
A Best
Practices
Guide to
Project
Security

Copyright 2022 WorkingMouse

Version 1.0

01 APRIL

2022

 Contents

Introduction 4

Application Security 5

Standards and Practices 6

Authentication, Authorisation and Auditing/Accounting 11

Application Architecture 12

User Management Security 14

Operational Security 16
Deployment Considerations 17

Cloud 18

Common Migrations 25

Access Control 26

Endpoint Security 28

Vulnerabilities 29

Data Integrity 29

Managing Endpoint Security 29

Glossary 30

Who Are We? 32

A Best Practices Guide to

Project Security4

Web security has been continuously improving over the last
decade. The security options available have allowed industries
such as banking and defence to move many of its tools to online
applications. This has brought these industries a variety of
advantages that come with using online applications over desktop
applications. Despite this, there are several security risks that are
important to identify and mitigate.

The purpose of this document is to address concerns regarding the
security for web applications which contain sensitive or restricted
data.

By summarising policies, processes and tools used throughout the
software development cycle, and highlighting common risks, this
guide will provide recommendations for technical project leaders
who want to ensure they have considered the most common
security risks and the best methods of addressing them.

While it is difficult to protect from infinite possibilities of security
attacks, we believe we have a refined process in place that enables
us to build an application in a highly secure cloud-based web
environment.

Introduction

Application Security 5

Application Security

Application security refers to an applications’ ability to defend
against attacks independent of the environment to which it
is deployed. When discussing application security, we make
assumptions regarding the security of other external factors such
as the application’s hosting to simplify the discussion.

The other types of factors are addressed in the Operational
Security section.

Key Assumptions:

•	 A malicious actor does not have access to the environment in
which the application is running

•	 A malicious actor’s only ingress is via the public domain and
port, i.e. only on https://applicationdomain.com

A Best Practices Guide to

Project Security6

Standards and Practices
We recommend following several processes to ensure your
organisation aligns with the industry’s best practices.

Application Security Verification Standard

The Application Security Verification Standard (ASVS) is a project
developed by OWASP that aims to provide an open application
security standard for web apps and web services of all types.

The Application Security Verification Standard defines three security
verification levels, with each level increasing in depth.

•	 ASVS Level 1 is for low assurance levels and is completely
penetration testable using humans.

•	 ASVS Level 2 is for applications that contain sensitive data, which
requires protection and is the recommended level for most
applications.

•	 ASVS Level 3 is for the most critical applications - applications that
perform high-value transactions, contain sensitive medical data, or
any application that requires the highest level of trust.

Level 1 can be mostly integration tested using selenium or other
frameworks. Even if Level 1 allows black box testing to occur, it is not an
effective assurance activity.

Level 2 and 3 require access to documentation, source code,
configuration, and the people involved in the development process.

WorkingMouse utilises this standard heavily as our key source of
recommendations for building highly secure software. We integrate
the recommendations in our development lifecycle from scoping,
delivery, through to deployment and support.

While many of the recommendations are relevant to application
security, many are operational in nature and as such will be
addressed in the Operational Security section. The recommendations,

https://github.com/OWASP/ASVS/
https://owasp.org/

Application Security 7

while focused on web applications, are often applicable to software
development of all types.

Security Scanning During Development

One of the most important attributes of security testing is coverage. To
assess the security of an application, an automated scanner must be
able to accurately interpret that application. Automated vulnerability
scanning allows developers to always be on the lookout for new attack
paths that attackers can use to access a web application or the data
behind it. We can also integrate security testing tools in our build
pipeline.

There are two types of security testing:

•	 Dynamic application security test (DAST, also known as black box
testing) is a type of testing that looks for security vulnerabilities by
safely exploiting a running application from the outside. This type
of testing is not dependent on the framework or programming
language used.

•	 Static application security test (SAST, also known as white box
testing) is a type of testing that includes code analysers. It tests the
source code for vulnerabilities by identifying the common patterns
in it. These tools are language-specific and can be only used by
the development team.

Unfortunately, automated tools and online scans cannot completely
test against ASVS criteria without human assistance. An automated
security testing tool is encouraged to provide as much coverage
as possible. A large majority of ASVS requirements in Level 1 can be
performed using automated tests. However, many requirements in
Level 2 and Level 3 requirements are not amenable to automated
tests due to the sensitivity of the data.

As a standard, WorkingMouse recommends basic automated SAST
testing against applications.

Further Reading
•	 Static Application Security Testing

https://docs.gitlab.com/ee/user/application_security/sast/

A Best Practices Guide to

Project Security8

Application Third-Party Dependency
Auditing and Patching

A key part of creating a highly secure application is the monitoring
and patching of vulnerabilities as they become known.

Dependency management is critical to the safe operation of
any application of any type. Failure to keep up to date with
outdated or insecure dependencies is the root cause of the
largest and most expensive attacks to date.

	 - OWASP ASVS

WorkingMouse recommends using autom`ation tools to identify
dependencies used within the application that have outstanding
publicly disclosed vulnerabilities so that the application can quickly
be patched. Wherever possible, the tools used are those maintained
by the organisations that develop the technology to maximise their
reliability.

For example, the .NET command line tool (CLI) package command
provides a mechanism for auditing our server-side dependencies.
As this is developed and maintained by Microsoft, who also develops
and maintains the C# language, a certain degree of reliability can
be expected. For our client-side package, the built-in yarn audit tool
is used for the same reasons with the same benefits. Both examples
operate online and, as such, maintain an up-to-date list of exposed
vulnerabilities to check against.

This continual maintenance is a requirement to ensure that an
application stays secure, even after the initial development.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-list-package
https://classic.yarnpkg.com/en/docs/cli/audit

Application Security 9

Codebots

WorkingMouse makes use of the Codebots’ App Studio and AI Lab
development suite to develop high quality and secure applications.

A custom bot (C#Bot) is used to set the standard of code quality
and functions in applications. The application’s information
architecture is then modelled out in App Studio, that’s powered by
C#Bot to write the source code.

Building with Codebots includes benefits such as:

•	 Powerful user management and security framework

•	 Constant security updates to address vulnerabilities discovered
through penetration testing/vulnerability disclosures.

As C#Bot is used by many applications at WorkingMouse,
vulnerabilities discovered by security audits and penetration testing
performed for these applications result in updates back to the
C#Bot itself to ensure all applications benefit.

Please see the User Management and Security section for more
details on the user management and security framework.

https://codebots.com/docs/learn-c-bot

A Best Practices Guide to

Project Security10

Security Assessment and Penetration
Testing

Before releasing the application into a production environment,
an added security measure is to validate the quality of the
application security thoroughly by hiring a penetration testing
service. A penetration testing service (or pen test) is a form of
ethical cybersecurity assessment designed to identify, through safe
exploitation, vulnerabilities affecting computer networks, systems,
applications, and websites so that any weaknesses discovered can
be addressed to mitigate the risk of a malicious attack. Ultimately,
the aim is to help shape cyber strategies and frameworks:
penetration testing helps test, validate or invalidate the efficiency
of defensive controls and determine what needs to be done to
bolster them. If any vulnerabilities are discovered, we could address
these issues through new tickets before releasing to the production
version of the application.

WorkingMouse highly recommends the process of hiring
independent penetration testing services. They can perform a suit
of SAST and DAST tests, both looking for known vulnerabilities, and
doing some white-hat hacking to see if they can break into the
application. This will give an independent third-party opinion on the
application security.

Multi-factor Authentication

According to the ASVS V2 Authentication section, applications
should strongly encourage users to enrol in multi-factor
authentication. By having multi-factor authentication, it can tick off
multiple password and security criteria in the ASVS list.

C#Bot already has 2-factor authentication built-in on the server-
side. If selected, this can be implemented in an application
and allows users to configure and use a second factor when
authenticating.

Application Security 11

Authentication, Authorisation and
Auditing/Accounting
AAA security stands for authentication, authorisation, and auditing.

Authentication is the first step in the AAA security process and
describes the network or applications way of identifying a user and
ensuring the user is whom they claim to be. The user enters a valid
username and password before they are granted access; each user
must have a unique set of identification information. Identification
can be established via passwords, single sign-on (SSO) systems,
biometrics, digital certificates, and public key infrastructure.

Authorisation refers to the process of enforcing policies, such as
determining the qualities of activities, resources, or services a user
is permitted to use. Authorisation usually occurs within the context
of authentication; once you have been authenticated, AAA security
authorisation assembles the set of attributes that describe what you
are authorised to perform.

Auditing/Accounting measures the resources users consume
during access to a network or application, logging session statistics
and user information including session duration, and data sent and
received. Usage information is used for authorisation control, billing,
trend analysis, resource utilisation, and capacity planning activities.

AAA security enables mobile and dynamic security. Without AAA
security, a network must be statically configured in order to control
access. IP addresses must be fixed, systems cannot move, and
connectivity options must be well defined. The proliferation of
mobile devices and the diverse network of consumers with their
varied network access methods generates a great demand for AAA
security.

A Best Practices Guide to

Project Security12

Application Architecture
When developing an application to be secure, it is important to consider the
architecture.

To ensure that the architecture of each of our applications follows best practices
and is consistent, WorkingMouse recommends writing applications into an N-tier
architecture, which is a powerful general purpose application architecture that
has strengths in clarity and separation of concerns. The Codebots development
platform helps build applications to this architecture.

The key benefit of the N-tier architecture within the context of security is the ability
to define clear bounded contexts within the application that can be secured
independently from each other.

Within the context of a project, there are only two points of ingress within the n-tier
structure. The web-layer and the external interface/third-party platform.

Application Security 13

The Web Layer

Within a project, the web layer is represented by a set
of APIs that allow the view (the client-side) to transfer
data between the data source (database) and the user.
These API endpoints provide a key vector for attack from a
malicious actor. To protect against this, the bounded context
of the service layer allows for the introduction of middleware
to shield the internal workings of the application. For
details on how this middleware works, please refer to ‘User
management and security’.

Additionally, the API endpoints allow for strict control over
what data is exposed and prevent the internal workings of
the application from becoming available to attackers.

In the worst case, an attacker can only gain insight about
the application based on the responses to requests
made through the API, ensuring any server-side logic/
code remains a black box to malicious third-party actors
attempting to steal IP.

To gain access to IP protected by the application, an
attacker would need to gain remote access to the
application server. Mitigations and protections for this vector
of attack can be noted in the Operational security section.

A Best Practices Guide to

Project Security14

External Interface Layer

It is common in many applications to integrate with a third-party or
external interface.

These integrations provide another avenue for attack.

There are two common methods of integration:

1.	 Integration from Third-Party to Application -> API requests from the
third-party application to the application

2.	Integration from the Application to the Third-Party -> Typically API
requests from the application to the third-party

In the first method, the application becomes a passive entity that
serves requests over the web layer. This is the most risk prone as
it allows the integrating party to control the request structure and
format, and it relies on the protections built into the web layer
to ensure that only the requested/allowed information can be
transmitted.

In the second method, the application becomes the controlling entity
and as a result is less risky.

In both scenarios, WorkingMouse recommends to follow a minimum
trust model. That is, we only trust the third-party as much as is strictly
required, to ensure the successful functioning of the integration. It is
recommended to follow this model to mitigate the risk that the third-
party may become compromised and as such, any access allowed by
the application to the third-party could also be gained by an attacker.

User Management and Security
WorkingMouse uses the user management security framework and
configuration tools provided by the Codebots suite to maximise the
protection against malicious actors.

Application Security 15

Security Diagram

The security diagram is a configuration tool in Codebots that provides
the AAA of security out of the box. By default, no resource can be
accessed without being authenticated, and all operations are audited.
Using the security diagram, a developer can define access to pages
and business entities within the application. It allows for static security
rules to be defined before they are written out in code.

The benefits of static, bot-written security rules are as follows:

•	 Bot-written ACLs (access-control list) are heavily tested across
many versions and projects

•	 Security rules are documented in the security diagram (tight
coupling ensures that the documentation reflects the implemented
code)

•	 Clear and concise access controls

Security framework

C#Bot applications come out of the box with a full stack security
framework that provides a combination of strict access control and
user experience controls. The security controls are model based (from
the Codebots security diagram) with ACL’s being defined on a per-
entity basis. While ACL’s are core to the security framework, they are
not the limit of what is possible.

The client-side of an application is not a reliable place to verify
security, this is instead the duty of the server-side which includes user
authentication, CRUD permissions and other considerations. However,
it is important for the client-side to reflect the security rules.

Custom security

On top of security rules implemented by the codebot, based on the
features required, developers implement custom ACL filtering security
code. These requirements are discovered and documented during
scope.

https://codebots.com/docs/c-bot-custom-security
https://codebots.com/docs/c-bot-custom-security

A Best Practices Guide to

Project Security16

Operational Security

Operational security refers to the security of the deployed
environment. It is involved with ensuring that malicious actors
cannot and do not gain access outside the prescribed means
dictated by the application.

Key Assumptions:

•	 Access via the prescribed ingress points (as dictated by the
application) is correct and secure.

Operational Security 17

Deployment Considerations
An application can be deployed using a variety of different methods.
It is extremely difficult for an application to be completely secure
despite any inherit insecurity of its execution environment. As such it
is often necessary for an application to place a degree of trust in the
environment in which it has been deployed. To ensure that a system
remains secure, both the application and execution environment need
to be made secure in conjunction and independently.

Trusted Execution Environment

Applications require computer hardware to operate. This hardware
includes CPU registers, memory, IO and storage. When an application
executes, it relies on this hardware to reliably and securely hold
or transmit data that is used during operation. This data can be
privileged and highly sensitive.

Access to this hardware, physical or remote, can allow an attacker
to compromise the application. Therefore, strict controls need to be
put in place to ensure that an attacker cannot gain access to this
environment.

Security is based upon a chain of trust. For an environment to be
considered trustworthy, we must trust whoever has control of it. This
trust is twofold - we must trust that the correct mitigations have been
put into place to ensure the security, and we must trust that the party
in question is not malicious. In the case of cloud environments, this
typically results in a combination of trusting Microsoft, Amazon or
Google and the managing party which can be WorkingMouse or a
third-party. In the case of an on-premises server or workstation, we
must trust whoever has access to it. This is usually our end users.

If it is difficult to trust these parties. Some of the possible mitigations
that can be put into place to ensure that an environment is highly
secure are as follows:

•	 Physical servers or workstations - Physical barriers such as
locked rooms and air-gapping machines (ensuring they are not
connected to any networks or the Internet), plus all the mitigations
that apply to remote servers.

A Best Practices Guide to

Project Security18

•	 Remote servers, like those used by the cloud - Utilisation of
concepts such as VPC’s (virtual private clouds), VPN’s (virtual
private networks) and locking down of certain network routes. We
can typically trust the security in place on the physical servers.

All the mentioned mitigations are common practice and should be
considered when discussing environment security.

Cloud
Cloud deployment involves the utilisation of a cloud service provider
such as Azure (by Microsoft) or AWS (by Amazon). This document
references Azure as an example but can be applied to any cloud
platform.

When deploying to the cloud, we combine a trust for the security
models and mitigations put in place by the provider (security
processes in their data centres and resource isolations between
shared services i.e. physical hardware) with due diligence processes
and mitigations put in place by the managing party.

Of the deployment options, the cloud section will be the most
compressive due to it being the most common chosen path for
WorkingMouse customers. As such, WorkingMouse has an extensive
set of processes and policies regarding ensuring that cloud
environments remain secure.

Critical Deployment Components

An application environment requires at minimum the following
resources:

•	 1 PostgreSQL Database

•	 1 Document Storage Container

•	 1 Kubernetes Cluster (on at least one Node)

Applications are built and deployed using Docker Containers, a tool
which packages application build with system level dependencies,
such that the application can run independent on its host system.

https://docs.docker.com/get-started/overview/

Operational Security 19

Applications are stateless, meaning any number of container
deployments can share access to the database and blob storage. If
multiple containers are put behind one load balancer, we can scale
resources as needed. We use Kubernetes to run containers and
manage load-balancing.WorkingMouse utilises Docker containers
to maximise scalability and flexibility. The Docker containers have
the added benefit of easily being able to maintain an up to date and
patched operating environment.

WorkingMouse utilises containers released by Microsoft for the
purpose of minimising the risk associated with outdated Docker
containers. Docker containers can also be independently scanned for
vulnerabilities using scanning tools provided by Docker. The default
Docker images used for deployment are produced by Codebots to
maximise standardisation and minimise the risk of misconfiguration.

Network Architecture

Common Network mitigations - Firewall

Firewalls can be used to protect web apps by filtering, monitoring, and
blocking any malicious HTTP/S traffic travelling to the web application,
and prevents any unauthorised data from leaving the app. It does
this by adhering to a set of policies that help determine what traffic
is malicious and what traffic is safe. Just as a proxy server acts as
an intermediary to protect the identity of a client, a web application
firewall operates in the reverse, acting as an intermediary that
protects the web app server from a potentially malicious client.

https://docs.docker.com/engine/scan/

A Best Practices Guide to

Project Security20

Some firewalls that are available include:

Azure Network Firewall

Azure Firewall is a cloud-native and intelligent network firewall security
service that provides the best of breed threat protection for your cloud
workloads running in Azure. It’s a fully stateful, firewall as a service with
built-in high availability and unrestricted cloud scalability. It provides
both east-west and north-south traffic inspection. With a standard
firewall, it provides L3-L7 filtering and threat intelligence feeds directly
from Microsoft Cybersecurity. Threat intelligence-based filtering can
alert and deny traffic from/to known malicious IP addresses and
domains, which are updated in real-time to protect against new and
emerging attacks.

Layer 3 firewalls (Network firewalls) filter traffic based on the TCP/IP
stack. On this layer, traffic can be categorised according to IP address,
port numbers and service protocols. By configuring network traffic
filtering rules, it can be configured to whitelist or blacklist certain IP
addresses. IP whitelisting allows to only provides access from specific
IP addresses. At the same time, it blocks access for computers
attempting unauthorised access from all unspecified IP addresses.
When a new mine site wants to use the app, our DevOps would have
to add their site IP address to the list. This could be inconvenient if a
user wants to operate outside the approved network.

Read more:

•	 Azure Firewall Standard features

https://docs.microsoft.com/en-us/azure/firewall/features

Operational Security 21

Azure Web Application Firewall

Web Application Firewall (WAF) provides centralised protection of
your web applications from common exploits and vulnerabilities. WAF
can defend against malicious attacks that exploit commonly known
vulnerabilities such as SQL injection and cross-site scripting. WAF can
be deployed with Azure Application Gateway, Azure Front Door, and
Azure Content Delivery Network service.

Read more:

•	 What is Azure Web Application Firewall on Azure Application
Gateway?

•	 Azure Web Application Firewall on Azure Front Door

•	 Azure Web Application Firewall on Azure Content Delivery Network
from Microsoft

Network Components:

•	 Virtual Network

•	 Firewall/Security Group rules

•	 Allow external traffic into DB

•	 Internal office IP

•	 Cluster - Contained within the virtual network

https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/afds/afds-overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/cdn/cdn-overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/cdn/cdn-overview

A Best Practices Guide to

Project Security22

The network configuration has some key components that relate to
security:

•	 VPC - Virtual Private Cloud

•	 A VPC is used to ensure that all components inside the cloud
can communicate as required, but no external access is
provided outside of the prescribed ingress points defined for
the application. In the diagram above, this can be seen as the
following:

•	 Office IP/VPN - allows access to the internal VPC components
for administration and management purposes but only from
internal office network or via a VPN.

•	 End user access via the Nginx web server. This traffic is
encrypted using HTTPS to prevent man in the middle attacks
and data from being compromised.

•	 Blob storage is protected from external access via key/origin based
access controls.

Data Integrity and Security

Blob storage providers often come with a suite of features to
guarantee data integrity and security.

Controls are in place within the Azure storage product to ensure data
integrity and security. This includes encryption, soft deletion, and
hashing. Other features include the ability to enable “soft deletion”.
When a file is deleted, it can be restored up to a set amount of time.
This is a powerful feature for business critical files.

There is a white paper titled Protecting Data in Microsoft Azure
published by Microsoft that provides even greater insight into data
security and the many controls and default configurations put in
place by Microsoft to ensure that stored data is protected.

Within the application context itself, file ownership is secured using
the same mechanisms used to protect endpoints from unauthorised
access.

https://go.microsoft.com/fwlink/p/?LinkID=2114156&clcid=0x409&culture=en-us&country=US

Operational Security 23

Quick Facts

Redundancy Redundancy protects against data corruption, as well as
offering backups should services go down.

By default, we select Locally Redundant Storage for pre-
production storage accounts, which creates 3 local copies to
prevent data corruption.

By default, production storage accounts use Globally
Redundant storage, which additionally saves a copy in a
different region. This can be another Australian region if
required.

More information of redundancy types can be found in official
documentation: Azure Storage redundancy

Encryption Encryption on-disk is on by default. Azure offers the ability to
double-encrypt.

You can enforce TLS levels for encryption in transit. TLS 1.2 is
widely supported, but TLS 1.3 is most secure (at time of writing).

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy

A Best Practices Guide to

Project Security24

Resource Isolation

Azure allows running applications and virtual machines (VMs) on shared physical
infrastructure. One of the prime economic motivations for running applications
in a cloud environment is the ability to distribute the cost of shared resources
among multiple customers. This practice of multi-tenancy improves efficiency by
multiplexing resources among disparate customers at low costs.

Option 1: Complete Resource Isolation

For clients who want complete isolation, it is possible to spin up a new instance by
allocating their own dedicated resources. This would be the simplest solution to
create an effective level of isolation. However, this would result in higher running
costs as resources won’t be shared.

Option 2: Co Tenanting

There are multiple levels of resource sharing or isolation that can be implemented
in this architecture, and it would depend on the requirements of the application.
For example, there could be one data server with each client having their own
database. This would require a higher initial setup cost but would result in lower
running costs compared to option 1.

On Premise

On premise deployments utilise a customer’s own hardware, usually installed
onsite to execute the application. This hardware is maintained and managed by
the customer and may be connected to the web and/or a local network.

There are still vulnerabilities with this option, most of which are also present in
desktop applications.

Operational Security 25

Common Mitigations
For web-based applications, there are some common mitigations that can be put
in place from a DevOps perspective that can greatly reduce the attack plane for
an application while still allowing for the benefits of a cloud-based application to
be maintained. These mitigations are in addition to the security supplied by the
application.

VPN

This allows for the benefits of the web, namely in terms of access, to be capitalised
upon while ensuring that only a selected set of users can gain access to it. This is a
multi-layered approach to security, as users will still need to have access to valid
credentials and be authorised to utilise the application even with access to a valid
VPN.

Client Certificate

Client certificates are used to concretely identify and validate individual users. If a
server is enabled with client certificate authentication, only users who attempt to
connect from a client-side loaded with the right client certificates will succeed. A
client certificate is sent from the client-side to the server at the start of a session
and is used by the server to authenticate the client-side. Even if a legitimate
user attempts to connect with the right username and password, if that user
isn’t on a client application loaded with the right client certificate, that user will
not be granted access. Without that certificate, a user won’t even be able to see
the login page. On top of two-factor authentication (Username and Password,
Authenticator app), client certificate authentication could be added as a third
layer of authentication.

IP Whitelist

IP whitelist (passlist, accesslist) access control is an additional option to boost
security levels.

Access to the primary application ingress can be based upon an IP whitelisting
mechanism where access is granted only for those who are accessing from an
approved IP. This would require a static IP address to be configured for a given
user, which is usually already in place for many businesses and organisations.

A Best Practices Guide to

Project Security26

Access Control
Access control can be considered to exist in two parts. The first part
being the logical constraints that prevent users from accessing
information that they should not, and the second is the principles in
use to decide upon these rules.

WorkingMouse recommends following the principle of least privilege in
all our access control decisions.

Verify enforcement of the principle of least privilege in functions,
data files, 	 URLs, controllers, services, and other resources. This
implies protection against spoofing and elevation of privilege.

	 - ASVS v4.0.2-1.4.3

Internal System Administration​

•	 External (Internet) direct SSH access to any server is forbidden
except in emergency cases. ​

•	 No SSH access via passwords is allowed under any circumstances.
Only private/public key pairs are used. ​

•	 WorkingMouse suggests using a two-layer system where access to
the internal server network can only be gained via an encrypted
VPN and access to specific servers can only be gained by
possessing a specific SSH key. ​

Site Resource Access​

•	 HTTPS is a data transfer protocol that encrypts all data transfer
between the server and client, client and server. All customer
specific data is transferred using HTTPS. ​

•	 The application will be hosted in the application owner’s account
with the cloud provider of their choice, resulting in resource
isolation between application owner’s applications and other
clients.

•	 Resources cannot be accessed arbitrarily. They can only
be accessed according to the strict rules of the site’s

underlying application. ​

Operational Security 27

File/Media Storage

•	 All uploads to the application are stored in the Blob Storage Service
provided by your chosen Cloud Provider.

•	 Access to the data stored in the Blob Storage Service is tailored to
the need of your application when setting up your environment.
Efforts are taken to ensure access to this data is as controlled as
it needs to be. The default configuration is that the application
maintains full access to the blob storage. It then manages access
via the security model and custom security written into the app.

Firewall

•	 All servers are fire walled with only the minimum set of services
exposed to allow the server to fulfil its tasks. ​

Database System Access​

•	 All databases are password protected with several levels of user
privileges. ​

•	 Databases are only accessible from within the internal private fire
walled network. At no time are they exposed to the Internet. ​

•	 Only the servers that need database access are granted access 

•	 Applications are given the least database privileges necessary to
run the application. For example, a running application does not
have permissions to alter the database schema.

Backups

•	 Database PITR (Point In Time Recovery) is enabled which allows
restoring to a specific moment within the last 5 minutes.

•	 Full database backups are automatically created daily and kept for
the last 14 days.

•	 Blob Storage is covered by the redundancy and availability options
provided by your Cloud Provider.

•	 If desired, Blob Storage backups can be setup.

Endpoint Security

Endpoint security refers to securing the computers that are used
to access a service. This is important because even if a service is
perfectly secure, it can still be compromised by a malicious actor
if access is gained through valid means. Valid means within the
context of an application differs depending on the application but
for example could be via the computer of a user that has access to
the application using a valid set of credentials.

Endpoint Security 29

Vulnerabilities

Malware

Malware is easily introduced through URL links in emails or through compromised
hardware such as USB sticks. Other more sophisticated methods also exist. Once
malware is installed on an endpoint, there is often very little that it cannot do.

It is important to note that desktop applications are even more susceptible to
malware-based attacks than web-based applications. In the context of a cloud
application, the malware is limited to the level of access of that user. For desktop
applications however, the user will generally have a much greater level of access
to execute the program. This means there is a wider risk of vulnerabilities in the
application.

Desktop applications are also highly susceptible to ransomware attacks, which
can perform a denial of service and prevent access to key data. To mitigate
ransomware attacks, regular backups are required, which are not always well
managed on local machines.

Data Integrity
Web based applications are less susceptible to data integrity issues due to
validation and verification being able to be maintained and managed in a
controlled environment (the cloud).

For desktop applications, corruption and data loss are more likely due to user error
or even hardware failure. Redundancy and data integrity checks are standard for
web-based applications but are often lacking in a user’s personal workstation.

Managing Endpoint Security
An endpoint protection platform (EPP) is an integrated suite of endpoint protection
technologies—such as antivirus, data encryption, intrusion prevention, and data
loss prevention—that detects and stops a variety of threats at the endpoint.
EPPs exist to provide one-stop shops for end point protection. These services
are recommended for all those that are concerned about security, regardless of
whether an application is web-based, or desktop based.

A Best Practices Guide to

Project Security30

Glossary
Term Definition

OWASP The Open Web Application Security Project (OWASP) is a
non-profit foundation dedicated to improving the security
of software. In short, OWASP is a repository of all things web-
application-security, backed by the extensive knowledge and
experience of its open community contributors.

ASVS The OWASP Application Security Verification Standard (ASVS)
Project provides a basis for testing web application technical
security controls and also provides developers with a list of
requirements for secure development. The ASVS is a list of
application security requirements or tests that can be used
by architects, developers, testers, security professionals, tool
vendors, and consumers to define, build, test and verify secure
applications.

The primary aim of ASVS is to normalise the range in the
coverage and level of rigour available in the market when it
comes to performing Web application security verification using
a commercially workable open standard. The standard provides
a basis for testing application technical security controls, as
well as any technical security controls in the environment, that
are relied on to protect against vulnerabilities such as Cross-
Site Scripting (XSS) and SQL injection. This standard can be
used to establish a level of confidence in the security of web
applications.

CWE A Common weakness enumeration (CWE) is a common
security weakness in software or hardware that is often used
as a common language for identifying and mitigating security
vulnerabilities. A registry of CWEs can be found at https://cwe.
mitre.org/.

CVE A Common Vulnerability and Exposure (CVE) is a publicly
disclosed cybersecurity vulnerability or flaw. A list of CVE’s can
be found at https://cve.mitre.org/.

https://cwe.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/

Glossary 31

SAST Static application security testing. This term stands for the
practice of running static analysis tests against source code to
uncover security vulnerabilities.

DAST Dynamic application security testing. This term stands for the
practice of running dynamic analysis tests against a running
application to uncover security vulnerabilities.

ACL Access control list. An ACL is the primary contributor to the
authorisation of users against given resources.

Codebots A development tool used to speed up development by providing
bots that can develop most of the standard application
requirements. https://codebots.com

C#Bot A custom codebot that writes to a C# .Net Core and React web
application stack.

https://codebots.com/

A Best Practices Guide to

Project Security32

Who Are We?
We’re an Australian software company that excel at designing & developing
software solutions with the right mix of people, process & tools.

How we can help...

Application Development

Use one of our squads to build your
web-responsive and mobile apps
- leverage a cross-functional team
to design and develop the very best
software solution.

Team Augmentation

Need more development ‘oomph’? We
have squad leads, designers, software
and DevOps developers and solution
architects ready to step in and help out.

Product Design

We take a problem-lead approach to
design so you build the right thing the
first time. A great user interface (UI) and
exceptional user experience (UX) ensure
application success.

Who Are We? 33

Modernisation Strategy

Connect your organisational goals to
your software systems direction with
a comprehensive strategy. Take back
control and escape the legacy trap.

Legacy Projects

Need support while modernising your
legacy app? You can rely on our team
to keep everything running smoothly
while we figure out the next steps.

Product Success

Improve your applications return on
investment (ROI). Continuously iterate
and improve your product through
data-driven insights and metrics.

DevOps Consulting

Stay ahead of the digital transformation
game. DevOps empowers and
streamlines your projects for faster
delivery cycles. Let us guide you into the
future.

Development Automation

Strapped for time and resources?
Automate parts of your development
to free up your dev team to use their
talents and creativity where they’re truly
needed.

34

Interested in learning more about software
or think we might be a good fit for your next

project?

(07) 3606 0230

growth@workingmouse.com.au

Get in touch

