
Your Vision,
Our Expertise.

Jidoka
Automation with a human touch
2023-05-23

Contents
Jidoka

History
Comparison
Project types
Process
Principles

Jidoka

Automation with a human touch.

Jidoka is a software development methodology that aims to increase the automation and
quality of a software project through the use of models and pipelines.

Our hypothesis is that Jidoka is well-suited for large scale modernisation projects where
the benefits of automation are most acutely felt.

History
The software development industry has taken much inspiration from lean manufacturing.
It is worth knowing as Agile, Scrum, Kanban, DevOps, and others have roots in this history.
For example, TPS is a well-known implementation in lean manufacturing:

The Toyota Production System (TPS) was established based on two concepts:
“jidoka” (which can be loosely translated as “automation with a human touch”), as
when a problem occurs, the equipment stops immediately, preventing defective
products from being produced; and the “Just-in-Time” concept, in which each
process produces only what is needed for the next process in a continuous flow.
Toyota Production System

Most developers that read this interpret Jidoka as a mechanism to stop production to help
ensure quality. While this has merit, our interpretation focuses on brining human and
machine skills together to produce a result that neither could reach alone (read more on
centaur chess teams).

Comparison
There are many well-known and published software development methodologies and
other approaches to problem solving. Jidoka can be uniquely applied to projects as it has
advantages others didn’t have available when they were conceived. The advantages have
a central theme of automation:

Years of R&D investment into our sister company Codebots
Model-Driven Engineering (MDE) allows us to build models of anything and then do
useful things with those models
Pipelines can help us build software in a repeatable and scalable way using DevOps

https://global.toyota/en/company/vision-and-philosophy/production-system/
https://en.wikipedia.org/wiki/Advanced_chess

and modern technologies like Docker, K8s, etc
Knowledge management in its simplest form using markdown stored in a code
repository
Recent real world experience of building 100+ projects and experimenting with
different methodologies to find what works and doesn’t work

So, with these advantages in mind, let’s examine some common acronyms and well-
known development methodologies.

Approaches to problem solving
The following three acronyms are all different approaches to problem solving and finding
a solution:

Proof of Concepts (PoCs) are great for discovery and risk mitigation within a narrow
problem set
Minimal Viable Products (MVPs) are great for iterating through a number of build-
measure-learn cycles when the solution is not known
Shortest Path to Value (SPV) are great for the partial replacement of a legacy system

While each of these are great under some circumstances, when undergoing a large scale
modernisation project, there are some significant drawbacks:

PoCs are ultimately thrown away as there functional and non-functional requirements
are too narrow to fit in a large scale modernisation
MVPs are searching for a solution but in large scale modernisations the target is known
making the search less important
SPVs are designed to work in large scale modernisation projects but are used in
conjunction with the strangler fig pattern that takes way too long

So, how will Jidoka learn from these:

PoCs will be used for tech spikes to remove risk from a project as early as practical in
the project. The code from the PoC will be used as a reference for upgrading a bots
capabilities
MVPs will not be used as we will replace the legacy system as close to like-for-like (L4L)
as practical. We will lean towards deferring improvements to the legacy system until
after the replacement system is on the new technology stack and in a far better
position to consider changes
SPVs will not be used as the integration complexity of a project increases as
functionality is replaced (strangled) from the legacy system. We will consider larger,
most times the whole, legacy system to be replaced

As crazy as that last point sounds, we are advocating a big bang approach. If a big bang
approach can be objectively analysed, there are some significant benefits that could
result. Here are some points to consider in favour of a big bang:

1. Each time a legacy system is divided (or strangled) many integrations are created

https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig

between the old and the new sytems. This boundary is slow to form and adds more risk.
By minimising the number of integrations, overall time in the project can be saved

2. Traditional software teams (without a codebot) had to fulfil requirements by manually
writing code. For these teams, a big bang would take far too long before they shipped
something due to the manual work, making the project infeasible. A codebot
circumvents this problem as many requirements can be fulfilled at scale

3. Under circumstances where the solution is not known, a big bang approach is not
recommended because dividing the work into smaller parts gives more opportunity to
explore and test assumptions (like for a MVP). In a modernisation project, the solution is
known so the need to divide the work and explore, test assumptions, etc is far less

4. Taking longer by unnessesarily dividing a legacy system will expose an organisation to
getting caught part way through the modernisation if the project is halted for external
reasons (like budget reprioritisation). In other words, shorten the length of time so you
don’t get caught part way

Will a big bang be possible on every project? Most likely not, you may need to do a few
smaller fire crackers but do as few as you can. Play to your strengths.

Software development methodologies
There are many different approaches to developing software and lots of talk about which
one is the best software development methodology. Being a student of our industry, we
have experimented with many and come to recognise there is a meta-methodology that
could be used to describe them all. So, for Jidoka, it is important to set a few parameters
and specify what parts of these other methodologies we keep, and what parts we leave
behind.

Methodology What do we take? What do we leave behind? Summary

Scrum

Huddles

Ceremonies

Backlog

Deinitions

Sprints

Story Points

The Scrum
meeting
pulse
(huddles,
ceremonies,
etc) is
amazing for
communica
tion and the
attention to
backlog
refinement
raises
project
quality.
Constant
sprinting is
tiring and
story points
are a waste
as
they get
converted

https://codebots.com/way-of-working/what-is-the-best-software-development-methodology
https://codebots.com/way-of-working/what-is-the-difference-between-scrum-and-kanban

to time
anyway.

Kanban

Kanban
board

Checklists

Continuous
flow

WIP Limits

Specialised teams

Handover loss

The
continuous
flow of work
across a
Kanban
board can
far outpace
other
approaches
that are
stop/startin
g. However,
the
balanced
queues of
WIP
limits lead
to
specialied
teams with
all the
problems of
waterfall
reemerging.

DevOps

Pipelines

Removing
barriers

Rules complexity

Burdensome
governance

Breaking
down the
barriers
between
developme
nt and
operations
using
pipelines to
automate
and scale is
empowerin
g. But some
practioners
use
this to
enforce
overly
complex
company
policy and
can rebuild
that wall
that was
orginally
torn down.

Project types
To focus the methodology on only some projects, we have grouped projects into three

different types. Even though Jidoka has application in a wider scope, our hypothesis is that
the benefits of automation with a human touch would be most recognised in these types
of projects.

Like-for-Like
One type of modernisation project is a like-for-like (L4L) replacement of the legacy system.

The solution is known as there is a system already in place
The legacy system has become a liability to the organisation so there is a need to
replace it
The initial replacement of the legacy system should avoid changing any organisational
processes where possible
Avoiding organisational change will increase the likelihood of a successful
modernisation
Retraining of staff will be minimised as the new replaced system will be familiar
Changes to the new replaced system should only be considered after the replacement
is completed
These new requests will be satisfied far more efficiently given the new technology stack
and environments

Spreadsheets
Spreadsheets are a common approach for organisations to use as they have a low barrier
to entry.

The solution has been developed into a spreadsheet so many of the complexities
around the data and its formulas have been solved
The spreadsheet has become a liability to the organisation as it cannot scale due to
spreadsheet limitations
The initial replacement of the spreadsheet should avoid changing any organisational
processes where possible
Organisational change around modernising a spreadsheet compared to a L4L
replacement is a higher risk
Retraining of staff must be carefully considered as the new system will not be familiar
and they will have loss aversion for the old spreadsheet
Changes to the new system should only be considered when there is an identified gap
in the spreadsheet or business process that causes a new safety issue
These new requests will be satisfied far more efficiently given the new technology stack
and environments

Disparate systems
Disparate systems are common as organisations organically grow over time. The systems

file:///builds/workingmouse/growth-track/growth/tendering/loss%20aversion

can be digital or manual systems and have been built without considering the whole.

The solution has been built piecemeal so that some of the complex problems have
been solved
The disparate systems have become a liability to the organisation as it cannot scale
due to the lack of cohesion
The replacement of the disparate systems will likely incur changes to organisation
processes as multiple systems are considered
Organisational change must be carefully managed
Retraining of staff across the organisational change must include regular
communication channels and feedback mechanisms
Changes to the new system must be considered meticulously as the downstream
effects will slow the momentum of the project
If changes can be deferred, these new requests will be satisfied far more efficiently
given the new technology stack and environments

Process
Over a series of milestones, the team diverges and converges on goals by following a set
of principles to deliver both functional and non-functional requirements. There are 3
stages to the process (each consisting of 1 of more milestones) that carefully consider the
current state of the project:

1. Discovery: In this stage we lay the foundations for success and formulate a plan that
the whole team is confident will work.

2. Modernisation: In this stage we execute on the plan and play to our strengths by
modernising the legacy system with as little change management as practical

3. Optimisation: In this stage we ensure the system is monitored and remains secure,
while incremental improvements are now unblocked as we are on the modernised
technology stack

Stages
Some important dot points that highlight a stage are:

1. Discovery
Diverge to converge on a plan
Use the activity kit to build knowledge
Set governance and standards
Tech spike high-risk issues
Establish a backlog of functional requirements
Set goal posts for non-functional requirements
Promote, fork, merge a bot plan
Create a communication plan with the user base
Do at least one milestone

2. Modernisation
Excute the plan with one or more milestones
Harden the target environments and montior:

Develop
Beta
Prod

Emphasise the data-driven pipeline reports:
Testing
Code Quality
Security
Performance

Communicate milestones to users
Adhere to governance and standards

3. Optimisation
The DevOps checklist is the standard that must be kept
Keep pipelines green
Monitor the target environments
Bug fix
Upgrade and patch
Make improvements
Open ended milestones are allowed without an end date
Adhere to governance and standards

Milestones
Each stage can have many milestones
Milestones have goals with date ranges and we aim for the closest date
Milestones are not fixed length like sprints
If the squad feels it necessary, they may break a milestone down into a number of
iterations (of variable length), but this is not necessary
A kanban-style continous flow of issues is worked on throughout the milestone until the
goal is reached
Ceremonies, meetings, checklists, definitions, etc are all performed according to the
plan
The depth of details in an issue is proportional to the issue’s risk
We plan for breadth-first rather than a depth-first by taking advantage of automation,
modelling and pipelines (read more below)

Most problem solving approaches use a depth-first search, i.e. a depth-first search starts
at the root node and explores down the branch that shows the most promise and then
backtracks if no solution is found. In a way, this is how MVPs and SPVs work. They approach
the problem incrementally as the solution is not known.

Another approach is a breadth-first search, i.e. breadth-first search starts at the root node
and explores all the nodes at the present depth before moving onto the next. In this way,

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

we can approach a L4L replacement as the legacy system is known and we are not
searching for something we don’t know. Identifying this as a key difference presents an
opportunity on how we approach a milestone.

By considering the whole legacy system for replacement, unlike the strangler fig approach
of SPVs, we will have a better understanding of the gaps across the entire system, not just
a narrow part.

In a milestone, we are:

1. Model and generate as much of the legacy system as possible
2. Analyse the gap and what requirements are not being satisfied
3. Look for patterns in the gaps that are common
4. Extend the bots capabilities to fill the biggest gaps
5. Anything one-off, we hand code
6. Go back to 1.

Estimations
There are many ways to estimate a software project and we have experimented with
many and the Jidoka approach is to find balance. What we have learned is that it is very
time consuming and can create over-estimations when using issues to estimate as they
are too fine grained. On the otherhand, we don’t want to use #NoEstimates as it has too
much of a negative impact on expectation management. With this in mind, the high-level,
balanced approach to estimations is:

A milestone has a goal and the team uses MoSCoW (must-have, should-have, could-
have, won’t-have) to priortise requirements
Estimations are perfomed at the milestone-level and not the issue-level
The team must agree on a realistic amount of time they need to complete the
milestone
The team doesn’t stop at the must-haves and continuously works Kanban-style on the
backlog with the available time
The squad lead and account manager will calculate an appropriate buffer based on
the risk associated with the milestone and communicate this date to the product owner
The team still aims for the closest date
Nothing builds trust faster than finishing eariler and delighting a customer

Lastly, the account manager will be in charge of the estimations throughout the tender or
bidding process so the team will inherit an overall time for stages 1 and 2. It is imperative
that the account manager consult senior team members to gain advice on how big the
project should be so there is enough time to ensure a high quality project.

8 to 12 weeks for stage 1
3 to 8 weeks for each milestone in stage 2
15 to 40 weeks for 5 milestones over stage 2

https://codebots.com/way-of-working/7-ways-to-estimate-a-software-project
https://gitlab.workingmouse.com.au/workingmouse/company/activity-kit/-/blob/main/Designtivities/User%20Story%20Map.md

Principles
Last, and definitely not least, we can now unveil the principles that will be used to guide
Jidoka projects:

1. Augment the intelligence of a centaur software team with a codebot
2. Treat everything as a model and do useful things with them at scale
3. Knowledge is understanding and must be recorded in its simplist form in a code

repository
4. Pipelines lead to quality, increased automation, and so many other benefits
5. Address high risk issues early and take on the most challenging first
6. The admin associated with something is propotional to it’s risk
7. Ignore non-functional requirements at your peril
8. Avoid changes to the organisations business processes while modernising, leave it to

optimising later
9. Live the company manifesto!

10. Find balance and only use these principles where practical…

	Your Vision, Our Expertise.
	Jidoka
	Automation with a human touch
	2023-05-23

	Contents

	Jidoka
	History
	Comparison
	Approaches to problem solving
	Software development methodologies

	Project types
	Like-for-Like
	Spreadsheets
	Disparate systems

	Process
	Stages
	Milestones
	Estimations

	Principles

