all stakeholders on the
project and create a single, customer centric focus will help you
set your project up for success.

24 The Guide to Creating a
Successful Software Product

The importance of user research

It was the 1920s. The RKO theatre stood tall and dazzling in the
neighbourhood of Flushing, Queens. It was schmick with its
popular movies, travelling shows, a glamorous interior with
a sleek red carpet that made you feel like every night was a
special occasion. But no one came.

Families and farmers would walk on by without a second
glance. The theatre was falling fast and so the owners decided
to bring on an industrial designer to help boost interest.
His name was Henry Dreyfuss.
When Dreyfuss came on board, he did what he thought the
people wanted. He slashed movie prices, tripled the showings
and gave away free food. None of it worked.

Burdened with this problem he paced the halls looking for
answers till he landed in the theatre lobby. Here, he overheard
someone express how afraid they were of messing up such rich
carpet with their muddy shoes.
And then it clicked.
The neighbourhood was home to a lot of workmen who would
have found the appearance of the plush red carpet to actually
be rather intimidating.

25Starting with a problem

Within the next day Dreyfuss had the red carpet replaced
with plain rubber matting and one by one, people came in.
Eventually crowds filled the theatre and RKO became a historic
landmark where it still stands today.

In the theatres case, the problem wasn’t that they were lacking
in their offerings. The problem was that the theatre was seen as
“too nice” for its location, and by extension, its customers.
When we initiate the conversation and create an open dialogue,
we begin to understand more about what it is people actually
need. This often requires us to look past the sometimes-obvious
solution and dig deep to articulate how our users think and feel.
Sometimes they might not even realise that was the problem in
the first place. Just like the red carpet.

Integrating this process also assists with saving time and
saving money. Two valuable and indispensable resources when
building a new product. When we spend time designing the
right product first, the rest comes much simpler and reduces
the risk of having to continuously pivot.

26 The Guide to Creating a
Successful Software Product

How to conduct user interviews

Evidently, user research is important. The best way to conduct
user research at such an early stage in product development
is through interviews. A discovery interview provides a first
hand account on why someone chooses to use your product or
service and what tasks they seek to accomplish through it.

These sessions provide a crisper image on how you might
position (or re-position) your offering. These are typically
carried out in the early stages of the design process, but can
really be performed when you need a pulse check.
We’ll outline the process of running user interviews for your
product. Remember, it’s just as important to conduct user
interviews for internal software (ie. users within your business)
as it is for external users.

Step 1: Validate the method.
This is a simple first step but it acts as a quick sanity check; are
user interviews the best way of learning what I need to know?

Step 2: Establish the objective.
Write a list of things you want to learn from the interviews.
Limiting the number of objectives to 3 - 5 is effective for
keeping the plan direct and concise. You can always start wide,
brainstorm a list and prioritise.
Tip: Write your objectives with action verbs and ensure there is
a measurable outcome. Try to avoid ‘learn’ or ‘understand’ as
they can be more difficult to evaluate.

Step 3: Recruit
Recruit the people who represent your target group best. Define

27Starting with a problem

a list of characteristics or criteria to ensure the people you
recruit can provide relevant insights. If you have multiple target
groups, recruit evenly from both.

There are a few different ways to find the right people.
•	 Your user base. If you already have a user base this is a
	 great place to start. Where better to find people that 	
	 represent your user group than your users themselves.
•	 Agencies. There are people who specialise in connecting 	
	 you with the right participants. E.g. usertesting.com or 	
	 askable.com
•	 Social media. Powerful for expanding your reach - throw 	
	 up a post on your LinkedIn, Instagram or Facebook.
•	 The street. If you’re still looking for participants, try hitting 	
	 the streets.

How many people do you recruit?
As a general rule of thumb, start off with 5 participants and
scale up if you need to.
Norman Nielsen and Tom Landauer conducted research
on usability tests and found that after sitting with the third
participant, they had already observed much of the same
things from the first and second user.
“As you add more and more users, you learn less and less”

28 The Guide to Creating a
Successful Software Product

Step 4: Prepare a guide
The general structure we follow for discovery interviews is:
•	 Introduction
•	 Background
•	 Activities
•	 Wrap up
There is no uniform way to conduct the activities as it really
depends on your study. Try out one of these:
 ’Thinking about when…’

This is great for gaining insights on your participants personal
experience. This activity asks the participant to reflect on a
specific moment and recount what happened. It helps with
answering those questions discussed earlier, such as how and
when someone interacts with your offering.

Mapping the journey
Similar to ‘Thinking about when…’, you could also ask the
participant to walk you through their process. Build a map
of based on what they did, how they felt and what they were
thinking at each stage. Combining these three factors provides
you with a richer picture of their journey.

Card sorting
This activity is useful for gauging your participants preferences.
It asks them to order a list of statements based on importance
or relevance and getting them to talk about why they ranked
them that way. This is a great hybrid for generating that
quantitative and qualitative data.

29Starting with a problem

Setting a growth strategy

Building a high quality product is only one piece to the puzzle.
Success is often measured through the number of users, the
valuation and the growth of a product. After all, why build
something if no one’s going to use it?

That is why it’s critical to align your product with your growth
strategy. There are a number of different variations and lines of
thought when it comes to growth strategies. We’re not a sales
company and we won’t pretend to be thought leaders in the
area. But it’s important to give thought to the strategy and feed
that back into the product.

Sales driven growth
Traditionally, many businesses succeeded through a sales
driven growth strategy. Create a product that people needed
and would pay for and let the sales team do the rest. Once a
sale is made, the job is done. A sales driven approach relies
heavily on outbound sales, personal relationships, one-to-one
meetings, customised sales processes, and historically longer
cycles. Think back to IBM in the late 90’s, early 00’s.

There is still plenty of merit in adopting a sales driven strategy.
In some industries, it’s pivotal. If you do adopt a sales strategy
then it is necessary to focus on metrics like number of sales,
average sales cycle time and customer acquisition costs.

30 The Guide to Creating a
Successful Software Product

If your product is aimed at consumers or even small to medium
sized businesses then a sales driven strategy may not be
best suited. Because of the high-touch nature of one to one
meetings and a custom sales process, the cost per sale can
be quite significant. In order to justify that cost, you want a
significant return on investment – a return that may not be
feasible for SME’s and consumers. That’s why IBM, SAP and
Oracle focus their efforts on enterprise sales. It may take 6-18
months to secure a sale, but that is justified by the millions of
dollars in return.

Changing tides
Post GFC 2008/2009 saw software as a service (SaaS) starting
to really have an impact. Bessemer popularised 5 metrics that
cloud companies should monitor. Because SaaS was a fairly
new model a lot of work was done in the VC space to determine
the value of a SaaS company. Out of this came the Pirate
metrics, the Rule of 40 and a number of others.

Many to understand the balance of growth and profit to make
sure both these normally opposing forces are balanced. In
2010 most companies had adopted a sales driven strategy. At
that time the theory mentioned holding back sales hires before
hitting KPI’s and the changing the roles of sales teams – for
example hunters vs farmers. The last decade has seen the rise
of Product Led Growth (PLG) - a move away from the traditional
sales driven strategy.

Product led growth
What is it?
From the outside, product led growth can seem a bit like magic.

https://www.bvp.com/atlas/cloud-computing-metrics/
https://www.bvp.com/atlas/cloud-computing-metrics/

31Starting with a problem

Imagine you’re desperate for a video conferencing solution
after buying a puppy and working from home for a few weeks.
So, you install Zoom and tell your team about it.
Your team installs it and realise that they love it.
Word spreads throughout the office – all of a sudden Zoom is
the video conferencing tool of choice within the business.

From Zoom’s perspective, they haven’t had to invest any time or
resources into making the sale. They might not even know how
it happened. But because the product was so good, it spread
far beyond its initial reach.
Atlassian’s S-1 says, “We recognize that users drive the adoption
and proliferation of our products.”
Product led growth is a strategy that is fuelled by user
interaction with the product and is designed to drive rapid
expansion as a company scales.

Does it work?
Developed and championed by the likes of Atlassian, it is now
an essential part of the playbook of companies like Zoom, Slack
and numerous other successful SaaS companies.
Product led businesses are performing well. The public
companies that have embraced product led growth beat
their peers across nearly every SaaS value driver. They’re
growing faster, demonstrate better margins and trade at a 50%
premium relative to forward revenue. The median public PLG
company is worth 2x that of the broader SaaS index ($6.8B vs.
$3.4B).
On the back of this success, sales led SaaS companies are now
being pushed to adopt product led growth to reinvigorate their
growth.

https://books.google.com.au/books/about/Measuring_More_Than_Efficiency.html?id=z84bAQAAMAAJ&redir_esc=y
https://books.google.com.au/books/about/Measuring_More_Than_Efficiency.html?id=z84bAQAAMAAJ&redir_esc=y

32 The Guide to Creating a
Successful Software Product

It’s worth taking a look at the growth rates of SaaS companies
that have adopted product led growth versus those that
haven’t. It stands to reason that at an early stage, when the user
count is low, having a quality product won’t necessarily have
the same level of impact.

Image 1: Growth rates for product companies vs sales driven companies

Even within a product led growth strategy there are different
paths a business can take.

Approach 1: Manage product interactions
If using traditional sales and marketing, you can engage and
guide customers through the product. Once you’ve successfully
learned which interactions are needed to facilitate a high
quality user experience you can automate or build that into the
product. This approach does create more flexibility at that early
experimental stage.

Top Quartile Growth Rates by ARR Scale

PLG Companies

116%

185%

91%

88%

65%

50%

<$1M ARR

$1-2.5M ARR

$2.5-10M ARR

$10-20M ARR

$20-50M ARR

>$50M ARR

Non-PLG Companies

148%

150%

105%

72%

54%

30%

https://openviewpartners.com/expansion-saas-benchmarks/#.X3aeDJMzZTY

33Starting with a problem

Approach 2: Avoid sales and marketing
The other option is to take a hard-line stance. By avoiding any
sales and marketing from the start, you can instead focus on
building the best possible product. This can be a hard approach
to persist with, especially when you’re struggling with growing
your user base and revenue.

So then, sales or product?
I wish we could unequivocally say which approach would work
for you. Unfortunately there’s no right answer and it may in fact
be a combination of both.

Kyle Poyar
VP Marketing Strategy at Openview states the following:
There is still room for sales in a product led business, but sales
should start to look more like customer success. It’s particularly
urgent that all customer-facing employees become fluent in
the product. Moreover, the sales team should prioritise their
time based on an account’s activity in the product, leveraging
a product qualified lead (PQL) methodology rather than just
marketing qualification.

All of these initiatives require a rock-solid analytics foundation.
You’ll want to capture product usage activity across features
and user cohorts. Product data should then be connected
with other systems of engagement (e.g. CRM or marketing
automation). Most importantly, make sure that key employees
have self-service access to this data in order to make data-
driven decisions.
One thing we can say is that a product led growth strategy is
tough to execute. The majority of times it comes down to having
a well-defined problem that is applicable to a motivated user
base.

34 The Guide to Creating a
Successful Software Product

Finding your
solution

We’ve just outlined how important it is to start with a problem.
One of the core reasons is that it sets up the process of finding
a solution. Following these steps stops you from falling for the
most common mistake when building software - jumping
straight to a requirements list.

Now that you have a well-documented problem statement,
you’re probably wondering how that is transformed into a
solution. At WorkingMouse, we use a four phase process to find
the best possible solution.

35Finding your solution

Discovery Inspiration Ideation Realisation

36 The Guide to Creating a
Successful Software Product

Shouldn’t it be easy?

After completing the lean UX canvas, conducting a number of
discovery interviews and setting a growth strategy you might
have a clear idea of how the product should work. But how
can you be sure you’re building the best solution if you haven’t
considered any others? How can you be sure you got the best
deal on that washing machine if you only went to the one store?
Let’s use an example problem statement.

How might we connect farmers with consumers to minimise
distribution costs?

It’s a pretty bold problem statement that might make us
unpopular with some food retailers.

Solution 1 - The Farmers New Market
An online marketplace for farmers to sell and consumers to buy
fresh produce locally.

Solution 2 - Micro-farm: small on waste, big on taste
A micro-brewery model which encourages more restaurants to
grow and sell their produce in urban areas.

Solution 3 - The Flying Farmer
Drone delivery from farm to door
Commercially, it may be unlikely that these solutions would
succeed. If they did, I’d be retired living on an exotic beach
rather than writing this guide. It does however illustrate the
point that given a problem statement, there is rarely a single
solution.

37Finding your solution

We mentioned earlier that there are four phases to finding a
solution. Let’s explore these in more depth.

Discovery

This is where the team and the stakeholders pin down exactly
who the users are and what they really need for the project. It is
a natural flow on from discovering the problem statement.

Inspiration

The inspiration phase is similar to the activity conducted above;
throwing ideas around until something sticks. Usually it helps
to see how ideas look visually so we’d recommend using basic
sketches during the inspiration phase.

Ideation

The ideation phase consists of refining your product’s concept
and MVP. We recommend using wireframes to help bring the
idea to life. In creating the wireframes, you should get a clearer
idea of the functionality that needs to be built (which will in turn
form the backlog).

38 The Guide to Creating a
Successful Software Product

Realisation

The final phase is to realise the solution. To do this, there are
a number of artefacts you or your development team should
create. These include; a high-fidelity prototype, a high-level
architecture of the product, a detailed backlog with estimations
and acceptance criteria. Once you have the high-fidelity
prototype, that’s the perfect opportunity to get early feedback
on your solution from your users.

At the end of these four phases you should have a perfect
blueprint to build your product. Don’t underestimate the
importance of a well documented backlog and prototype. There
can be misaligned expectations when interpreting only written
or only visual artefacts. The combination of both will ensure you
and your development company are on the same page.

It’s more than likely that you’ll rely on the development
company to produce the design artefacts. After all, that is what
they specialise in. There are still areas to focus your attention as
a product owner. We’ll go into more detail about how to validate
your assumptions and the process of building metrics into the
design of the product.

39Finding your solution

Identifying your user/buyer personas

This should be one of the easiest questions to answer. You
started with a framework of solving a problem, so it should
be as simple as answering who you solved that problem for.
However it’s unlikely that this is just one type of user.

For example, you might solve a problem that helps cross
functional teams collaborate. In that case; you could have
designers, developers, business analysts and project managers
all collaborating on your product. Each user persona has its
own likes, dislikes, goals and problems. This is important to
understand not only from a product development perspective
but also from a marketing and sales perspective.

We’ve found that it helps to put a framework against each
persona. Feel free to use the framework below or adapt it to
meet your needs.

Pain points –
what are their

main pain
points?

How does your

product address
their pain points?

What are

their goals?

What decision
making

capabilities do
they have?

How will they

find you?
What is their

job title?

What

industry? What’s their time
availability like?

How frequently

will they use
your product?

40 The Guide to Creating a
Successful Software Product

These personas should drive everything you do. How
does adding a new feature impact persona X or Y? Even
WorkingMouse as a services business has buyer personas that
we live and breathe.

How many buyer personas should you have?
This is a difficult question to answer. Some products may have
a single persona while others may have 10-20. The more you
have, the more difficult it becomes to satisfy them all. We’d
recommend trying to cap it at 5.

Building in metrics

This is perhaps one of the most important sections of this guide.
If you take nothing else from this, understand the importance
of building in metrics and analysing the performance of your
product.

The metrics that you build into your product should be linked;
firstly, to the success criteria you identified when completing
the lean UX canvas and secondly, to any areas or assumptions
that are not yet validated. You might be tempted to measure
everything and we certainly won’t discourage that. Having a
detailed understanding of how your product is used isn’t a
bad thing. But depending on the size of the product, that can
sometimes get burdensome to review. Instead try to pick 5-8
key metrics you want to focus on.

The Silicon Valley mindset is to put these statistics front and
centre. For example, use a TV at your office as a live display of
the data. This helps to get your team bought in and striving for
the same results.

41Finding your solution

How to measure the success of your product is a tough
question to answer. It generally depends on the type of goal
you’re trying to measure. Some goals may be quantitative,
which are easily measured by analytics tools. Qualitative goals
are harder to measure.

Qualitative vs quantitative measurements
A quantitative goal is anything that can be measured
through metrics. For example, how many users signed up this
week? They are relatively straightforward and are easier to
measure and draw insights from over time. We would always
recommend trying to set quantitative goals.
However there are times where this may not be possible or you
may want longer responses. For example, how did adding a
feature improve the user experience? Now, we could get users
to quantify their experience before and after the feature on a 1
– 10 scale. This would mean we miss out on potentially valuable
subjective responses.

“I didn’t understand some elements of the reporting feature
but I found others really valuable.” If you’re only measuring
quantitative goals then this user may have kept their
experience level the same which can be misleading as there
were parts of the feature they liked as well as parts they disliked.
That’s why it’s important to keep a mix of quantitative and
qualitative goals. We find that creating an environment for
qualitative measurements during user testing and research
works well alongside regularly tracked quantitative data. While
the key format for qualitative measurement will likely be a
survey or interview, it gets a bit more complex for tools that
measure quantitative data. We’ve outlined a few of the tools we
recommend below.

42 The Guide to Creating a
Successful Software Product

Tools to consider

Smartlook
Smartlook is great at recording event based
measurements. An event might be a user
pressing a button that requests a consultation,
or completion of a payment. They are important
actions that you want visibility across. Smartlook
also has a recording function available if you want
a more detailed look into how users are behaving.

Google Analytics & Firebase
These two are pretty well known. We’re a fan of
them for those more general usage analytics.
For example, return visitors vs new visitors, and
average user session data.

Hotjar
Hotjar has a great heat map feature. A heat map is
a static picture of a page with click data overlaid.
It shows which call to actions have successfully
attracted your users’ interests. By manipulating the
order or design of call to actions, you can use heat
maps to evaluate its success.

CRM Integration
Integrating an application into an existing CRM
like Pipedrive or Hubspot can align the product to
business objectives. For example, if the product
facilitates B2B sales, but those conversions happen
outside of the application itself, CRM integration
can help create visibility.

43Finding your solution

How they can be implemented

All analytics tools require some form of integration. Some are
as easy as inserting a tracking snippet into the codebase while
others require more comprehensive integrations. It tends to
depend on the complexity of the data manipulation/capture
and the sophistication of the analytics tool you’re using.

It’s worthwhile keeping this in mind during the design and
development of your product. While we always facilitate
the data and analytics conversation with our clients, some
development companies may not. In this case, you may have to
raise it before the backlog is documented.

Why measure?
Perhaps the biggest benefit that comes from measuring
product performance is the ability to make data-driven
decisions. That way, we completely remove the risk of making
inaccurate assumptions.

These decisions become critical when iterating on the first
version of your product and adding new features. They can
show which features are needed most, or the impact that a new
feature has on engagement. We like to think that every step
taken is forwards, but the data helps prove (or disprove) that.

44 The Guide to Creating a
Successful Software Product

Build your solution

While it may be tempting to take a backseat to the
development team during the build stage there is still plenty
of work to be done. This is especially true for agile projects. As
outlined earlier, this resource does not intend to outline the
way software products are developed. There is already a great
resource called the Way of Working that covers this.

Ideally, the development agency you have engaged provides
guidance on the responsibilities of a product owner during
development. We believe clients should place a strong focus
on;
•	 Managing the backlog using agile feedback loops,
•	 Mastering user acceptance testing,
•	 Getting on top of scope creep.

These responsibilities remain with the product owner and
directly impact the success of the application.

45Build your solution

Using agile feedback loops

Feedback loops are key to manoeuvring through development
effectively. They are used to refine the first version (or MVP)
that is released to users. We believe there are three stages any
successful product will progress through in its lifetime.

Your end goal should be for any user to pick up your app and instantly know

what to do, or the onboarding is clear enough that they can learn everything

they need to without contacting support. However this isn’t where you’ll start.

Initially you’ll likely need to walk users through the application, instructing them

where they can find certain features and what those features do. Because

you’re diligently validating all assumptions, you’ve likely already conducted a

few walkthrough’s during the ‘finding your solution’ stage. It’s still a good idea

to conduct more walkthrough interviews during development, especially in the

earlier iterations.

Because you’ve walked through the product with users, you know what confuses

them and what’s preventing them from picking it up and knowing what to do.

The next step is to use this initial feedback to systemise. Verbal communication

is not scalable, a systemised product is.

The final (and in all likelihood, the longest) stage is to optimise the product. The

beauty of feedback loops is that you’re able to continuously refine the product

by listening to users and incorporating those learnings into later iterations. We’ll

dive deeper into how to make those learnings using analytics in the ‘release

and grow’ chapter below.

Stage 1
Walkthrough

Stage 2
Systemise

Stage 3
Optimise

46 The Guide to Creating a
Successful Software Product

Mastering Testing

While the primary responsibility for a product owner is
managing the backlog (this will be discussed further below),
the secondary responsibility is testing.

Testing comes in two forms and for two purposes. Firstly, there
is user testing. This is similar to the theory we discussed when
looking at user interviews. The only difference is that instead
of using a prototype to test the usability, you’re using the
product itself. Because it isn’t a basic prototype, you can get
more ambitious with setting a challenge. For example you may
instruct the user to log an action and then find the report that
relates to it.

This guide is centred around an agile project, so there’s no need
to wait until the end of development to conduct user testing.
Equally, I would be hesitant to recommend it after the very first
iteration. The sweet spot lies somewhere in between and may
depend on your comfort level with the progress of your product.
I won’t go into more detail on user testing, there should be
plenty of takeaways from the user interviews section. The
second part of testing that you need to be aware of is user
acceptance testing.

The process of conducting user acceptance testing (or UAT’s)
may vary depending on the software development company
you decide to engage. However it’s an important area to
understand, especially when the responsibility resides with you
as the product owner.

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

47Build your solution

Why do we need user acceptance tests?
The purpose of a user acceptance test is to verify the
functionality created by the development team matches
the requirement in the backlog. This is mitigated through
acceptance criteria before the ticket is built, but re-confirmed
through a user acceptance test.

It’s important to acknowledge that when building a commercial
product, you need multiple levels of quality control. The first
2-4 levels generally reside with the development company.
However, it should always be elevated back up to you as the
product owner and client.

Consider a barber shop. You sit down and tell them what you
want. They take those directions and cut your hair. Throughout
the haircut they’ll ask “how’s this length?” or “is this what you
were thinking?” That’s the barber industry’s version of user
acceptance testing. Without asking those questions, you might
be walking out with a pretty average haircut you’ll regret for
the next few weeks. Similarly, without diligently performing user
acceptance tests when building a software product, you may
end up with a product you regret building.

How do they work?
A UAT is performing an action and checking the result. If I click
on this button, is a new contact created? There may be multiple
results you’re checking for depending on the complexity of the
requirement. That’s where you’ll likely be relying on the software
development company’s expertise to extract acceptance
criteria. That criteria forms the base for what you’re testing
against.

The main takeaway here is that user acceptance testing
should be prioritised. It is an opportunity to confirm that the
requirement is functional and matches your expectation.

48 The Guide to Creating a
Successful Software Product

Getting on top of scope creep

Earlier we discussed the importance of finding a solution before
building it. This process is called scoping. Scope creep happens
when a project diverges from the discovered solution without
documentation, risk management or discussion.

When a product’s requirements grow unchecked, this
increases development time. In turn, this increases the cost
of implementation and muddies the waters of what is to be
delivered and why. It can also have the effect of leading to a
disjointed final product. Adding features in a piecemeal fashion
can fail to take into consideration the product as a whole. Put
simply: too many feature requests can derail a project.

The slippery slope
During development product owners and other stakeholders
can often get very enthusiastic about the power of the software.
This fires up the imagination and can lead to new ideas or
additions to the product that weren’t prioritised during the
scope.

Project managers naturally want to ensure the client is happy
with the outcome of development, so the first impulse to these
change requests is to simply accept them and add them onto
the existing stack of work. This is a mistake, regardless of how
big the ticket is. Any change to the implementation of the
product will affect the backlog, time, cost and final deliverable.

Too much scope creep will lead to a turbulent project and have
a detrimental effect on the product itself. We’ve seen our fair
share of projects that needed to be rescued because another
development company allowed the scope to creep, resulting in
an over-budget, half-finished product.

49Build your solution

How to avoid it

Be a ruthless product owner
•	 It’s normal to have multiple stakeholders involved in a
	 project. Everyone will have their own opinion on how 	
	 the product should work. That’s why it’s important to 	
	 have a single product owner who gets to make the final 	
	 call on what features are developed. As a product owner 	
	 you need to be ruthless when it comes to scope creep. 	
	 Don’t take new feature development lightly!

Track changes
•	 Most experienced development companies should 	
	 already be doing this. The backlog is the ordered list of
	 everything that is needed in a given product and is 	
	 the source of truth for the development team. We
	 provide an estimate against the backlog before
	 development starts so product owners can get a
	 scientific breakdown of the time and costs to create 	
	 the product. Without tracking changes, the available 	
	 budget your business has set aside to develop the 	
	 product may be exhausted before must-have features 	
	 are built.

Review estimates and re-prioritise
•	 If the development company you have engaged or
	 your internal developers don’t provide an estimate, 	
	 ask for one. Scope creep will impact development 		
	 time. It’s in your best interest to know exactly what that 	
	 impact is. Having the estimate against the feature will 	
	 allow you to determine whether it’s worth extending the 	
	 time (and cost) or prioritising above other features.

50 The Guide to Creating a
Successful Software Product

Release and grow

If you make it this far, well done. It’s important to celebrate
milestones, regardless of whether you go down the road of an
official launch with the works (press release, marketing and
sales push etc) or a more low-key, staged release.

Keep in mind that no product is ever ‘finished.’ Software will
always need to be modernised to leverage the most recent and
innovative technologies. This is why you need a development
company (or internal developers) to support the product while
it grows and scales. As you’ve adopted an MVP mindset, there
is likely to be a roadmap of product development still on your
radar. Keep this in mind but be prepared to be flexible as you
make learnings from user data.

The product owners time after releasing tends to be split in
three directions – providing first level support for users on the
application, co-ordinating bug fixes/new feature development
with developers and analysing user data. We won’t go into any
depth on the first two responsibilities, that’s covered in other
documentation (the Way of Working). Instead, we will focus on
analysing data and evaluating the position of your product.

51Release and grow

Synthesising your data

As we outlined in 2.3 Building in metrics, it’s so important to
capture data about how your application is used. But, capturing
the data is only the first step. Next, you’ll have to synthesise it
in order to make smart decisions. In this regard, the best tactic
you can learn is how to block out the noise.

These are the strategies we recommend to block out the noise
and synthesise your data.

1. Look for themes
Don’t make decisions based on a single user’s feedback.
Everyone has an opinion but very rarely are you building a
product for user A. The obvious exception is software that is
developed to be used by a small number of enterprises. See if
you can find themes in quantitative and qualitative feedback.
Be sure not to dive straight into building a solution, it’s still
important to follow the steps of problem – validate – solve –
build.

52 The Guide to Creating a
Successful Software Product

2. Selective hearing
User/buyer personas are different user groups that you have
identified a problem for and the software will solve. These are
the people you concentrate your marketing and sales efforts
on. Unfortunately, not every user will fit within your persona
list. Some may be using the product out of curiousity, others
may have been recommended it without actually having the
problem you solved. Regardless, it’s important to cut through
the noise of all the feedback and listen to those that sit within a
user/buyer persona first.

3. Don’t ask people what features they want
This is one of the harder steps to follow. It goes back to the
mindset of starting with a problem. Rather than asking what
features should be built, instead try asking about how you can
improve their experience with your product. It might uncover
a usability or navigation problem where you previously didn’t
know there was one.

4. Review metrics monthly
You might be thinking, “why did you tell me to put my data
front and centre if I’m only reviewing it monthly?” While you
should live and breathe the data, you want enough time to
pass in order to capture trends and themes. The variance when
reviewing data on a daily or weekly basis is too high. Keeping
an eye on your wins/losses is a great way to keep your team
invested but allow enough time to analyse meaningful data.
This will ensure you don’t risk making knee-jerk reactions.

Being a product owner is a full-time job that only gets busier
once the product is released. Keep this in mind when deciding
on the team composition post-release. Ensure the product
owner understands that feedback and data needs to be
synthesised before being actioned.

53Release and grow

Aiming for the ‘Tick of Approval’

Whenever a product is first released it will begin with an active
user rate of 100%. It’s up to you how you define an active user
but a popular definition is anyone that has used the product in
the past week. Over time, that number must decrease. It would
be unreasonable to expect every user to remain active.

The curve below is the retention curve you should be aiming for.
While the active user rate falls dramatically at the beginning,
you want to see signs of it slowing down. That means there
is a core set of active users that use your product to solve a
problem in their lives.

Retention Curve

% Active

Time

0
0%

25%

50%

75%

100%

Product A has
Product/Market Fit

Product B does
NOT have P/M Fit

51 01 52 0

Product A Product B

54 The Guide to Creating a
Successful Software Product

The most important takeaway from this diagram is that there
will be user drop off, that is inevitable. Continue to concentrate
on your core user base – those whose problem you’re solving.
They will be the percentage that remain active over time and
create that ‘tick.’

There is no universal threshold of active users which means
product market fit. If you find less than 10% of users are active
and there are signs the curve is still dropping then that is a tell-
tale sign that either the wrong people are engaging with your
product or it doesn’t effectively solve the problem.

There are a few analytics tools that can help with mapping this
data – see 3.2 Building in Metrics. Alternatively, you can find the
user login data by querying your products database (provided
your development company has set up the proper auditing
functions). Look to your development company for guidance in
this area.

55Release and grow

Pivoting vs Iterating

You’re probably familiar with the concept of pivoting. There
have been so many success stories involving a pivot – one of
the most notable is the story of Twitter.

Twitter was originally known as Odeo, which operated as a
network where people could find and subscribe to podcasts.
However, the founders feared the company’s demise when
iTunes began taking over the podcast niche. After giving
employees two weeks to come up with new ideas, the company
decided to make a drastic change and run with the idea of a
status-updating micro-blogging platform.

If you’ve been reading this guide thoroughly you would have
picked up on the concept of iterating. Don’t worry, this isn’t a
test. Essentially, an iteration is a small change to a product,
service or business which allows for value to be added within a
quick timeframe. Each iteration is tested and checked before
and after development, to ensure that the focus of the iteration
meets the needs of the users and the market.

Sometimes, however, there are situations in which things have
gone awry, and an iteration is not sufficient to course correct.
In those situations, there are two ways of handling it: pressing
on ahead into the howling dark, hoping that things will fix
themselves, or a complete pivot. A pivot is a complete change
to the product or service offering and may even involve a
change to the underlying business model.

So then, when should you iterate and when should you pivot?

56 The Guide to Creating a
Successful Software Product

When to iterate

Iterations are the bread-and-butter of creating, launching and
maintaining a product or service. Testing should be happening
on a fairly regular basis in order to ensure that whatever is out
to market is actually responding to the attitudes and needs of
the users.

There are a few ways this testing can be carried out: analytics,
user interviews, prototyping or ongoing market research, to
name a few. Either way, a product owner can expect to iterate
at least several times a year in order to keep their offering
fresh. Iterations do not need to be major changes. Simple
modifications, such as changing a font to make it more
accessible, or tweaking an app’s existing navigation, can make
a huge difference to the user.

When user testing reveals opportunities to create value for
users, this would likely indicate that an iteration of some sort
would be beneficial. Ideally, especially for products which are
already launched, iterations should be low-risk enough that
they don’t disrupt existing users, but provide enough value to
justify the cost of development. In basic terms, iterative work is
about staying nimble and ahead of the market by maintaining
and improving a product in short bursts.

57Release and grow

When to pivot

Iterations are fairly straightforward procedures, whereas pivots
are much tougher undertakings. In general, pivots tend to
happen when the core idea of a product or service has been
undermined in some way. Taking a look at our Twitter example
above, the very need for a place to find and subscribe to
podcasts was threatened by iTunes. As a result, a pivot was
necessary to create a new, valuable product.

When iterative approaches to better appeal or diversify the
user base have failed, then the value proposition and problem
statement may need to be re-visited. Ideally, the problem
statement will never have to change. But sometimes things
don’t go to plan. When the core of the problem statement
changes, then you’re undertaking a pivot.

What this means
In many ways, a pivot means starting a project from scratch.
This means that all of the work associated with initiating a
project – market research, sketches, user flow diagrams,
prototyping and the business case must be carried out in full.
It’s much easier to iterate than it is to pivot.

A pivot should be seen as a last resort. If possible, try to pivot
on the solution rather than the problem statement itself.
Understandably this is not always possible (again, refer back to
the Twitter example).
If you find yourself in a situation where a pivot is necessary then
follow the theory outlined in this guide and try to pinpoint why
the first attempt was unsuccessful.

Interested in learning more about software or think
we might be a good fit for your next project?

(07) 3606 0230

growth@workingmouse.com.au

Get in touch

www.workingmouse.com.au

