
1White paper 2022

“Access to developers is a bigger threat
to success than access to capital.”1

2

Message from the CEO

Decision makers are currently looking for innovative ways to amplify their people, processes, and
tools amidst a world-wide shortage of software developers. This shortage poses a significant threat
to organisational success. This white paper is an in-depth guide into amplifying business efficiencies
during resource shortages. We will address many of your most important questions about Codebots
and the role it plays in solving these problems to inform your operational and strategic decisions.

Codebots is on a mission to create bots that code like the world’s best developers. Imagine if you
could create a bot to code in any technology stack! The good news is we have discovered a world first
approach on how you can achieve this today. It is now possible to use a bot to code the vast majority
of a software application alongside your software developers. But this is the beginning of the story...

Our vision is to provide a platform that empowers cross-functional software development teams
to build better software systems. This can be done by unleashing the potential of models. Once you
accept a simple truth, that everything is a model, you can unlock the creativity of all your team.

The format of this white paper is to follow the five W’s and H approach; who, when, what, where,
why, and how. These will help you gather information about Codebots and start you on your journey
of understanding. For example, where does Codebots fit in the market? This is the first question we
address to help you orientate yourself and Codebots market position. We then dive deeper with other
pertinent questions and finish the white-paper with some strategies and case studies.

Eban Escott

founder and CEO at Codebots

Eban is the founder and CEO at
Codebots. He received his doctorate
from The University of Queensland
(2013) in Model-Driven Engineering
and his Masters from Queensland
University of Technology (2004) in
Artificial Intelligence. He is an advocate
of using models as first class artefacts in
software engineering and creating not
just technologies, but methodologies that
enhance the quality of life for software
engineers. When he is not coding or
running the company, you can find him
mountain bike riding or finding his zen in
martial arts.

Table of Contents

Where does Codebots fit in the market?	 4

What is the Codebots platform?	 6

Who is Codebots for?	 8

Who benefits from using models?	 9

How does Codebots work?	 10

How do you learn about Codebots?	 11

When is Codebots used with Agile?	 12

When is Codebots used with DevOps?	 13

Modernisation strategy	 14

Case studies and testimonials	 16

Endnotes	 18

4 5White paper 2022

Robotic Process Automation (RPA) is aimed at
automating mundane routine tasks that a user
must do on a legacy system. Some examples
include data manipulation via a User Interface
(UI), uploading/downloading files, and completing
routine reports.

RPA has been gaining market attention as
organisations are able to automate routine
tasks and free up their people to do other, more
meaningful work.

The limitation that the market has found with RPA
is that it does not address the underlying problem
of the legacy system that the tasks are being
automated on. So, in effect, by using RPA they
are kicking the can down the road. Unfortunately
without longer term strategies, the problems
associated with legacy systems are becoming
worse.

Low-code is an approach to building software that
requires little to no programming experience. The
low-code platform usually has a visual drag-n-drop
UI whereby an application’s UI, data, and business
logic can be created. Low-code has been gaining
market traction as it empowers citizen developers
(non-developers) to make software applications.

The limitation that the market has found with
low-code is that while it may empower citizen
developers, this is only within the bounds of the
low-code platforms pre-built components.

To go beyond these pre-built components requires
a software developer however, it is extremely
difficult for developers to customise. But this
discovery can be too late for an organisation as
they are vendor locked to the low-code platform
and control has been lost.

Codebots intersects with RPA and low-code with
a common goal of automation, but it differs in a
number of ways:

•	 RPA does not change/modernise the legacy
system. Codebots can be used to modernise
the legacy system by automating tasks that a
software developer usually does (like writing
code). Unlike RPA, Codebots addresses the
underlying issue of the legacy system through a
process of modernisation.

•	 Low-code runs counter to true innovation.
It empowers citizen developers but this is at
the expense of the rest of the team and the
organisation’s ability to innovate. Codebots
brings balance to building software as it
empowers the entire team.

•	 Both RPA and low-code platforms aim to
vendor lock your organisation. Codebots
avoids vendor lock by committing all the
code, models, and templates into your source
code repositories. Even though our platform
is not open-source, the artefacts you need
to continue using traditional development is
under your control.

It is generally accepted that computers and
robotics are changing the landscape and future of
work. This has been seen across many industries
and in recent history, breakthroughs in artificial
intelligence (AI) have brought this into focus. A
big moment in history was in the late 90’s when
DeepBlue was able to beat the reigning world
chess champion Garry Kasparov, after all the
controversy has subsided, Kasparov now advocates
for augmented teams where both computers and
humans bring different strengths to the game.

In a TED talk by Kai Fu Lee3, he takes the ideas of
augmented intelligence further and looks at some
different axis to help determine what types of
jobs will end up with different uses for AI. As seen
in the image below, the horizontal axis measures
from optimisation to creativity or strategy. So
routine to mundane tasks are found towards
the left and creative thinking tasks are found to
the right. Lee also introduces a vertical axis that
measures the compassion needed for the job.

Jobs found in the bottom left quadrant are open to
be replaced completely by AI. Other jobs will end
up with a various mix of AI but a human will still
be needed in some capacity. The question faced
by decision makers is to what extent will it change
their mix of people, process, and tools? People
will need to be up-skilled, processes will need to
evolve as the work has changed, and the best tools
will be needed that leverage AI to augment teams
to create success.

Where do software developers sit in the quadrant?
And more widely, where do the various roles in a
cross-functional software team sit?

There are many tasks that software developers do
that fall under optimisation and no compassion
needed. Our stats show that upwards of 80% of a
software application can be written by a codebot.
For some projects, it is as high as 99%. The reason
for this is that many software applications use
patterns and architecture that is about managing
data. This is especially true in applications that
are underpinned by a database. A lot of effort
goes into CRUD4 (create, read, update, and delete)
operations, from database management all the way
through to API’s like REST and GraphQL. There
are also cross cutting concerns like security that
are consistently repetitive (good candidate for
augmentation).

However, there are also many tasks that software
development teams do that require creativity and
compassion. The question then shifts to the best
way to capture this and enable an AI to help. In
the next section we discuss the role of models in
software development and how they can be used
to unleash the creative power of teams. Further
to this, it is important to make sure that when a
codebot writes code, it must look like a developer
has written it. If a developer is able to understand
the code written by a codebot, they can extend
and customise it for any requirement. This is one of
the areas where low-code platforms have failed.

We were invited to do the keynote
talk at the low-code track at
MODELS 2021, the premier
annual conference on MDE.
Controversially, we spoke about
Low-code: the good, the bad, and
the ugly. The video presentation is
available on our website.2

Human

AI

AI
+ AI

Human

Compassion Needed

Compassion Not Needed

Op misa on

Source: Kai-Fu Lee: How AI can save our humanity | TED Talk

Crea vity or Strategy

+ AI
Human

AI

Where?

“The first rule of any technology
used in a business is that
automation applied to an
efficient operation will magnify
the efficiency. The second is
that automation applied to an
inefficient operation will magnify
the inefficiency.”

– Bill Gates

Codebots

Automa on

RPA Low-code

Where does Codebots fit in the market?

https://www.ted.com/talks/kai_fu_lee_how_ai_can_save_our_humanity
https://codebots.com/crud/what-are-crud-operations
https://codebots.com/low-code/low-code-the-good-the-bad-and-the-ugly
https://codebots.com/low-code/low-code-the-good-the-bad-and-the-ugly

6 7White paper 2022

The Codebots platform is made up of two products; AI Lab and App Studio.

START

Will you need
parts of this func onality

again?

Can the bot help
you implement this

func onality?

Add the func onality to the
reference code and models

used to train the bot

Train the bot with the new
implementa on No

No

Yes

No

No

Update or import the app’s
model(s)

Update your app to the
newly released bot version.

Are you happy
with the bot’s

implementa on?

Has all of the
func onality been

implemented?

Release the new version of
the bot

END

Build the app

Write the custom code
needed to implement the
remaining func onality

App Studio

Custom Code

AI Lab

Yes

Yes

Yes

The following flowchart shows the process
of how a developer teaches a bot to code in
any technology stack. At a high-level (see the
legend), App Studio is where developers create
many applications and use the codebots to help
implement some functionality. AI Lab is where
developers create and teach a bot. Once they
are happy with the bot, they release the bot for
use inside the App Studio. Lastly, developers can
write custom code to either show the bot a good
example, or, to implement extra functionality.

One of the most important aspects of this
flowchart is that a developer writes the reference
code and models used to train a bot. Like
teaching a child, it is best if you first show the
child a good example so they can replicate it.
Similarly, a developer writes the reference to
show the bot what it is to learn. In this way, this
flowchart can be followed many times and a bot
can continue to evolve and learn new things. Or,
if the bot does what you need, you can reuse it
on many projects inside App Studio!

What?

AI Lab

AI Lab is used to build your own codebot
using the technology stack of your choice.
When you use the default codebots from App
Studio, like C#Bot or SpringBot, you can add
custom code inside the protected regions
but if you want to modify code outside these
regions you are blocked. So, to take control of
your codebot you will need to train it inside
the AI Lab platform so you can update any
of the code it writes. Alternatively, if you
have a legacy system to use as a reference,
this makes for a great starting point for your
modernisation strategy.

App Studio

App Studio is used to build software
applications. This is done by creating
a new project and selecting a codebot
like C#Bot or SpringBot. The team then
updates the models for the application,
hits the build button, watches the bot
write code and commit it to a Git source
code repository. The team can then pull
the code from Git and can add their
custom code alongside the bot written
code to meet a requirement as necessary.

What is the Codebots platform?

8 9White paper 2022

Using models is one of the keys to unlocking the
creative power of your team to solve complex
problems. A really good way to understand the
depth of this statement is to solve a wicked
problem: tell me how you make toast5. In this
TED talk, Tom Wujec uses a simple process of
how we make toast as a way to highlight how
collaboration and shared creativity leads to better
solutions.

In the first experiment, participants are asked to
draw the process of how they make toast. In the
TED talk, Tom calls this a systems design, but
what people are making is a model. Most people
draw between 5 and 13 nodes (steps) in their
process of making toast.

In a second experiment, participants are given
some sticky notes and asked to do the same
thing. Interestingly, the number of nodes in the
process goes up significantly compared to simple
drawing. A contributing reason for this is that the
sticky notes make it far easier for the participant
to update their process by adding in new
sticky notes or moving around the sticky in the
process for a better solution. The ability to easily

manipulate the model, in this case through sticky
notes, allows people to better explore solutions.

In a third experiment, participants are also
given sticky notes but now work in groups. The
sophistication of the solution goes up again,
as seen in the graph below that compares the
three experiments. People working together on a
problem leads to robust discussions and creates
a forum for ideas to be heard and included,
merged, or influence the outcome in different
ways. This shows insight into another one of the
keys that using models unlocks, collaboration!

How does this relate to Codebots? For us,
everything is a model. So, using models will allow
for better solutions. Like using sticky notes, a
model allows people to explore solutions without
getting locked in. But on a deeper level, what you
need is for your team to be able to create a model
that fits their specific domain. And to achieve
this, you must have control of your metamodel.
What is a metamodel you ask? The metamodel
describes what can be found in a model. So once
you have control of the metamodel, you can
model anything. That is powerful stuff.

Codebots is for cross-functional software teams.
Generally, software teams are made up of a
variety of people with different skill sets. Some
people are able to bridge a number of different
roles, though it is accepted that a diverse team,
will result in better solutions.

•	 A product owner is the visionary and drives
the direction of the project. They ensure
standards are met by working with the
team throughout the way of working and
ultimately approving checkpoints along the
journey.

•	 A squad lead is the organiser of the project
and the go to that manages the expectations
of all stakeholders. Their goal is to bring out
the best in people and foster a spirit of pride
and comradery. They work closely with all
team members but are the main conduit
between the product owner and the squad.

•	 An account manager is the sherpa of the
project by guiding and advising the team on
the path to success. They are the educators
of product owners to begin expectation
management early and continuously nurture
the account by building trust.

•	 A designer makes the team look good! They
do this by applying design principles to not
just the visual aspects and user experience of
an application, but present thinking outside
of the box and ways to bring out the creative
side of all team members.

•	 A software developer is more than just a
coder, they are problem solvers that seek the
best solutions through use of architecture
and technologies. They thrive in the creative
process and ultimately bring the solution
to life through their code. It is an art and
science.

•	 A DevOps developer breaks down the barriers
between development and operations. They
seek the truth by enabling metrics, insight,
and gates through the use of pipelines at any
stage of the way of working. They have skills
in both coding and platforms for DevOps
practices. They pride themselves at the ease
of releasing and insights into the full lifecycle.

•	 A citizen developer is a domain expert and
technically capable of understanding and
solving business problems. Even though
citizen developers are not proficient at
coding, they are able to use and connect
different technologies and tooling together
for creative solutions.

•	 A solution architect is a wise developer that
has seen many projects from start to end.
They inspire the squad to master the quality
of work on projects and ensure that high
risk tasks are addressed early through tech
spikes. They consider both the functional and
non-functional requirements of a software
application.

Other common roles found in software teams
include business analysts, quality assurance,
and others. The important point is that software
teams are made up of lots of different roles and
everyone needs to be empowered to do their job.
Low-code tools do not live up to this.

The Codebots mantra is to empower the entire
software team including the developers. This
is done by making sure the source code is high
quality, easy to understand, and can be extended
the way developers are use to. It is also achieved
by using models to create a shared understanding
of the application. Read more about this on the
next page.

Who?

Drawing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Notes

Number of Nodes

Group Notes

Source: TED Talk Tom Wujec - Got a wicked problem? First, tell me how you make toast

Who is Codebots for? Who benefits from using models?

https://www.ted.com/talks/tom_wujec_got_a_wicked_problem_first_tell_me_how_you_make_toast

10 11White paper 2022

You can sign-up and start using the platform
today at Codebots.com. There are three ways for
you to get started on Codebots:

App Studio: Use an existing codebot and get
familiar with the development process. A good
option for a gentle introduction.

AI Lab: Get stuck in and create a new codebot for
yourself. Not for the faint hearted!

BotCamp: A guided learning process lead by the
world’s best model-driven engineers. Awesome
for onboarding your team.

BotCamp

BotCamp is the continuous education of people,
processes, and tools to enable organisations to
build better software. BotCamp achieves this by
covering three streams of education:

•	 Codebots. CB = MDE + AI

•	 Way of Working

•	 Projects and other technologies

Course format:

•	 Short: One week full-time with a deep dive
into Codebots to cover both theory and
practice using AI Lab and App Studio in a CI/
CD pipeline.

•	 Long: Starts out the same as the short
course. Then the second and third week are
an immersion into an Agile way of working
while building out a capstone project using
Codebots and your choice of project.

Delivery format:

•	 Majority of lectures are pre-recorded and the
students are sent them ahead of time.

•	 Some lectures are live. This includes the
welcome lectures at the beginning of a
course, and the summary/showcase lectures
at the end of the course.

•	 Each day there are two time slots put aside
for students to join via a video link for a
Q&A to allow for the best global timezone
coverage. This time will vary from course to
course. Students attend one session per day.

•	 The time slots for Q&A will have assigned
topics to ensure the correct experts are
available.

•	 The examples spoken about in the lectures
have code repositories setup so the students
can clone them and submit their own work
via branches and merge requests.

•	 There is a messaging channel setup for the
course where students are free to interact
and ask each other questions. There will also
be a long running BotCamp zoom meeting
whereby the students can jump on anytime
with other students or request an instructor
to jump in.

Codebots is a mix of Model-Driven Engineering
(MDE) and Artificial Intelligence (AI). There is a
blog article written by Dimitris Kolovos, Professor
of Software Engineering from the University of
York, called What is Model-Driven Engineering6
that has an explanation for beginners to this
area. We use AI to learn the templates from the
reference and model to create a target. This is
best visualised in the graphic below.

At the top of the graphic is the classic input-
process-output flow that all computers must
conform to (put here to guide your thinking in this
way).

The middle flow is representative of what
happens in the AI Lab. The reference and the
model are used as input for the bot learning.
The bot makes templates and generates a
target. Lastly, the bot compares the target to the
reference to see how well it learnt and it may
update the reference to be consistent with the
templates (this helps future learning).

The bottom flow in the graphic is representative
of what happens in the App Studio. A developer
models the application and the templates are
used to generate a target application.

The templates are what was previously learnt in
AI Lab.

To make the above input-process-output flows
work, we use the RMTT (Reference-Model-
Template-Target) pattern and each of these four
are stored in seperate Git repositories for easier
reference. An explanation of each is found below:

Reference: The example application that the bot
learns from. A developer writes this application
in their preferred language, framework, and
architectural style. This lets the developer control
what the bot learns from.

Model: The model that is used to represent the
application. A developer can create new types
of models or reuse industry standard models
like an entity diagram, OpenAPI, RAML, etc. The
developer is able to do this because they have
control over the meta-model.

Template: The template is a standard code
generator that developers are use to. There
are variables with selection and repetition
statements like most programming languages.

Target: The target application is what is
generated from the templates.

How?
How does Codebots work? How do you learn about Codebots?

Interested to learn more about
BotCamp? Information about the
course formats is readily available
on our website.

https://codebots.com
https://codebots.com/app-development/what-is-model-driven-engineering
https://codebots.com/botcamp
https://codebots.com/botcamp
https://codebots.com/botcamp

12 13White paper 2022

Some organisations have started on their
DevOps journey. If you haven’t started yet, now
is the time. DevOps is about breaking down the
barriers between development and operations.
Traditionally, these departments have operated
independently and this has lead to all sorts of
friction in the software development lifecycle.
DevOps can heal some of these wounds
and opens up many opportunities for other
improvements as well.

As seen in the following graphic, the stages of
DevOps are represented using an infinity symbol.
As wise developers know, software projects are
never complete, so the infinity symbol is a great
visualisation as the project flows through the
various stages. There is no mandate to what the
stages of the process are, organisations are free
to specify their own.

As teams become more mature using DevOps
they move up from continuous integration, to
continuous delivery and finally to continuous
deployment. There is an emphasis on the various
tools, or toolchains, that can be used to help with
a teams maturity. The CI/CD toolchain (a.k.a.
pipeline) is a key concept in DevOps. Using the
pipelines various tools can be used to ensure
the quality of the software is high; like testing,
security, code quality, and performance, just to
name a few.

However, to get the most out of your pipelines
there is something that you must have control
of - your source code. This is another failing of
low-code as access to your source code is usually
limited and difficult to control. At Codebots, we
commit all source code into git repositories that
you control.

This has many profound knock-on effects. One of
the best is that it enables better DevOps as you
have control of the source code in your own git
repositories.

The source code that we commit is not just the
application code, it also includes the model and
template code. No low-code platform gives
you that. For software teams to be empowered
they also must have control of the models and
templates because it leads to the next exciting
knock-on effect; model-driven DevOps! We are
taking on the grand challenges of MDE8 and
you can read more about this in our journal
publication Using DevOps Toolchains in Agile
Model-Driven Engineering9.

DevOps will heal the world.

Dev

Code
Plan

Test

Bu
ild

Deploy

Release

Monitor

O
perate

Ops

Every organisation will have their own way
of working. A common thread that most
organisations have accepted is some inspiration
from the Agile Manifesto’s7 values and principles.
This guiding light helps shape the organisations
way of working and many of the modern
methodologies that can be found.

Codebots does not replace your way of working
and is complimentary to agile processes. This can
be demonstrated by addressing what is common
to all methodologies. The first and most obvious
is the code. All software projects have source
code that is being developed and committed to
a repository. Not having control of your source
code is a fatal mistake and this is where low-
code, no-code, and RPA tools hamstring their
customers. Codebots however approaches this
differently, all source code written by a bot is
committed to a source code repository that you
control.

Collaboration between people is another
common thread across all software development
methodologies. In the Agile Manifesto, one of
the four values is about collaboration. Unlocking
the creativity of people through a shared
understanding is considered to be one of the
human centred tasks that an AI will not be able to
achieve (well not anytime soon).

In your way of working, you will most likely have
specific meetings, ceremonies, or stages in the
development process where problems are solved
through collaboration. To take this concept to the
next level is to have a codebot subsequently use
those models to write the vast majority of the
code for the project (icing on the cake).

Another common thread across all software
development methodologies is that the process
is about increasing the quality of the outcome
while decreasing the risks of it going off the rails.
Setting the governance and standards of a project
is extremely important. This can be around the
processes used to develop the software, or it
can be about the actual implementation in the
source code. For example, as you build a software
application through a series of iterations, you
can use AI Lab to train a codebot on something
like an API protocol. Once the codebot has been
taught this, any future requirements will also
use the same architecture and implementation.
This is an amazing way that you can control the
standards and governance across your source
code. This is best visualised in the following
graphic. As time progresses forward, the quality
of the project increases as the codebot is used to
set the standards.

Learn Build

Measure

Learn Build

Measure

Codebots Consolida on through

Standardisa on

Codebots

Time

Q
ua

lit
y

im
pr

ov
em

en
t

Con nuous

Modernisa on

When?
When is Codebots used with DevOps?When is Codebots used with Agile?

https://link.springer.com/article/10.1007/s10270-019-00773-6
https://www.researchgate.net/publication/356491511_Using_DevOps_Toolchains_in_Agile_Model-Driven_Engineering
https://www.researchgate.net/publication/356491511_Using_DevOps_Toolchains_in_Agile_Model-Driven_Engineering
https://agilemanifesto.org/

14 15White paper 2022

Anti-corruption Layer
Pattern

Implement a façade or adapter
layer between different
subsystems that don’t share
the same semantics. This layer
translates requests that one
subsystem makes to the other
subsystem. Use this pattern to
ensure that an application’s design
is not limited by dependencies on
outside subsystems.

Exoskeleton Pattern

Build an exoskeleton around the
legacy system to automate the
migration process. The external
skeleton is built using a model-
driven engineering approach
so that the requirements of the
legacy system are captured at a
higher-level of abstraction. The
models can subsequently be used
to refactor the legacy system
or forward engineer into new
applications and services.

Across the globe today, legacy systems are one
of the biggest problems faced by the software
industry. The problem cannot be overstated,
and as we travel further into the future, legacy
systems could arguably become the most
common problem across all business sectors and
industries.

Industry leaders are looking at different
modernisation strategies. For example, Gartner
recommends seven options for modernising10:
encapsulate, rehost, replatform, refactor,
rearchitect, rebuild, or replace. Or, Cognizant

recommends a smaller set of five options: total
transformation, gradual replacement, duct tape
approach, improve existing, or no system change.
But there is something about these options that
doesn’t sit right, every time we modernise a
legacy system aren’t we just creating the same
problems all over again for tomorrow?

On the next page, there is a description of some
technical design patterns for the modernisation
of legacy systems. To date, many organisations
have used a combination of the anti-corruption
layer pattern11 and the strangler fig pattern.
During the initial phases of a modernisation,
anti-corruption layer is used to encapsulate the
legacy system so that it is isolated. From there,
the strangler fig pattern is used to divide-and-
conquer the legacy system into a modern system.
But again, the new systems become the legacy of
tomorrow and history repeats.

The best chance you have to minimise the
impact of this occurring is to use the exoskeleton
pattern. Before undergoing the divide-and-
conquer approach of the strangler fig, an
exoskeleton is built around the legacy system
that captures the requirements of the legacy
system at a high-level of abstraction than the
code. The exoskeleton is built using model-driven

engineering, which includes models, templates,
and transformations that all become as important
as the source code itself. From this position,
modernising tomorrow’s legacy system is far
smoother as it’s possible to use the models,
templates etc. that were not previously available.

So, why hasn’t everybody been doing this? The
truth is that traditionally it takes a huge amount
of time to build all of the models, templates, and
transformations needed for a legacy system. And
when people are faced with this amount of effort
and what is required understanding the legacy
system, it usually gets thrown in the too hard
basket and people revert to what they know. In
other words, there is a high costs of entry for the
perceived return on investment. But the good
news is that we have discovered a world first
approach using AI that saves huge amounts of
time on a project making this approach a viable
economic choice for people today.

As explained in the section about how does
Codebots work, from the RMTT (reference,
model, templates, and target) pattern we can
see that the reference and model and inputs into
the AI learning. So, the AI can learn the legacy
system as the reference and infer a model from
something like a database schema or API. The
output from the AI learning is a set of templates
whereby the target matches the reference.
Importantly, the templates traditionally would
take developers a significant amount of time, but
now we have an AI that can do this for us. This
bring the cost of entry down and makes it possible
for you to enjoy the well-known benefits of
model-driven engineering.

Subsystem A

A
n

-C
or

ru
p

on
La

ye
rMicroservice

Data Store

Subsystem B

Data Store

Microservice

Data Store

Strangler Facade

Legacy

Modern

Early Migration

Strangler Facade

Later Migration

Legacy

Modern

Migration Complete

Modern

LegacyLearnt

Exoskeleton

Learnt

Exoskeleton

Legacy

Learnt

Exoskeleton

Early Learning Partly Learnt Completely Learnt

 “The entire history of software
engineering is that of the rise in
levels of abstraction.”

– Grady Booch

Legacy
Modernisation strategy

Strangler Fig Pattern

Incrementally migrate a legacy
system by gradually replacing
specific pieces of functionality
with new applications and
services. As features from the
legacy system are replaced, the
new system eventually replaces
all of the old system’s features,
strangling the old system and
allowing you to decommission it.

https://www.gartner.com/smarterwithgartner/7-options-to-modernize-legacy-systems
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer

16 17White paper 2022

WorkingMouse is a global leader in developing
and designing software applications through
innovative people, processes, and tools.
WorkingMouse takes on both new greenfield
projects and brownfield legacy migration projects,
but for this case study the focus will be on one
of the bots they built to strategically be used on
greenfield projects, C#Bot.

WorkingMouse develops many new projects each
year. The customers range from government,
enterprises, through to associations and startups.
It was identified that a lot of these projects
(though in different domains) required many
similar technological requirements. So, instead
of starting each new project from scratch, C#Bot
was introduced as a common foundation for all
projects.

The technology set that C#Bot uses is impressive
and it writes full-stack applications. Broadly
speaking, the server-side uses C#, Entity
Framework Core, PostgreSQL, and the client-
side uses React. The API between the server-
side and client-side uses REST with emphasis

on the OpenAPI and Swagger definitions. It also
uses GraphQL and a scattering of other cool
technologies.

Some of the benefits gained are:

•	 development efficiency as the bot writes the
majority of code on projects

•	 increased quality as there are less manual
tasks for developers as bots write tests too

•	 consistent architecture that facilitates better
knowledge sharing between projects and
teams

•	 reduced technical debt as refactoring at scale
is better enabled

•	 better collaboration as the team uses models
to reason about requirements.

For the past five years, Codebots has assisted
Defence with legacy modernisation and
application development. Codebots is the
technology that enabled the modernisation of
Non Material Procurement digital processes. Prior
to Codebots assistance, Defence had over 13
disparate systems (Excel, Access, Outlook etc.) to
monitor and administer large scale procurement
process. The Commercial Tracker (CT) now
consolidates all this information and workflow
into a single application. The comprehensive
reporting that is delivered with the CT provides
detailed insight into:

•	 what is being requested

•	 the volume of work and dollar value of what
is being requested

•	 customer feedback

•	 who in NMP is handling each request

•	 Endorsement to Proceed data

•	 major contract data and supplier report
cards.

The business intelligence delivered by Codebots
provides management insight not previously
available. Management have access to relevant
data to inform operational and strategic
decisions. The success of the Commercial Tracker
expanded the requirement to include a central,
user driven procurement capability called My
Procurement System (MPS).

Available to every user on the Defence Protected
Environment (DPE), MPS leads the user through
a workflow leveraging the appropriate Defence
and/or Federal Government procurement
policy to drive their own procurement. The user
completes the process through to Endorsement
to Proceed, the required approvals and
ultimately the signed contract. In addition to the
automation and reporting benefits, the system
will free up the NMP specialists to focus on more
value-added work. The system is integrated with
Defence ERP and will provide data directly to
the core financial system to avoid duplication of
effort.

Legacy migration is one of the major issues CIO’s
face, this issue is amplified in large enterprise
organisations. Whether this is rouge databases
and applications that have proliferated through
the organisation or inflexible behemoths
that control core systems, Codebots has
demonstrated through its five years of assisting
Defence, that we can help alleviate the risk
of modernising any similar systems in large
government enterprise environments.

“Build a codebot like C#Bot and
use it on many projects!”

Projects
Case studies and testimonials

Clients

https://workingmouse.com.au/

18

Endnotes

1	 https://stripe.com/files/reports/the-developer-coefficient.pdf

2	 https://codebots.com/low-code/low-code-the-good-the-bad-and-the-ugly

3	 https://www.ted.com/talks/kai_fu_lee_how_ai_can_save_our_humanity

4	 https://codebots.com/crud/what-are-crud-operations

5	 https://www.ted.com/talks/tom_wujec_got_a_wicked_problem_first_tell_me_how_you_make_	
	 toast

6	 https://codebots.com/app-development/what-is-model-driven-engineering

7	 https://agilemanifesto.org

8	 https://link.springer.com/article/10.1007/s10270-019-00773-6

9	 https://www.researchgate.net/publication/356491511_Using_DevOps_Toolchains_in_Agile_	
	 Model-Driven_Engineering

10	 https://www.gartner.com/smarterwithgartner/7-options-to-modernize-legacy-systems/

11	 https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer

