Al Keyboard

System-Level Intelligent Input Interface

Project Documentation — Final Round Al Hackathon
Team: Product Engineering | Track: Al Keyboard

1 Executive Summary

Al Keyboard transforms the passive keyboard interface into an intelligent, context-aware col-
laboration layer. Rather than forcing users to switch between their work and Al assistants, the
system embeds Al directly at the point of input—providing real-time completions, voice input,
and intelligent suggestions without interrupting workflow.

The system operates as a system-level input layer for Windows, understanding what application
you're using, what you're trying to accomplish, and how to help. It integrates with Final Round
Al to synchronize user profiles, resumes, job descriptions, and interview context, grounding all
assistance in personalized, relevant suggestions.

Core Capabilities:

Universal context awareness across all Windows applications
Real-time inline completions with sub-200ms latency

Keystroke pattern analysis with hesitation and correction detection
Hybrid voice input with Al-enhanced transcription

Cross-window context fusion for multi-document understanding
MCP (Model Context Protocol) integration for extensible tools
Speculative pre-generation for instant suggestions

Adaptive personalization through style mimicry and LoRA adapters

2 Problem Statement

The keyboard is the most frequently used interface in modern knowledge work, yet it remains
fundamentally passive. It captures keystrokes but understands nothing about intent, context, or
desired outcomes. This creates significant friction:

e Users must context-switch between work and Al assistants, losing flow state
Manual copy-pasting of context into chat interfaces wastes time

Al suggestions lack awareness of what application is being used

Voice input remains disconnected from keyboard workflows

No system learns user preferences across applications

Typing hesitation and corrections go unanalyzed—wasted cognitive effort

Research indicates context switching reduces productivity by up to 40%. We refer to this as
the "Toggle Tax"—the hidden cost of switching between your work and Al tools. A 2-second
thought becomes a 20-second chore.

Our Solution: Embed Al intelligence directly into the input layer, making assistance continu-
ous, contextual, and invisible. The keyboard becomes a real-time collaborator that understands
what you’re doing and helps you do it better.

3 System Architecture

Al Keyboard employs a six-layer architecture designed for modularity, low latency, and extensi-
bility. The system runs as a background process with the necessary privileges for global keyboard
capture and window introspection.

3.1 Layer 1: Input Layer

The input layer captures all user input through four parallel subsystems:

Keyboard Hooks: Uses Windows low-level keyboard hooks (SetWindowsHookEx) to intercept
all keystrokes system-wide with sub-millisecond latency. Maintains an input buffer with timing
metadata to detect typing patterns—pauses indicate uncertainty, bursts indicate copying.

Voice Engine: Audio capture pipeline with Voice Activity Detection (VAD) and streaming
transcription via Whisper API. Supports push-to-talk and continuous listening modes.

Clipboard Monitor: Tracks copy operations with semantic tagging, enabling intelligent paste
operations that adapt content to target context.

Gesture Capture: Long-press spacebar activates Al suggestion deck; swipe gestures navigate
alternatives and change tone modes.

3.2 Layer 2: Context Layer

The context layer implements a four-tier extraction pipeline:

Tier Latency Extraction

Window Metadata <bms Process name, window title, executable path, browser URL
UT Accessibility <20ms Focused element, surrounding elements, text selection
Visual OCR <100ms Screen capture + OCR for limited accessibility apps
Semantic Analysis <50ms Intent classification, entity extraction, tone inference

Cross-Window Context Fusion: Beyond single-window analysis, the system detects relation-
ships between multiple open windows using entity overlap analysis—shared companies, roles,
skills, or dates indicate related windows.

3.3 Layer 3: Intelligence Layer

Orchestrator: Central coordinator managing request prioritization, context windowing, and
response streaming. Implements debouncing to prevent API spam.

Hybrid Inference: Users choose between cloud inference (Claude API) for maximum capability,
local inference (quantized Llama 3.1 8B via llama.cpp) for privacy, or hybrid mode.

Local Inference Optimizations: INT4 quantization reduces model size from 16GB to 5GB
with 3x speedup. KV cache optimization cuts repeated inference by 60%. Speculative decoding
uses a 1B draft model for 2-3x speedup.

MCP Runtime: Handles tool invocations through Model Context Protocol servers—calendar,
email, database, and custom tools.

3.4 Layer 4: Learning Layer
Writing Style Mimicry: Pattern recognition model learns from user’s historical messages,
analyzing vocabulary, sentence structure, emoji patterns, and punctuation preferences.

LoRA Adapter Personalization: Lightweight fine-tuning that runs locally. Creates a 100MB
adapter that modifies base model behavior to match user’s writing style.

Reinforcement Learning: Implicit feedback signals improve suggestions over time based on
accept /reject patterns.

3.5 Layer 5: Output Layer
Ghost Text: Inline suggestions displayed as semi-transparent text. Accept with Tab, dismiss
with Esc.

AT Deck Mode: Long-press spacebar reveals card-based suggestions. Swipe to navigate alter-
natives and change tone.

Command Palette: Universal command interface (Ctrl+K) accepting structured and natural
language commands.

3.6 Layer 6: Integration Layer

Frai Sync: Bidirectional synchronization with Final Round AI—imports resume, job targets,
interview history.

Session Memory: Multi-tier memory preserving context across immediate, window, app, daily,
and persistent levels.

4 Keystroke Intelligence Engine

A core innovation of Al Keyboard is the Keystroke Intelligence Engine—a real-time analysis
system that transforms raw keyboard input into rich behavioral signals for Al assistance.

4.1 Session-Based Keystroke Capture

The system captures keystrokes in application-aware sessions with the following data structure:

Field Description

app_name Active application (e.g., "Visual Studio Code", "Microsoft Edge")

window _title Specific window context (e.g., "key recorder.py - Zenith")

start_time / end time Session timestamps for duration calculation

raw keystrokes Complete input including special keys (<BACKSPACE>, <SHIFT>, <ESC>)
final text Reconstructed text after all corrections applied

total keys Total keystroke count

backspaces Number of deletion keystrokes

corrections Detailed log of each correction with timestamp and position

4.2 Correction Analysis

The system tracks every correction in granular detail:

{
"timestamp": "2026-01-19T23:37:31.730110",
"position": 1,
"deleted": "i",
"reason": "backspace"
3

This enables calculation of key metrics:

Correction Rate: Percentage of keystrokes that are backspaces. High correction rates (>30%)

indicate user uncertainty—an optimal moment for Al suggestions.

Hesitation Patterns: When a user types "hi", deletes it, types "hello", deletes it, types
"buddy", deletes it, then finally types "how are you"—this reveals decision uncertainty. The Al
can learn that the user is searching for the right greeting and proactively suggest alternatives.

Position-Based Analysis: Corrections at position 0 (complete deletion) indicate message aban-
donment. Corrections at the end indicate typo fixes. Mid-text corrections suggest rephrasing.

4.3 Intent Detection from Keystroke Patterns

Pattern Detection Method AT Response

High correction rate (>30%) backspaces / total keys Offer suggestions proactively
Complete restarts Position 0 deletions Suggest alternative phrasings
Typing pause (>500ms) Timestamp gaps Pre-generate completions
Rapid burst typing Low inter-key intervals User is confident, stay passive
Repeated deletions of same word Pattern matching on deleted text Learn to avoid that suggestion
Punctuation hesitation Multiple !!! then deleted Suggest appropriate tone

4.4 Cross-Application Context Switching

The session-based capture tracks application transitions:

Session 1: Microsoft Edge (16.67s) = typing message with corrections

Session 2: Microsoft Edge (3.24s) - tab navigation
Session 3: VS Code (0.17s) = ESC key (likely closing modal)

This enables:

e Context Preservation: When returning to an app, restore previous session state
e Cross-App Intelligence: If user was writing email about code, reference the code file

they were editing

e Workflow Detection: Identify patterns like "research — write — code — test"

4.5 Real-Time Metrics Dashboard

Aggregated metadata provides session analytics:

Metric Value (Example)

Total sessions 3

Total keystrokes 55

Total duration 20.08 seconds

Effective typing rate 2.74 keys/second

Correction rate (Session 1) 34% (18 backspaces / 53 keys)
Platform Windows

5 Key Features

5.1 Universal Context Awareness
The system understands any application without per-app configuration. Context awareness

enables appropriate behavior adaptation: formal suggestions for email, technical precision for
code, STAR structure for interview responses, casual register for messaging.

5.2 Speculative Pre-Generation
Rather than waiting for explicit user requests, the system begins inference when typing pauses

are detected (default 300ms threshold). Three suggestions generate in parallel. When the user
triggers suggestions, results are already ready—reducing perceived latency to near-instant.

5.3 Hesitation-Aware Suggestions
When the Keystroke Intelligence Engine detects high correction rates or repeated restarts, the
AT proactively offers alternatives. Example: User types "hi" — deletes — "hello" — deletes —

"buddy" — deletes. Al surfaces: "Having trouble with the greeting? Try: 'Hey there!’, 'Good
morning!’, "Hope you’re doing well!’"

5.4 Adaptive Tone Control
Four instant-switch tone modes: formal, casual, polite, and funny. The system also learns from

correction patterns—if a user frequently deletes exclamation marks, it reduces enthusiasm in
suggestions.

5.5 Voice Input

Complete speech-to-text workflow: audio capture — VAD segmentation — Whisper transcription
— Al cleanup (punctuation, filler removal). Target latency under 300ms.

5.6 MCP Tool Integration

Model Context Protocol enables extensible tool integration: calendar, email, database queries,
and user-deployable custom servers.

5.7 Clipboard Intelligence
Maintains semantic clipboard history with content type detection, source window tracking, and

similarity search via embeddings.

6 Final Round AI Integration

6.1 Plugin Architecture
The plugin declares permissions (profile read, resume read, interview history), capabilities (sys-

tem keyboard, voice input, context extraction), and lifecycle hooks (interview start/end, job
view).

6.2 Personalization Grounding

All suggestions incorporate Frai context. Interview responses retrieve relevant experiences from
parsed resume. Job application assistance references target role requirements.

6.3 Interview Mode

When Frai detects an interview starting: suggestions pre-generate for common questions, STAR
prompts appear automatically, stealth Ul minimizes visibility during screen share, voice tran-
scription captures interviewer questions.

7 'Technical Implementation

7.1 Technology Stack

Component Technology

Runtime Electron 28+

UI Framework React 18 + TypeScript

State Management Zustand

Local Database SQLite via better-sqlite3

Vector Search hnswlib-node

Native Modules Custom Node addons for Win32 APIs

Cloud Al Composer Based Architecture Models for Fast Inference
Local Al llama.cpp with quantized Llama 3.1 8B

Voice OpenAl Whisper API + Silero VAD

Keystroke Analysis Python + JSON session logging

Metric Target Rationale

Memory usage <200 MB Background process constraint
CPU (idle) <1% No battery impact

Keystroke latency <5 ms Imperceptible delay
Suggestion latency <200 ms Maintains typing flow
Correction analysis <10 ms Real-time pattern detection
Voice transcription <300 ms Natural conversation pace

Data Type Storage Transmission Retention
Keystrokes Memory + local JSON Cloud (opt-in) or local only Session
Correction logs Local encrypted Never transmitted Configurable
Voice audio Memory only Whisper API (TLS) None
Session metadata Local SQLite Frai (opt-in) Permanent

7.2 Performance Targets
8 Security and Privacy

8.1 Data Handling

8.2 Privacy Mode Toggle

One-click privacy control (Ctrl+4Shift+K) instantly disables all AI features and keystroke logging.

Visual indicator shows status.

8.3 Sensitive Content Protection

Automatic detection and protection for password fields, banking URLs, SSN patterns, and user-
defined blocklist. Keystroke capture automatically disables in sensitive contexts.

9 Hotkey Reference

Hotkey Action

Tab Accept current suggestion
Shift+Tab Accept word-by-word

Esc Dismiss suggestion
Ctrl+Space Force trigger suggestion
Alt+1/2/3 Select alternative suggestion
Long-press Space Enter Al Deck mode
Ctrl+-K Open command palette
Ctrl4-Shift+Space Push-to-talk voice
Ctrl-+Shift+K Toggle ATl Keyboard on/off

10 Future Roadmap

Platform Expansion: macOS support via CGEventTap APIs, Linux via X11/Wayland.
Mobile: Android custom keyboard using Accessibility API, iOS keyboard extension.

Advanced Keystroke Analytics: Predictive models trained on correction patterns, typing
speed optimization suggestions, fatigue detection.

Team Features: Shared templates, organizational knowledge bases, collaborative context.

11 Conclusion

AT Keyboard represents a fundamental shift in human-computer interaction—transforming the
keyboard from passive input device to intelligent collaborator. The Keystroke Intelligence Engine
analyzes not just what users type, but how they type—detecting hesitation, corrections, and
uncertainty to provide proactive assistance at exactly the right moment.

By embedding AI at the point of input with deep contextual understanding, we eliminate context-
switching overhead and enable continuous, invisible assistance. The keyboard becomes a tool
that understands your goals and helps you achieve them—from the first keystroke to the final
round.

Don’t just type. Flow.

Al Keyboard — Final Round AI Hackathon Submission

	Executive Summary
	Problem Statement
	System Architecture
	Layer 1: Input Layer
	Layer 2: Context Layer
	Layer 3: Intelligence Layer
	Layer 4: Learning Layer
	Layer 5: Output Layer
	Layer 6: Integration Layer

	Keystroke Intelligence Engine
	Session-Based Keystroke Capture
	Correction Analysis
	Intent Detection from Keystroke Patterns
	Cross-Application Context Switching
	Real-Time Metrics Dashboard

	Key Features
	Universal Context Awareness
	Speculative Pre-Generation
	Hesitation-Aware Suggestions
	Adaptive Tone Control
	Voice Input
	MCP Tool Integration
	Clipboard Intelligence

	Final Round AI Integration
	Plugin Architecture
	Personalization Grounding
	Interview Mode

	Technical Implementation
	Technology Stack
	Performance Targets

	Security and Privacy
	Data Handling
	Privacy Mode Toggle
	Sensitive Content Protection

	Hotkey Reference
	Future Roadmap
	Conclusion

