
Introduction to State Machines
Using XState

Transcripts for Kyle Shevlin (https://egghead.io/instructors/kyle-shevlin)
course on egghead.io (https://egghead.io/courses/introduction-to-state-
machines-using-xstate).

Description

The difficulty of managing state is one of the primary reasons our
applications become so complex. We try and manage this complexity with
a lot of booleans, somewhat semantic variables like isLoading,
wasFetched, and hasError, and over-engineered systems that are still
full of bugs. Surely, there's a better way.

That better way is state machines.

State machines formalize how we define and transition through the states
of our application and give us ultimate control of the most complex parts
of our apps.

https://egghead.io/instructors/kyle-shevlin
https://egghead.io/courses/introduction-to-state-machines-using-xstate


In this course, we will explore the problems state machines purport to
solve, like boolean explosion. We'll try to solve it our own way first, get so
far, and then demonstrate how state machines get us all the way. After
that, we'll dive into the XState library, JavaScript's premiere state
machine library, to learn its API and how to use it to solve our problems.

By the time you're done taking this course, you should have a solid
education about state machines and be able to start applying them

Check out the Community Notes for this course
(https://github.com/eggheadio-projects/introduction-to-state-machines-
using-xstate-notes).

Course Intro and Overview

Kyle Shevlin: [0:01] Hey, everyone. Kyle Shevlin here with an introduction
to my course on state machines and the XState library. I wanted to
provide you with a brief overview of what we'll cover in the course. This
course is roughly divided into three parts.

[0:14] In the first part, we'll explore the problems that state machines set
out to solve. We'll take a function. We'll iterate on it until we get to a place
where we understand where state machines come in and save the day.

[0:26] The second part is an introduction to the XState library and all its
fundamental concepts, like machines, interpreters, states, events,
actions, context, and guards. By this point, you should have a solid
foundation for using the XState library on your own.

[0:42] In the final part, we explore more advanced state machines, such
as hierarchical, parallel, and history states, as well as invoking services,
like promises, callbacks, and even other machines.

https://github.com/eggheadio-projects/introduction-to-state-machines-using-xstate-notes


[0:54] This is by no means an exhaustive introduction to the topic of state
machines. My hope is that this introduction demonstrates their utility and
encourages you to start using them in your work today. Finally, thanks for
watching and enjoy the course.

Eliminate Boolean Explosion by Enumerating
States

Instructor: [00:00] Here I have a function (lightBulb) that simulates the
functionality of a light bulb. It tracks the state of the light bulb through the
combination of two Booleans, isLit and isBroken. As this function is
currently written, it is trivial to get into an impossible state. I will toggle the
bulb from unlit to lit, call the break method, and we have a bulb that
is both lit and broken.

index.js



function	lightBulb()	{
		let	isLit	=	false
		let	isBroken	=	false

		return	{
				state()	{
						return	{	isLit,	isBroken	}
				},
				toggle()	{
						isLit	=	!isLit
				},
				break()	{
						isBroken	=	true
				}
		}
}

const	bulb	=	lightBulb()

const	log	=	()	=>	{
		console.log(bulb.state())
}

bulb.toggle()
bulb.break()

Terminal

node	index.js
->	{	isLit:	true,	isBroken:	true	}



[00:21] We can solve this problem imperatively by guarding against
certain outcomes. We can add a guard and toggle that checks the
isBroken state, guarantees isLit is set false, and returns early. We
can also ensure that when the bulb is broken, we also update isLit to
false. Now, running the same methods and logging them out produces
a better result.

index.js

function	lightBulb()	{
		let	isLit	=	false
		let	isBroken	=	false

		return	{
				...
				toggle()	{
						if(isBroken)	{
								isLit	=	false
								return
						}
						isLit	=	!isLit
				},
				break()	{
						isBroken	=	true
						isLit	=	false
				}
		}
}

Terminal



node	index.js
->	{	isLit:	false,	isBroken:	true	}

[00:45] There's a better way to solve this, though. To start, we're going to
enumerate only the possible states of our light bulb. I'm going to create
an enum using an object of only the possible states of the light bulb, lit,
unlit, and broken. You could also use a map, if you prefer.

const	STATES	=	{
		lit:	'lit',
		unlit:	'unlit',
		broken:	'broken'
}

[01:02] Next, we'll refactor our function by removing the Booleans isLit
and isBroken and replacing that with a single value called state. We will
set the default state to unlit and update the state method to return this
value instead.

[01:17] Next, we'll refactor our toggle method. Instead of toggling a
Boolean, we'll instead attempt to toggle between lit and unlit states.
We can do this with a switch statement. If we're in the lit state, we'll set
the state to unlit and vice versa. If we're in neither of those states, we
know that we're in the broken state, and we don't have to do anything.

[01:36] Lastly, we can update our break method to set the state to
broken. We now have a light bulb function that has enumerated only the
possible states, methods that can only set the state to one of those
possible ones, and returns a single possible state with each event
performed on the light bulb.



function	lightBulb()	{
		const	{	lit,	unlit,	broken	}	=	
LIGHT_BULB_STATES
		let	state	=	unlit

		return	{
				state()	{
						return	state
				},
				toggle()	{
						switch	(state)	{
								case	lit:
										state	=	unlit
										break

								case	unlit:
										state	=	lit
										break
						}
				},
				break()	{
						state	=	broken
				}
		}
}

Replace Enumerated States with a State
Machine

Instructor: [0:00] We're going to replace this lightbulb functions that uses
enumerated states with a state machine. We'll start by deleting the whole
function (lightBulb). Next, instead of having the states enumerated in



an object, we'll create individual objects for each possible state. We can
combine these objects into another object that we'll call states.

[0:16] After that, we'll need to define an initial state, so I'll define a
variable called initial, and I'm going to set it to the string "unlit".
Now I can combine initial and states into an object we're going to call
config. This will be the configuration object we'll pass the XState machine
momentarily.

[0:32] Our config should also have an ID, and since this is a configuration
for a lightbulb, I'll give it the string of lightbulb. Now we've enumerated
our states, but we've yet to enumerate the events and transitions between
states in our machine configuration.

const	lit	=	{}
const	unlit	=	{}
const	broken	=	{}

const	states	=	{	lit,	unlit,	broken	}

const	initial	=	'unlit'

const	config	=	{
		id:	'lightBulb',
		initial,
		states
}

[0:45] With state machines, we trigger transitions through events, and we
define which state nodes respond to which events. We'll do this by adding
an on property to the state nodes that should respond to events. The lit
and unlit states should both respond to a break event. Let's add those
simultaneously.



[1:01] By convention, we capitalize the name of the event, and the event's
value is the targeted state that we would like to transition to. Now, our lit
and unlit states also respond to a toggle event, but they transition to
different targets.

const	lit	=	{
		on:	{
				BREAK:	'broken',
				TOGGLE:	'unlit'
		}
}
const	unlit	=	{
		on:	{
				BREAK:	'broken',
				TOGGLE:	'lit'
		}
}

[1:16] Notice that the broken state responds to no events, that is because
it's a final of our machine. We can put the final touch on our config by
setting the type of 'final' to our broken state. Yes, that pun was
intended.

const	broken	=	{
		type:	'final'
}

[1:29] We can now import the machine factory function from the XState
library. Since I'm merely using Node for my example, I will require it with
common JS instead of importing as an ES6 module. I'll create my



lightBulbMachine by passing our config to the machine factory
function.

const	{	Machine	}	=	require('xstate')

const	lightBulbMachine	=	Machine(config)

[1:45] XState's machine function comes with a few useful getters and
methods. Let's try some of them out on our lightBulbMachine. We
can get the initial state node by using the initial state getter, logging this
out we will see the entirety of the unlit state returned by the machine. It's
quite a lot of information.

console.log(lightBulbMachine.initialState)

[2:01] Next, the most useful method on a machine is the transition
method. Transition is a pure function, it receives a state and an event
argument, and returns the next state object. That object was so big it
didn't even fit in my full terminal window, so from here on out, I'll only log
out the value returned to us by the state object. That's more manageable.

console.log(lightBulbMachine.transition('unlit',
	'TOGGLE').value)

[2:23] Let's try this out with some of the other states of our machine. If we
set unlit to lit, it should toggle to unlit. If we set it to broken, it should
stay broken. What happens if we pass it a state that the machine can't



handle? It throws an error, and it tells us the child state foo does not exist
on lightbulb.

console.log(lightBulbMachine.transition('lit',	
'TOGGLE').value)

//	->	unlit

console.log(lightBulbMachine.transition('broken'
,	'TOGGLE').value)

//	->	broken

[2:45] What about when we pass it an event that the machine doesn't
handle? By default, the machine does nothing. It returns the state node
that it started in, and doesn't take any transition.

console.log(lightBulbMachine.transition('lit',	
'FOO').value)

//	->	lit

[2:56] However, we can set our machine's config to strict:	true, and
then calling an event that our machine can't handle throws an error. We
get the error "machine lightbulb does not accept event foo."



const	config	=	{
	...
	strict:	true
}

Use an Interpreter to Instantiate a Machine

Instructor: [00:00] Using machine.transition to change state is useful, but
it's tedious. We need a way to instantiate a machine that maintains its
state and allows us to send events and more to it. To do this, we'll use the
interpreter xState provides for us, interpret.

[00:14] I will require that function as well (interpret). The return value
from an interpreted machine is known as a service, so I'll call this service.
A service will maintain the state of our machine as it transitions from state
to state, but it won't do anything until we start the service.

[00:29] Once we've started the service, we can send events. Sending an
event returns us the next state, so we can actually save it and log out that
object. We can see that it changed to the value 'lit'. However, we
don't need to save the next time every time we send.

index.js

const	service	=	
interpret(lightBulbMachine).start()

const	nextState	=	service.send('TOGGLE')



[00:44] We can also use the state getter on the service and see what the
current state is. Again, the value is 'lit'. It's the same state object, so
that makes sense. However, this can't be the most useful way to log out
the next state of our service. There's got to be a better way, and there is.

index.js

console.log(service.state)

[01:00] There are many methods that allow us to add listeners to our
service and respond to changes to it. The most useful one to us is the
onTransition method. onTransition takes listener function that receives a
state argument.

[01:13] This is always sent the next state of the machine, and we can
move our logging action to there (onTransition callback function).
Now, each time that we send an event to our service, we'll see a value
logged out for it in the console. We can also utilize some of the
information from the state object itself here to limit our logging.

index.js

service.onTransition(state	=>	{
		console.log(state.value)
})

service.send('TOGGLE')
service.send('TOGGLE')
service.send('BREAK')



Terminal

$	node	index.js
lit
unlit
broken

[01:32] For instance, we can check and ensure that the state has actually
changed before logging. I'm going to remove the type of final from our
broken state to be able to send the break event twice. Notice that
broken was only logged out once.

index.js

service.onTransition(state	=>	{
		if	(state.changed)	{
				console.log(state.value)
		}
})

//	Remove	type	of	final
const	broken	=	{}

service.send('TOGGLE')
service.send('TOGGLE')
service.send('BREAK')
service.send('BREAK')



Terminal

$	node	index.js
lit
unlit
broken

[01:47] How about, instead of seeing that a state is changed, we check to
see if a state matches a particular value and only log out when that
happens? We can see that we only logged out, "Yo, I'm broke," when we
were in the broken state.

index.js

service.onTransition(state	=>	{
		if	(state.matches('broken'))	{
				//	This	will	only	run	in	a	'broken'	state
		}
})

Use XState Viz to Visually Develop and Test
Your Machine

Instructor: [00:00] (Tip: to get full use of this lesson, you are going to want
to watch the video.) Xstate-viz is an online tool for visualizing our state
machines. Here, I have already made the light ball machine. It allows you
to write any state machine, the code panel on the right, and see it
visualizes on the left.



[00:12] Not only is the visualization helpful, but it's interactive. We're able
to test out our machine manually by clicking the various events on the
left. I can click toggle from the unlit state to go to the lit state, toggle to go
back, and break to go to broken.

[00:27] I can hit reset at any time to reset the machine. As we go further
in the course, we'll discover other features of the visualization as well.
There're two other tabs on the right panel that are useful to us.

[00:39] The first is the state tab. This tab gives us information regarding
the current state of our machine. It provides us an object with a value. If
we had context, actions, and more, it would say that information as well.

[00:52] The second tab is the event tab. We're able to call events here as
well. Anything available to the current state notice made into a button
here on the bottom right. Notice that there's break and toggle for the unlit
and the visualization and break and toggle down here.

[01:08] What is useful about the event panel is that we can pass along
extra information on our events, then we can with just a string represent a
transition target.

[01:16] For example, I might want to send the break event, but I also
might want to indicate what location, the light ball was in when it broke.
We can send the event by clicking the send button and it'll get added to
the history of events called.

[01:29] We can actually toggle this open and we can see that we call the
type break and we added the information location leaving room. We're
able to replay or edit any event that we want and we could see
timestamps of when they were called.

[01:41] Lastly, if we're logged in like I am, we can save our machine
definition as a gist. Notice that the URL has been appended with a gist
query prem. The string is the ID of our gist. We could see it by going to



gist.githug.com/klyeshevlin in the ID.

Add Actions to Transitions to Fire Side Effects

Instructor: [0:00] We have a light bulb machine here, and I'd like to send
an action when the light bulb breaks in the unlit state. Down here in
unlit, I have a break event that leads us to broken. I'd like to fire off
some kind of action, maybe a console.log that tells us that the build is
broken.

const	lightBulbMachine	=	Machine({
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
				lit:	{
						on:	{
								BREAK:	'broken',
								TOGGLE:	'unlit'
						}
				}
				unlit:	{
						on:	{
								BREAK:	'broken',
								TOGGLE:	'lit'
						}
				},
				broken:	{}
		}
})

[0:16] To start with, I'm going to replace this string with an object. This
string is really a shorthand for this object of target broken. We're
targeting the next state. Next, we're going to add an actions property. The



value of actions can be a single function, or it can be an array of
functions.

[0:35] Each function receives the context of the state machine and the
event object that triggered the transition. In fact, from here, we can just
log those out. We can update the machine, and we could see that the
visualization changed, and it even shows the action that we'll take when
we break.

const	lightBulbMachine	=	Machine({
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
				...
				unlit:	{
						on:	{
								BREAK:	{
										target:	'broken',
										actions:	[(context,	event)	=>	{
												console.log(context,	event)
										}]
								},
								TOGGLE:	'lit'
						}
				},
				...
		}
})

[0:52] If I were to open the console, and I hit the break, we could see the
context was currently undefined, and the event that was taken was the
type 'break'. Closing my console and resetting the machine, there's an
alternative way to define this action.



[1:09] Machine takes a second argument known as the options object. On
this object, we can define our actions as methods on the actions object.
We'll create a method -- in this case, log broken -- and we'll simply log
out, "Yo, I am broke."

[1:27] Then, where we want that action to be taken, we can simply write a
shorthand of a string. We can update our machine and see that the
visualization is updated and tells us which action name we're now calling.

const	lightBulbMachine	=	Machine({
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
				...
				unlit:	{
						on:	{
								BREAK:	{
										target:	'broken',
										actions:	['logBroken']
								},
								TOGGLE:	'lit'
						}
				},
				...
		}
},	{
		actions:	{
				logBroken:	()	=>	{	console.log('yo	I	am	
broke')	}
		}
})

[1:43] If I open the console again, we'll see that it still works. What's nice
about having the context and the event sent to an action is that we can



actually pass more information on our event to be used by an action.

[1:56] I'm going to add context and event back to this log broken, and on
event, I'm going to expect some more information. Perhaps instead of just
saying, "I'm broke," I can tell you what room I broke in. We'll update the
machine, and then in the events panel, we can select break and add
some information to it.

const	lightBulbMachine	=	Machine({
			...
},	{
		actions:	{
				logBroken:	(context,	event)	=>	{	
console.log(`yo	I	am	broke	in	the	
${event.location}`)	}
		}
})

[2:14] We can add a location of office. When we send this, if we
open our console, it says, "Yo, I am broke in the office." Now, if I want to
add this to the break event on lit, it's as simple as repeating the steps. I
update the machine, and we see that the actions are now available on
both.



const	lightBulbMachine	=	Machine({
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
				lit:	{
						on:	{
								BREAK:	{
										target:	'broken',
										actions:	['logBroken']
								},
								TOGGLE:	'unlit'
						}
				}
				...
		}
},	{...})

[2:38] Perhaps I toggle to lit, and then I log broken. I am in the broken
state, which logs out undefined, because I forgot to define it on the
event object.

Trigger Actions When Entering and Exiting a
XState State

Instructor: [00:00] Here, I have a light bulb machine that has actions
being called on the break events in the lit and unlit states. This
action tells us that the light bulb has broke, and if a location has been
added to the event object, it'll tell us what location it is in.

const	{	Machine	}	=	require('xstate')

const	lightBulbMachine	=	Machine(



		{
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
						lit:	{
								on:	{
										BREAK:	{
												target:	'broken',
												actions:	['logBroken']
										},
										TOGGLE:	'unlit'
								}
						},
						unlit:	{
								on:	{
										BREAK:	{
												target:	'broken',
												actions:	['logBroken']
										},
										TOGGLE:	'lit'
								}
						},
						broken:	{}
				}
		},
		{
				actions:	{
						logBroken:	(context,	event)	=>	{
								console.log(`yo	I	am	broke	in	the	
${event.location}`)
						}
				}
		}
)



[00:16] However, adding these on both break transitions is a little tedious
and unnecessary. What if, instead of calling this action on a transition, we
could call it when we entered a state as well? Well, we can by using the
entry property.

[00:31] Entry is exactly like actions. It can take a single function that
receives the context and an event object. It can also be an array of
functions, and it can be an array of strings. In our case, we can move this
log broken action that's been defined on the second argument to
machine, the options object. We can add that as an entry action on the
broken state.

[00:54] I can then undo this work on both breaks using the shorthand of
broken and update my machine. We now see that, whenever the broken
state is entered, the log broken action will be taken. We can do this by
going to the events panel.



const	{	Machine	}	=	require('xstate')

const	lightBulbMachine	=	Machine(
		{
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
						lit:	{
								on:	{
										BREAK:	'broken',
										TOGGLE:	'unlit'
								}
						},
						unlit:	{
								on:	{
										BREAK:	'broken',
										TOGGLE:	'lit'
								}
						},
						broken:	{
								entry:	['logBroken']
						}
				}
		},
		{
				actions:	{
						logBroken:	()	=>	{
								console.log('yo	i	am	broke')
						}
				}
		}
)



[01:11] We can select break, and we can add the location in. We send
that to our machine. We see we've entered the broken state, and if I open
my console, we'll see, "Yo,	I	am	broke	in	the	office." Now, it
makes sense that, if we can call actions when we enter a state, we
should also be able to call actions when we leave a state.

[01:31] Those are called exit actions and are added on the exit property.
Perhaps when I exit the lit state, I'll say something about it growing
dark and cold, a morbid little light bulb, wouldn't you say? We've updated
our machine, and we now see that we have an exit action on the lit state.

const	{	Machine	}	=	require('xstate')

const	lightBulbMachine	=	Machine(
		{
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
						lit:	{
								exit:	()	=>	{
										console.log('it	is	so	dark	and	cold')
								}
								on:	{
										BREAK:	'broken',
										TOGGLE:	'unlit',
								},
						},
						...
				},
		},
		{	...	})



[01:49] If I toggle to lit, and then I open up my console, we can see that
when we exit the lit state, "It	is	so	dark	and	so	cold." It
doesn't matter whether we exit it to go to unlit or that we go to break.
What happens when we call exit transition actions and entry actions all in
sequence? What order do they go in?

[02:11] Let's add an action on the break event from lit and see what order
they all fire in. Now, we'll toggle into our lit state, and we can see that we
have exit actions, we have transition actions, and we have entry actions
on broken.



const	{	Machine	}	=	require('xstate')

const	lightBulbMachine	=	Machine(
		{
				id:	'lightBulb',
				initial:	'unlit',
				states:	{
						lit:	{
								on:	{
										BREAK:	{
												target:	'broken',
												actions:	()	=>	{
														console.log('transitioning	to	
broken')
												}
										},
										TOGGLE:	'unlit',
								},
						},
						...
				},
		},
		{	...	}
)

[02:26] When we call the break event, we see that the exit action of our
current state, lit, was called before the transition actions of break,
which was called before the entry actions of broken. This is always the
order of actions fired.

Replace Inline Functions with String Shorthands



Instructor: [00:00] Rather than defining our actions as inline functions, or
even extracting them out, we can handle this by using a string shorthand
and the options object on the machine factory function.

[00:13] We'll start by adding an object as the second argument to
machine. It's hard to see on this screen, but if we go all the way up, this is
the first object that ends here, and this is the second object. This is the
options object. On this object, we can define things like actions,
guards, services, activities, and delays. We'll focus on actions
in this lesson.

const	lightBulbMachine	=	Machine({
		...
		//	This	is	the	first	object
},	{
		//	This	is	the	actions	object
})

[00:35] We add an actions property. That actions property becomes
an object. We can define our functions here on this object. Rather than
having logLocation and buyANewBulb up extracted as functions, we
can do logLocation. Then we can take the function that we had up
here. I want to copy that out, get rid of that, and paste that in here.

[01:01] I'll do the same for buyANewBulb. I will copy this, cut it out,
remove that, and paste it in place here. Now, I can come here (entry
property in broken) and I can turn these into strings. XState knows that
I'm looking for actions with this name on this actions object here.



const	lightBulbMachine	=	Machine({
		...
			broken:	{
						entry:	['logBroken',	'buyANewBulb']
				},
},	{
		actions:	{
				logLocation:	(context,	event)	=>	{
						console.log(event.location)
				},
				buyANewBulb:	()	=>	{
						console.log('buy	a	new	bulb')
				},
		}
})

[01:23] I can save this. If I send a break event to the machine and pass
along the information of the location, I can see that logged out in the
terminal.

Use Internal Transitions in XState to Avoid State
Exit and Re-Entry

Instructor: [00:00] Here I have a contrived example of a machine, an idle
machine (idleMachine), that only has one state, idle. On this
machine, we only have one event, DO_NOTHING. It transitions back to the
idle state. Let's give it a couple tries.



const	idleMachine	=	Machine(
		{
				id:	'idle',
				initial:	'idle',
				states:	{
						idle:	{
								entry:	['logEntry'],
								exit:	['logExit']
						}
				},
				on:	{
						DO_NOTHING:	'idle'
				}
		},
		{
				actions:	{
						logEntry:	()	=>	{
								console.log('entered')
						},
						logExit:	()	=>	{
								console.log('exited')
						}
				}
		}
)

[00:15] We can see that each time we call DO_NOTHING, we actually exit
the idle state. We leave it, calling the logExit action, which is down
here in logs exited, and then we reenter the idle state, calling the entry
action logEntry that logs entered. Hence why, exited-entered, exited-
entered, exited-entered.



[00:38] Now, on occasion, you might want to transition back to the same
state without ever leaving the state node, and thus, never reentering the
state node. How do we do that in XState?

[00:50] Well, we can do it quite simply by adding one character. We add
this period, this dot notation, and what we've told the machine is that we
would like to make an internal transition.

const	idleMachine	=	Machine(
		{
				...
				on:	{
						DO_NOTHING:	'.idle',
				},
		},
		{
				...
		}
)

[01:01] We want to make a transition that stays within the state it's in. We
don't want to exit it and we don't want to enter it, so we're going to update
our machine.

[01:09] Notice that the arrow slightly changed. If we call DO_NOTHING
now, we'll see that nothing gets logged out to the terminal. I hope you can
hear me clicking.

[01:19] This simple change creates a transition where we never leave this
node.

Send Events to the Machine with the XState
Send Action Creator



Instructor: [0:00] Here I have an echo machine (echoMachine) with one
state, listening, and two events, SPEAK and ECHO. What I'd like this
machine to do is any time I speak, I want the ECHO event to be triggered.
How can I do this? I can use a special action called the send action
creator to send events to my machine.

[0:20] I'm going to add the actions property here (inside of the SPEAK
event object). Then I'm going to use the send function. The send
function receives an event. In this case, it'll be ECHO. We update our
machine. We now see that SPEAK is an available event to send. When
we send the SPEAK event, it'll send an echo event on the next tick of the
machine.

const	echoMachine	=	Machine({
		id:	'echo',
		initial:	'listening',
		states:	{
				listening:	{
						on:	{
								SPEAK:	{
										actions:	send('ECHO')
								},
								ECHO:	{
										actions:	()	=>	{
												console.log('echo,	echo')
										}
								}
						}
				}
		}
})



[0:40] I'm going to open up the console. Reset the machine. We'll call
speak. Every time we do, it echoes out. We can also update this from
being just a string to an object with a type of event that we want to send.
This too will also send echoes.

const	echoMachine	=	Machine({
		...
		states:	{
				listening:	{
						on:	{
								SPEAK:	{
										actions:	send({
												type:	'ECHO'
										})
								},
								...
						},
				},
		},
})

Track Infinite States with with XState Context

Instructor: [0:00] Not all states can be represented as a set of finite states.
Some things are infinite states. In XState, this is considered context or
called extended state. I have a lightbulb here that I'm calling a
multicoloredBulb because I'd like it to act like a modern lightbulb that
can change colors.

[0:18] We can do this with context. We add context as an object on our
machine configuration. In this case, I'll give it a property of color which
I'll set initially to white (#fff). We're going to update our machine, and
nothing has changed about our visualization.



const	multiColoredBulbMachine	=	Machine({
		id:	'multiColoredBulb',
		initial:	'unlit',
		context:	{
				color:	'#fff'
		},
		...
})

[0:35] When I select state tab, we currently have a context of color. We
can make updates to our color by creating actions called assign. I'm
going to add an event on the lit state called CHANGE_COLOR.
CHANGE_COLOR will not change the state of the lightbulb, so we don't
need to give this a target.

[0:53] We'll add the actions property. We can use our assign function
here. Assign has two signatures. It can receive an object of key value
pairs. In this case, we could set color straight to red (#f00) for
example. We can update the machine. We see that we now have a new
event.



const	multiColoredBulbMachine	=	Machine({
		id:	'multiColoredBulb',
		initial:	'unlit',
		context:	{
				color:	'#fff'
		},
		states:	{
				lit:	{
						on:	{
								BREAK:	'broken',
								TOGGLE:	'unlit',
								CHANGE_COLOR:	{
										actions:	assign({
												color:	'#f00'
										})
								}
						},
				},
				...
		},
})

[1:13] We even see what color that this assign will set it to. It says that it
sets to red (#f00). We'll toggle the lit. We'll call CHANGE_COLOR. We'll go
to our state tab and we'll see that it's currently red (#f00). We'll go back
to definition and reset the machine.

[1:28] We can also use this key value pair and provide a function to the
value that receives the current context, the event object, in this case
CHANGE_COLOR. We can assign it based on values from there. In this
case, I might want to send a color on the event itself and assign that
instead.



[1:50] From the advanced tab, I can call TOGGLE to get to the lit state. We
have CHANGE_COLOR available. We'll select CHANGE_COLOR. We can
add a color of, let's make it green (#0f0). We've called the
CHANGE_COLOR event. We could see that the color was updated to green
(#0f0). In fact, if we hover over this, we could see the exact function we
assigned it to, context event returns event color.

[2:14] Assign can also take a function as its argument. In this case, the
function receives the current context, the event, and returns an object to
be merged in with the next context. We can update our machine, toggle
to lit, and we can call CHANGE_COLOR event again with a color set. This
case, let's make it blue (#00f). Once again, our state has updated
correctly.

const	multiColoredBulbMachine	=	Machine({
		...
		states:	{
				lit:	{
						on:	{
								BREAK:	'broken',
								TOGGLE:	'unlit',
								CHANGE_COLOR:	{
										actions:	assign((context,	event)	=>	({
												color:	event.color
										}))
								}
						},
				},
				...
		},
})



[2:38] Notice that when I hover over assign with this format, I can't see
the function that I was called. It is generally preferred to call assign with
the object signature. There's one last way that we can add this action.
Rather than defining it inline here, we can define it on the second
argument to machine, the options object.

[2:58] We'll define an actions key here (inside of the actions object) and
create a method that will be this action. In this case, we'll call it
changeColor. We could take this function from up here (inside of
CHANGE_COLOR actions object), cut it out, call the changeColor
method from here (inside of CHANGE_COLOR actions object), and paste
this back in here (changeColor action). We can update our machine
and see that changeColor has now replaced our assign, as it now has a
name.



const	multiColoredBulbMachine	=	Machine({
	...
		states:	{
				lit:	{
						on:	{
								BREAK:	'broken',
								TOGGLE:	'unlit',
								CHANGE_COLOR:	{
										actions:	['changeColor']
								}
						},
				},
				...
		},
},	{
		actions:	{
				changeColor:	assign((context,	event)	=>	({
												color:	event.color
										}))
		}
})

[3:22] We'll toggle again to lit, go to the events tab, select
CHANGE_COLOR. This time, we'll make it black. I don't know how a black
(#000) light would work this way, but maybe it would. We send the event.
We could see that the state updated to black (#000).

How Action Order Affects Assigns to Context in a
XState Machine

Instructor: [00:00] Here I have a contrived example
doubleCounterMachine to demonstrate how action order affects
assigns in context. This machine only has one state idle, and a response



to one event, INC_COUNT_TWICE (increment count). This event fires off
four actions. One console.log before to show the count, two calls of
incCount, and one console.log after to show the count.

[00:25] We scroll down here we can see what the incCount function is,
it's an assigned function to context, that takes our context and gets
the current count and adds 1. Let's call this and see what happens.
Opening up the console, we see that we actually got before	2 and
after	2. That's odd, why did that happen?

const	doubleCounterMachine	=	Machine(
		{
				id:	'doubleCounter',
				initial:	'idle',
				context:	{
						count:	0
				},
				states:	{
						idle:	{
								on:	{
										INC_COUNT_TWICE:	{
												actions:	[
														context	=>	{
																console.log(`Before:	
${context.count}`)
														},
														'incCount',
														'incCount',
														context	=>	{
																console.log(`After:	
${context.count}`)
														}
												]
										}
								}



						}
				}
		},
		{
				actions:	{
						incCount:	assign({	count:	context	=>	
context.count	+	1	})
				}
		}
)

//	Before:	2
//	After:	2

[00:44] To understand this we actually have to think about the machine
transition method. I'm going to write some pseudocode up here to help it
make sense. Machine.transition is a pure function. It's a function of the
state and the event. In order for this to be pure function, we have to get
back the same object as our next state every time we pass in this
particular state and this particular event.

[01:10] The way it does this, is it returns the next context completely, but
taking all the actions, the state's exit actions, the transition actions, and
the next state's entry actions, and filtering out any assigns that might
happen in them, and merging them into the next context object. It looks
like this. Since all the assigns are batched together to give us that next
context object, all we're left with are any actions that aren't assigns, so it's
almost as if these actions are ordered in this way.



Machine.transition(state,	event)	{
		context:	nextContext,
		actions:	[
				...state.exit,
				...actions,
				...nextState.entry
		].filter(action	=>	{
				if(assignAction)	{
						mergeIntoNextContext()
						return	false
				}

				return	true
		})
}

[01:39] All the assigns first, and then any of the other actions in the order
that they were declared. Knowing this, we can remove the pseudocode
and we can make a change to how our doubleCounterMachine works
to actually work as we expect. What we realize is we actually have two
kinds of contexts, we not only have a count, we have a
previousCount.

[01:59] Since we have a previousCount, it makes sense that we make
an action that assigns this value during this. We have incCount, we can
also have setPreviousCount. We can take this, and add this to our
actions. Now that I've added that, I can update this to previousCount,
save the machine, and call INC_COUNT_TWICE. I should be able to open
the console, and we now see a before of 0 and an after of 2.

const	doubleCounterMachine	=	Machine(
		{



				id:	'doubleCounter',
				initial:	'idle',
				context:	{
						count:	0,
						previousCount:	undefined
				},
				states:	{
						idle:	{
								on:	{
										INC_COUNT_TWICE:	{
												actions:	[
														context	=>	{
																console.log(`Before:	
${context.previousCount}`)
														},
														'setPreviousCount',
														'incCount',
														'incCount',
														context	=>	{
																console.log(`After:	
${context.count}`)
														}
												]
										}
								}
						}
				}
		},
		{
				actions:	{
						incCount:	assign({	count:	context	=>	
context.count	+	1	}),
						setPreviousCount:	assign({
								previousCount:	context	=>	context.count
						})
				}



		}
)

//	Before:	0
//	After:	2

Use Activities in XState to Run Ongoing Side
Effects

Instructor: [00:00] Here, I have a rudimentary alarm clock machine
(alarmClockMachine). It has two states, idle and alarming. When
we alarm, we go to the alarming state, and when we stop, we go back
to idle. Now, what good is an alarm clock that doesn't beep to wake us
up?

const	alarmClockMachine	=	Machine({
		id:	'alarmClock',
		initial:	'idle',
		states:	{
				idle:	{
						on:	{	ALARM:	'alarming'	}
				},
				alarming:	{
						on:	{	STOP:	'idle'	}
				}
		}
})

[00:14] Right now, alarming doesn't do anything. There's no actions. An
action doesn't really fit what we want. What we really want is an action
that's ongoing for the entire time we're in the alarming state. That's
where activities come into play.



[00:29] We create activities by adding an activities property, and this can
be a single function, or it can be an array of functions, each function
receiving the current context and the event that caused the transition. We
can also write them with string shorthand.

[00:46] Rather than declaring them here in-line, we can write a string
that'll be the name of a method we'll create that is our activity. In this
case, I want my alarm clock to beep at me, so I'll create a beeping
activity.

const	alarmClockMachine	=	Machine({
		id:	'alarmClock',
		initial:	'idle',
		states:	{
				idle:	{
						on:	{	ALARM:	'alarming'	},
				},
				alarming:	{
						/*
						Single	function:
						activities:		(context,	event)	=>	{}

						Array	of	functions
						activities:		[(context,	event)	=>	{}]

						*/
						activities:		['beeping']
						on:	{	STOP:	'idle'	},
				},
		},
})



[00:59] Now, down in the second argument of machine, the options
object, we'll add activities. We'll create a beeping method to
correspond with the beeping string we placed in activities. As I said
before, this receives the context and the event. Though to be honest, I
don't really need either of those for what I'm going to do.

[01:20] An activity is an ongoing side effect that takes a nonzero amount
of time. In our case, we want to beep in the console while we're alarming.
To do this, I'll create a beep function inside of this held enclosure. This
beep function will simply log out "beep."

[01:39] Next, I want to call this beep the very moment that we start the
activity. In order to do that, I can just call the function here (inside of the
beeping activity). I also want it to repeat every second, so I'm going to
setInterval. Those of you who are astute might notice, though, that I
have no way right now cleaning up this interval.

const	alarmClockMachine	=	Machine({
		...
},	{
		activities:	{
				beeping:	(context,	event)	=>	{
						const	beep	=	()	=>	{
								console.log('beep')
						}

						beep()
						setInterval(beep,	1000)
				}
		}
})



[01:59] If I leave it like this and update the machine, I open up the
console, and I start the alarm, it's going to beep every second like I
expected. When I hit stop, it's going to keep on beeping. We've created a
memory leak.

[02:14] We've done this, because we have failed to clean up after
ourselves with the interval. I'm going to copy all this and reset my
machine. The way we handle this memory leak is that activities can return
a function that'll perform any cleanup that we need to do on anything we
set up inside of the activity.

[02:35] In this case, setInterval will return to us an interval ID
(intervalID) that we can save, and we can return a function that'll clear
that interval. Now, if I update the machine, I can open up the console, and
we can trigger our alarm again.

const	alarmClockMachine	=	Machine({
		...
},	{
		activities:	{
				beeping:	(context,	event)	=>	{
						const	beep	=	()	=>	{
								console.log('beep')
						}

						beep()
						const	intervalID	=	setInterval(beep,	1000)

						return	()	=>	clearInterval(intervalID)
				}
		}
})



[02:49] We'll see that it beeps, and it continues to beep every second.
Now, when I stop, the beeping also stops.

Conditionally Transition to States with Guards in
XState

Instructor: [00:00] Here I have a state machine for a vending machine
(vendingMachine). It has two states, idle and vending. On idle, I
can select an item which currently targets vending as the transition.



const	vendingMachineMachine	=	Machine(
		{
				id:	'vendingMachine',
				initial:	'idle',
				context:	{
						deposited:	0
				},
				states:	{
						idle:	{
								on:	{
										SELECT_ITEM:	'vending',
										DEPOSIT_QUARTER:	{
												actions:	['addQuarter']
										}
								}
						},
						vending:	{}
				}
		},
		{
				actions:	{
						addQuarter:	assign({
								deposited:	context	=>	context.deposited	
+	25
						})
				}
		}
)

[00:10] However, that's not how we want our vending machine to work.
We don't want them to just be able to select an item without having paid
for it. We can do this by adding a guard.



[00:20] To start, we're going to change this (SELECT_ITEM) from being a
string to an object of target:	'vending', since it's still the state that
we want to target. Next, we're going to add the cond property. The cond
property is a predicate function. That's a function that returns a Boolean.

[00:36] In this case, we want it to return true when we'd like to take the
transition and return false when we don't want it to. Guard functions
receive the context and event as arguments. However, in this case, we
only need the context.

[00:49] We want it to return true when context.deposited is greater
than or equal to 100. We're going to update our machine. We'll see that a
cond has been set on select item. In fact, it's disabled. We can't select it
right now.



const	vendingMachineMachine	=	Machine(
		{
				...
				states:	{
						idle:	{
								on:	{
										SELECT_ITEM:	{
												target:	'vending',
												cond:	context	=>	context.deposited	
>=	100
										},
										DEPOSIT_QUARTER:	{
												actions:	['addQuarter'],
										},
								},
						},
						vending:	{},
				},
		},
		{
				...
		}
)

[01:03] Now, another way to set the condition is rather than setting the
function here in place, we can use the second argument to machine, the
options object and add guards to that.

[01:13] I am going to add a guard down here (inside the options object).
We'll create a new conditional function. We'll call it depositedEnough.
We'll take the function that we wrote up here (SELECT_ITEM.cond).



We're going to cut that out and replace it with a string of the same method
name, so 'depositedEnough', and take that function and place it here
(in guards object).

const	vendingMachineMachine	=	Machine(
		{
				...
				states:	{
						idle:	{
								on:	{
										SELECT_ITEM:	{
												target:	'vending',
												cond:	'depositedEnough'
										},
										...
								}
						},
						vending:	{}
				}
		},
		{
				actions:	{
						addQuarter:	assign({
								deposited:	context	=>	context.deposited	
+	25
						})
				},
				guards:	{
						depositedEnough:	context	=>	
context.deposited	>=	100
				}
		}
)



[01:36] We're now going to update our machine. We'll see that the
visualization has updated to show us that the depositedEnough
condition is here. It's also red because it hasn't been met yet.

[01:46] Let's open up the state tab. We'll be able to watch the context
increase as I deposit quarters. One, two, three, four. depositedEnough
is now green. That condition is true and I can take this transition by
firing this event.

[02:01] I select my item and it gets vended.

Simplify State Explosion in XState through
Hierarchical States

Instructor: [00:00] Here I have a state machine of a door (door). It's in the
initial state of locked. I've written out the states locked, unlocked,
closed, and open, but I haven't given them any events or transitions yet.
That's because when we think about a door, it's actually a bit of
challenging problem.

const	door	=	Machine({
		id:	'door',
		initial:	'locked',
		states:	{
				locked:	{},
				unlocked:	{},
				closed:	{},
				opened:	{}
		}
})



[00:16] When it's locked, it's also closed. When it's unlocked, it could
still be closed, but it could also be opened. When it's opened, it should
never be able to be locked. We end up with a pretty confusing graph of
states if we try really hard to make this work with all the states on the
same level.

[00:33] Fortunately for us, we don't have to keep them at the same level
and we can use hierarchical states. We can see that closed and open
really are states that fall under when the door is unlocked, and it might
make more sense for us to put closed and open as states under
unlocked. This is our first step in making hierarchical states.

[00:53] The next thing is we actually need to define what's the initial state
of this subset of states (closed). We can update our machine, and it
now reflects that we have a locked state and an unlocked state. Inside
the unlocked state, we have child states closed and open.

const	door	=	Machine({
		id:	'door',
		initial:	'locked',
		states:	{
				locked:	{},
				unlocked:	{
						initial:	'closed'
						states:	{
								closed:	{},
								opened:	{}
						}
				}
		}
})



[01:09] From here, we can start to fill out our events and they'll make
sense. When we're closed, we can open it. When we're opened, we can
close it. We'll update that. When we're locked, we can get to unlocked.
How do we go from our unlocked state back to our locked state?

const	door	=	Machine({
		id:	'door',
		initial:	'locked',
		states:	{
				locked:	{
						on:	{
								UNLOCK:	'unlocked'
						}
				},
				unlocked:	{
						initial:	'closed'
						states:	{
								closed:	{
										on:	{
												OPEN:	'opened'
										}
								},
								opened:	{
										on:	{
												CLOSE:	'closed'
										}
								}
						}
				}
		}
})

[01:27] We don't want to be able to lock the door when it's open, so we
don't want to put that event here. We can put an event when it's closed to



lock it. However, this is going to throw an error when we update. It's going
to say invalid transition for door unlocked closed.

[01:42] What it's saying is that locked doesn't exist as a state in
unlocked. It's one level up. So how do we do this? We could start by
using the ID on the machine itself, then doing dot notation to work our
way down.

[01:57] In this case, we can set the transition target to #door.locked,
and it'll go from door down to the locked state. We can see we have a
lock action. Our door actually works. We've unlocked it, we can open it.
We can't lock it from the open state. Closed, locked, and we're back to
locked.

const	door	=	Machine({
		id:	'door',
		initial:	'locked',
		states:	{
				...
				unlocked:	{
						initial:	'closed'
						states:	{
								closed:	{
										on:	{
												LOCK:	'#door.locked'
												OPEN:	'opened'
										}
								},
								...
						}
				}
		}
})



[02:15] The other way we can handle this, rather than using the identifier
of the door, we can give the locked state an ID ('locked'), and then
we can change this just to '#locked'. We update it, and our
visualization stays the same. We can unlock the door, open, close, lock it.

const	door	=	Machine({
		id:	'door',
		initial:	'locked',
		states:	{
				locked:	{
						id:	'locked',
						on:	{
								UNLOCK:	'unlocked'
						}
				},
				unlocked:	{
						initial:	'closed'
						states:	{
								closed:	{
										on:	{
												LOCK:	'#locked'
												OPEN:	'opened'
										}
								},
								...
						}
				}
		}
})

Multiple Simultaneous States with Parallel States



Instructor: [00:00] It's approaching winter here in Portland while I'm
recording this. I'm inspired by my space heater, so I made a space heater
machine (spaceHeater).

[00:05] It has two top-level states -- poweredOff and poweredOn -- that
are transitioned to with the TOGGLE_POWER event. Inside of poweredOn,
we have a hierarchical state where we also have lowHeat and
highHeat that is toggled with the TOGGLE_HEAT.

const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn'	}
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						initial:	'lowHeat',
						states:	{
								lowHeat:	{
										on:	{	TOGGLE_HEAT:	'lowHeat'	}
								},
								highHeat:	{
										on:	{	TOGGLE_HEAT:	'highHeat'	}
								}
						}
				}
		}
})



[00:19] Now, my space heater has another useful feature that we should
add and that's oscillation, the ability for it to go back and forth. Oscillation
definitely falls under powered on, but it's not affected by lowHeat and
highHeat, so adding it here doesn't seem to make sense.

[00:36] No, oscillating is really the state of the space heater that happens
in parallel to the heating of the space heater. In XState, we can create
parallel states. I want to comment this out for right now, so that we're not
distracted by it.

[00:51] To create parallel states, we first do not provide an initial, since it's
in each state all at the same time. Instead, we define a type of
parallel.

[01:02] From here, we then enumerate the states that we're in all at the
same time. In this case, we'll be in a heated state and we'll be in an
oscillation state.



const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn'	},
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						type:	'parallel',
						states:	{
								heated:	{},
								oscillation:	{}
						}
						...

				},
		},
})

[01:12] Let's update the machine as is. We can now see that when we're
powered on, we have two top-level states. If we toggle in, we're inside of
heated and oscillation both at the same time.

[01:25] We can now take the values we had here for our heated. We can
copy them and move them inside of the heated state. We'll update the
machine. We'll see that heated now has its own state that we can toggle
between, and it doesn't change anything about oscillation, partly
because we haven't written it yet, so let's add that.



const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn'	}
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						type:	'parallel',
						states:	{
								heated:	{
										initial:	'lowHeat',
										states:	{
												lowHeat:	{
														on:	{	TOGGLE_HEAT:	'lowHeat'	}
												},
												highHeat:	{
														on:	{	TOGGLE_HEAT:	'highHeat'	}
												}
										}
								},
								oscillation:	{}
						}
				}
		}
})

[01:46] I'm going to fix my indentation really quick and give myself some
room here to see my editor. Inside of oscillation, we'll have an initial
of disabled and states of enabled and disabled.



const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn'	}
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						type:	'parallel',
						states:	{
								...
								oscillation:	{
										initial:	'disabled',
										states:	{
												enabled:	{
														on:	{	TOGGLE_OSC:	'disabled'}
												},
												disaabled:	{
														on:	{	TOGGLE_OSC:	'enabled'}
												}
										}
								}
						}
				}
		}
})

[02:03] We'll update our machine. We can now see that when we're
powered on, we're both in the initial state of lowHeat for heated and
disabled for oscillation.



[02:13] I can toggle these and they have no effect on the other state.
When I click TOGGLE_POWER, I leave all those states and go back to
powered off.

Recall Previous States with XState History
States Nodes

Instructor: [00:00] Inspired by the cooler weather, I have a space heater
machine. It has two top-level states, poweredOff and poweredOn.
When we're in the poweredOn state, we have two levels of heat -- we
have low and we have high.

[00:11] It sure would be nice if my space heater would remember what
setting I was on the next time that I power it back on. We can do this by
using history state nodes. We add a history state node by defining the
type as history.



const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn'	}
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						initial:	'low',
						states:	{
								low:	{
										on:	{	TOGGLE_HEAT:	'high'	}
								},
								high:	{
										on:	{	TOGGLE_HEAT:	'low'	}
								},
								hist:	{
										type:	'history'
								}
						}
				}
		}
})

This creates a state node that when transitioned to will return to the
previous state of this area of the machine.

[00:36] In this case, that means the previous state underneath the
poweredOn state. In order to trigger this transition, we'll need to actually
set TOGGLE_POWER here not to poweredOn, but to the specific history
state node by using dot notation.



poweredOff:	{
		on:	{	TOGGLE_POWER:	'poweredOn.hist'	}
},

[00:52] We can update our machine, and we now see that
TOGGLE_POWER actually goes directly to this history state node. By
default, if history doesn't have a previous state to go to, it'll go to the initial
state of that area.

[01:05] When we click TOGGLE_POWER, it goes to the low state. If I switch
it to high, and then I toggle it off, when I click TOGGLE_POWER again, we'll
go to that history node, and it remembers that I was in the high state.

[01:20] What this history node has done is remembered a shallow history
of our poweredOn state. Let's change our example up a bit and create
several states underneath poweredOn using parallel states.

[01:33] I'll move low and high to a heated state node, and I'll create
enabled and disabled state nodes in our oscillating state node. Then
I'll move my history state node as one of the parallel states.

const	spaceHeaterMachine	=	Machine({
		id:	'spaceHeater',
		initial:	'poweredOff',
		states:	{
				poweredOff:	{
						on:	{	TOGGLE_POWER:	'poweredOn.hist'	}
				},
				poweredOn:	{
						on:	{	TOGGLE_POWER:	'poweredOff'	},
						type:	'parallel',
						states:	{
								heated:	{



										initial:	'low',
										states:	{
												low:	{
														on:	{	TOGGLE_HEAT:	'high'	}
												},
												high:	{
														on:	{	TOGGLE_HEAT:	'low'	}
												},
										}
								},
								oscillating:	{
										initial:	'disabled',
										states:	{
												disabled:	{
														on:	{	TOGGLE_OSC:	'enabled'	}
												},
												enabled:	{
														on:	{	TOGGLE_OSC:	'disabled}
												}
										}
								},
								hist:	{
										type:	'history'
								}
						}
				}
		}
})

I'll update my machine, and we'll now see that I have parallel states of
heated and oscillating. When I toggle the power on, I'm in low heat
and I've disabled oscillation.



[01:59] Now by default, if I change these settings, and I toggle this off, it
won't remember that I was in high heated and enabled oscillating. The
reason for this is by default, this history is shallow. We can enable the
ability for it to remember all child states and set them by setting history
to deep.

hist:	{
		type:	'history',
		history:	'deep'
}

[02:18] If we update our machine now, we can TOGGLE_POWER on. If we
switch these to various settings, in this case, high and enabled, and we
TOGGLE_POWER off and we toggle it back on, because of that deep
setting, it remembers where we were in the child states of poweredOn.

Use XState Null Events and Transient
Transitions to Immediately Transition States

Instructor: [00:00] There's a saying, "If at first you don't succeed, try, try
again." I want to represent that as a machine. I have states of idle,
trying, and success. Every time we enter the trying state, we're going
to increment the number of tries in context.



states:	{
		idle:	{
				on:	{	TRY:	'trying'	}
		},
		trying:	{
				entry:	['incTries'],
		},
		success:	{}
}

[00:16] I don't ever want to stay in the trying state. I should go back to
the idle state automatically. If I do happen to try enough times and
succeed, I should also automatically go to success. This seems like the
kind of thing that should be chosen without an explicit event.

[00:32] In XState, we have something called the null event. On the
trying state node, I'm going to add to the on property an empty string.
This represents the null event. A null event is immediately taken when we
enter a state. That's called a transient transition. Every time I enter trying,
I'm going to immediately take the transitions I have here.

trying:	{
		entry:	['incTries'],
		on:	{
				''
		}
}

[00:53] Now, with trying, I want to either transition to success if I've
tried enough, or I want to transition back to idle. To do this, we'll set two
targets by using an array. The first target will be success with a



condition. We'll write our tried enough condition in a moment.

[01:11] Our second target will be idle, in case our first condition isn't
met.

trying:	{
		entry:	['incTries'],
		on:	{
				'':	[
						{	target:	'success',	cond:	'triedEnough'	
},
						{	target:	'idle'	}
				]
		}
}

Down here in the second argument to machine the options object, we'll
add our guards. We'll update our machine.

{
		actions:	{
				incTries:	assign({
						tries:	ctx	=>	ctx.tries	+	1
				})
		},
		guards:	{
				triedEnough:	ctx	=>	ctx.tries	>	2
		}
}



[01:22] We can see now that we have an event that doesn't have a name.
That's our null event. The null event is fired immediately upon entering
the state and we attempt a transition to the next one. I find this very useful
for setting up conditional branching in states like this.

[01:37] Let's give it a try on our machine. You notice that we never went
into the trying state. We are immediately back into the idle state. If we
look at the state panel, we'll see that our tries incremented by one.

[01:49] Let's try again. We see tries are two.

{
		"value":	"success",
		"context":	{
				"tries":	3
		}
}

Now that we've succeeded, we've tried enough times, we go immediately
to success.

Delay XState Events and Transitions

Instructor: [0:00] Here I have your basic stop light machine with three
states -- red, green and yellow. We transition between those states
with a simple TIMER event. Now triggering these events manually, and I
don't just mean with a mouse, it's a little tedious when we know that a
light can just happen after a certain amount of time is passed.

[0:18] Wouldn't it be nice if we could delay transitions and events in
xstate? We can. Very simply, we're going to remove the on Property and
replace it with after. We can replace the event name with the number of
milliseconds we'd like to transpire before we take the transition.



const	stoplightMachine	=	Machine({
		id:	'stoplight',
		initial:	'red',
		states:	{
				green:	{
						after:	{
								TIMER:	'yellow'
						}
				},
				yellow:	{
						after:	{
								TIMER:	'red'
						}
				},
				red:	{
						after:	{
								TIMER:	'green'
						}
				}
		}
})

[0:36] For the sake of this video, I'll make some of the shortest durations
of stop lights you've probably ever seen. A green light will only last three
seconds. A yellow light, one second. The red light, four seconds.



const	stoplightMachine	=	Machine({
		id:	'stoplight',
		initial:	'red',
		states:	{
				green:	{
						after:	{
								3000:	'yellow'
						}
				},
				yellow:	{
						after:	{
								100:	'red'
						}
				},
				red:	{
						after:	{
								400:	'green'
						}
				}
		}
})

[0:49] We'll update our machine and we could see that the timers have
automatically started. Each time the timer is hit, we take the transition to
the next state. It might be nice if we would give these times their own
identifying names so that read a little bit nicer in the state chart.

[1:04] We can do this with the second argument to machine, the options
object and define our delays. I am going to set the GREEN_TIMER to
3000, the YELLOW_TIMER to 1000, and the RED_TIMER to 4000. Then
in my machine, I'm going to replace this with GREEN_TIMER,
YELLOW_TIMER, and RED_TIMER.



const	stoplightMachine	=	Machine({
		id:	'stoplight',
		initial:	'red',
		states:	{
				green:	{
						after:	{
								GREEN_TIMER:	'yellow'
						}
				},
				yellow:	{
						after:	{
								YELLOW_TIMER:	'red'
						}
				},
				red:	{
						after:	{
								RED_TIMER:	'green'
						}
				}
		},	{
				delays:	{
						GREEN_TIMER:	3000,
						YELLOW_TIMER:	1000,
						RED_TIMER:	4000
				}
		}		
})

[1:26] We update our machine. We now see that our events have
updated though their times are the same. What's nice about doing this
way is we can read this very clearly. The green timer happens, and then
we go to yellow, and we can modify these. We can make these times
dynamic if we'd like.



[1:44] We can actually set each of these as the result of a function that
receives context and event. For instance, what if during rush hour we
added a co-efficient that we could multiply these by? Maybe something
that look like this.

[1:58] I am just going to copy-paste this into the other one.

delays:	{
		GREEN_TIMER:	ctx	=>	ctx.rushHourMultiplier	*	
3000,
		YELLOW_TIMER:	ctx	=>	ctx.rushHourMultiplier	*	
1000,
		RED_TIMER:	ctx	=>	ctx.rushHourMultiplier	*	
4000
}

Now, let's add this to context. By default, we'll set it to one.

initial:	'red',
context:	{
		rushHourMultiplier:	1
},

We'll update our machine. We'll see that the time doesn't change
because we're multiplying by one.

[2:12] If we add a way to update this context, we'll see that the timers
change. Let's add an on Event to the top level of our machine since we
want to respond to it in any of the states that we're in. Now we need to
add the INC_RUSH_HOUR action to our machine's configuration. I'll add
that down here in actions. This will be in a sign that will set the
rushHourMultiplier to its current context value plus one.



const	stoplightMachine	=	Machine({
		id:	'stoplight',
		initial:	'red',
		context:	{
				rushHourMultiplier:	1
		},
		on:	{
				INC_RUSH_HOUR:	{
						actions:	['incRushHour']
				}
		},
		states:	{
				green:	{
						after:	{
								GREEN_TIMER:	'yellow'
						}
				},
				yellow:	{
						after:	{
								YELLOW_TIMER:	'red'
						}
				},
				red:	{
						after:	{
								RED_TIMER:	'green'
						}
				}
		},	{
				actions:	{
						incRushHour:	assign({
								rushHourMultiplier:	ctx	=>	
ctx.rushHourMultiplier	+	1
						})
				}



				delays:	{
						GREEN_TIMER:	ctx	=>	ctx.rushHourMultiplier	
*	3000,
						YELLOW_TIMER:	ctx	=>	
ctx.rushHourMultiplier	*	1000,
						RED_TIMER:	ctx	=>	ctx.rushHourMultiplier	*	
4000
				}
		}		
})

[2:42] We'll update our machine and we'll see that we have added an
INC_RUSH_HOUR event to our whole machine. I'm going to go the state
tab really quick. I'm going to hit INC_RUSH_HOUR. We'll see that it's by
two. You can actually see that the timers take twice as long.

{
		"value":	"green",
		"context":	{
				"rushHourMultiplier":	2
		}
}

[3:00] If I increment it again, maybe traffics are really heavy and we want
to let them go by for long time, I can increment it to three and you can see
that the timers are going even slower. We can actually see it down here
the delay has been set to 9,000 for green, 3,000 for yellow, and it should
12,000 for red.

Invoking a Promise for Asynchronous State
Transitions in XState



Instructor: [00:00] Here I have a state machine called
cuteAnimalsMachine because who doesn't like some cute animals. I
want to be able to fetch some animals. When they load, I want to know
when it's successful to go to the success state over here or if it fails go
to the failure state and give me the option of retrying.

const	cuteAnimalMachine	=	Machine({
		id:	'cuteAnimals',
		initial:	'idle',
		context:	{
				cuteAnimals:	null,
				error:	null,
		},
		states:	{
				idle:	{
						on:	{	FETCH:	'loading'	},
				},
				loading:	{},
				success:	{
						type:	'final',
				},
				failure:	{
						on:	{
								RETRY:	'loading',
						},
				},
		},
})

[00:17] How can I do this with XState? You might notice that a promise
looks a lot like a state machine itself. In fact, every promise can be
represented as a state machine, with idle, loading, success, and
failure states.



[00:30] Because of this fact, we can invoke promises when we enter a
state. I'm going to quickly write a promise to get some cute animals from
Reddit. Man, that's a lot of data properties for Reddit JSON.

const	fetchCuteAnimals	=	()	=>	{
		return	
fetch('https://www.reddit.com/r/aww.json')
				.then(res	=>	res.json())
				.then(data	=>	data.data.children.map(child	
=>	child.data))
}

[00:43] Now we went to fetch that when we call this fetch event. When
we call fetch, we'll transition to loading. Inside of loading, we're going
to invoke our promise. We do this by using the invoke property. We can
give this invocation an id. In this case, I'll give it the id of
fetchCuteAnimals.

[01:03] We'll give it a source. In this case, it's the promise function we
have up above. This is fetchCuteAnimals. Promises will respond to
two specific events, onDone when they resolve and onError when they
reject.

loading:	{
		invoke:	{
				id:	'fetchCuteAnimals',
				src;	fetchCuteAnimals,
				onDone:	{},
				onError:	{}
		}
}



[01:19] We'll write the onError object first. In that case, we want to
target:	'failure' as our transition, and we want to take some
actions. Namely, we want to update the error in context. I'll just
write that inline here. With promises, the error is returned on the data
property of the event object.

onError:	{
		target:	'failure',
		actions:	assign({
				error:	(context,	event)	=>	event.data
		})
}

[01:39] Now we'll write our onDone object. In this case, we'll target the
success state node. We'll also take the actions of assigning the
cuteAnimals in context. The data returned from resolve is also put
on the data property of the event object.

onDone:	{
		target:	'success',
		actions:	assign({
				cuteAnimals:	(context,	event)	=>	event.data
		})
}

[01:56] From here, we can update our machine. We could see it got a
whole lot more complicated but a whole lot more useful. When we're in
the idle state, we'll trigger the fetch. You see that the promise immediately
resolved to success because it worked.



[02:10] I'm going to reset the machine really quickly. Let's just say, for
good measure, that our fetchCuteAnimals doesn't work. We'll comment
this out really quick. We'll return	Promise.reject(), just to show
that will go to the failure state.

const	fetchCuteAnimals	=	()	=>	{
		//	return	
fetch('https://www.reddit.com/r/aww.json')
		//			.then(res	=>	res.json())
		//			.then(data	=>	
data.data.children.map(child	=>	child.data))
		return	Promise.reject()
}

[02:25] Notice it failed immediately. We're in the failure state. We hit retry.
We know that's going to continue to fail. Removing this return and
uncommenting this, we'll update our machine one more time. We could
see that when we fetch, our state is updated, and all our cute animals are
in context.

Invoke Callbacks to Send and Receive Events
from a Parent XState Machine

Instructor: [00:00] Here I have an echoMachine with only one state,
listening.



const	echoMachine	=	Machine({
		id:	'echo',
		initial:	'listening',
		states:	{
				listening:	{
						on:	{
								SPEAK:	{},
								ECHO:	{
										actions:	()	=>	{
												console.log('echo,	echo')
										},
								},
						},
				},
		},
})

The idea of this machine is when the event SPEAK is called, I want to set
up a callback that'll send ECHO events back to my machine if, and only if,
the right type of event is sent. We can do this by invoking a callback as a
service.

[00:20] To start, I'm going to add the invoke property on the listening
state node. Invoke takes an id and takes a src. This source should be a
Callback Handler. I'm going to call it echoCallbackHandler.



listening:	{
		invoke:	{
				id:	'echoCallback',
				src:	echoCallbackHandler
		}
}

We'll write that function now.

[00:38] echoCallbackHandler is a function that receives the context
and event that invoked the service. In this case, it'd be the initial
context of our machine, which is undefined. The event would be the
initialization of the machine.

[00:51] This function returns another function. This is where we manage
our callback service. This function receives two arguments, a callback
function that we can use to send events back to the parent machine, and
an onEvent function that we can use to respond to specific events in the
machine.

[01:09] Just for the sake of the concept, I want to respond to any event
sent to my Callback Handler, so we'll add onEvent. This receives a
function that receives that event. Inside here, I'm going to call this
callback with ECHO. This callback will send an echo event to the
echoMachine anytime an event is sent to our callback service.



const	echoCallbackHandler	=	(context,	event)	=>	
(callback,	onEvent)	=>	{
		onEvent(e	=>	{
				callback('ECHO')
		})
}

[01:35] How do we send events to our callback service? On SPEAK, I'm
going to add the actions property. I'm going to use the send action
creator. This is a function that receives an event. In this case, it can be
anything. What's important is that we add the options object, the second
argument, and say where to send it to.

[01:57] I'm going to send it to the ID of my callback service,
EchoCallback.

SPEAK:	{
		actions:	send('FOO',	{
				to:	'echoCallback'
		})
}

This will send the Event Foo to the service EchoCallback. That'll be
received by this onEvent function. onEvent will trigger the callback of
ECHO back, which will lead to the ECHO event being handled in the
listening state, which should log out 'echo,	echo'.

[02:22] I'm going to update my machine. I'm going to open the console.
We're going to send the event. You could see, when we send it, the Echo
event is sent in the callback and the actions are triggered.



[02:38] To take this a step further, I'd like to only respond this Echo
callback when the event is of a certain type. I'm going to say, if e.type
===	'HEAR', as in, I want to hear this thing, then callback Echo.

const	echoCallbackHandler	=	(context,	event)	=>	
(callback,	onEvent)	=>	{
		onEvent(e	=>	{
				if	(e.type	===	'HEAR')	{
						callback('ECHO')
				}
		})
}

Going to update my machine. We're still sending Foo to EchoCallback.

[03:02] If I open up the console and I send the speak event, which sends
the FooEvent to my Callback Handler, we'll see that it doesn't echo. If we
update SPEAK to the type HEAR, and update the machine, we now see
that it works again.

Invoke Child XState Machines from a Parent
Machine

Instructor: [00:00] Here, I have a machine that I am calling parent with
states of idle, active, and done. It starts in the idle state. We can
see an ACTIVATE event sends it to the active state. I haven't written a
way for it to go from active to done. That is because in the active state, I
would like to invoke another machine and let that machine determine
when I move to the done state.



const	parentMachine	=	Machine({
		id:	'parent',
		initial:	'idle',
		states:	{
				idle:	{
						on:	{	ACTIVATE:	'active'	},
				},
				active:	{
						//	invoke	another	machine
				},
				done:	{},
		},
})

[00:22] Up here, I've written a second machine. This is childMachine. It
has several steps of states. step1, step2, and step3, and we can step
through them to get to the final state.



const	childMachine	=	Machine({
		id:	'child',
		initial:	'step1',
		states:	{
				step1:	{
						on:	{	STEP:	'step2'	},
				},
				step2:	{
						on:	{	STEP:	'step3'	},
				},
				step3:	{
						type:	'final',
				},
		},
})

[00:33] I can invoke this machine from a state within the parent machine
by using the invoke property. We'll give an id, set to child, and a src of
childMachine. When we enter the active state, it will invoke this child
machine and it will start it in its initial state.

active:	{
		invoke:	{
				id:	'child',
				src:	childMachine
		}
}



[00:52] Let's update the machine. We could see that invoke child has
been updated. We go to state, we're currently in idle. Let's activate it.
When we get into the value active, that is the state of active, we can see
that we now have a child state as well. We're in the value of step one.

[01:10] Currently, xstate-viz doesn't support showing the child machine as
well. We'll rely on the state panel to indicate where we are in the child
machine. Right now, I have no way of sending events to this child
machine. How can I do that?

[01:26] In the active state node of the parent machine, I am going to
add the on Property to send events. I'll create an event STEP. On this
event, I'd like to have an actions occurred, which is I want to send a
STEP event to my child machine.

on:	{
		STEP:	{
				actions:	send('STEP',	{
						to:	'child'
				})
		}
}

We'll update the machine.

[01:47] We can see now that when we're in active, we have the step
event available to us. Let's open up the state panel really quick and let's
send that step event. We can see that we send a step event to the child
and the child is now in step two.

[02:04] If I hit the step event again, I get to step three. Step three is a final
state for the child machine. How do we want to respond to that in our
parent machine?



[02:15] We can do that under the invoke property with the onDone
property. This will fire whenever the child machine reaches a final state.
When our child machine is finished, in a final state, we'd like to go the
done state in our parent machine.

active:	{
		invoke:	{
				id:	'child',
				src:	childMachine,
				onDone:	'done'
		}
}

[02:32] We update our machine. I am going to back to the state tab again.
We'll activate it. The child machine has been invoked. We can see down
here. It's at value of step one. We send a step event to our parent
machine, which sends it to our child machine, and we're now in step two.

[02:51] When we send a step event again, our child goes in the step
three, which is the final state. That final state triggers the onDone and
moves us into the done state.


