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satellite, balloon and reanalysis observations 

• All model runs warmed faster than observations both globally and in the tropics, in most 

cases significantly 

• Models can be grouped by ECS value, but even low-ECS models exhibit too much 

tropospheric warming post-1979 
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Abstract 

The tendency of climate models to overstate warming in the tropical troposphere has long been 

noted. Here we examine individual runs from 38 newly-released Coupled Model 

Intercomparison Project version 6 (CMIP6) models and show that the warm bias is now 

observable globally as well. We compare CMIP6 runs against observational series drawn from 

satellites, weather balloons and reanalysis products. We focus on the 1979-2014 interval, the 

maximum span for which all observational products are available and for which models were run 

using historically-observed forcings. For lower- and mid-troposphere layers both globally and in 

the tropics, all 38 models overpredict warming in every target observational analogue, in most 

cases significantly so, and the average differences between models and observations are 

statistically significant.  We present evidence that consistency with observed warming would 

require lower model Equilibrium Climate Sensitivity (ECS) values. 

Plain Language Summary 

It has long been known that previous generations of climate models exhibit excessive warming 

rates in the tropical troposphere. With the release of the CMIP6 (Coupled Model 

Intercomparison Project version 6) climate model archive we can now update the comparison. 

We examined historical (hindcast) runs from 38 CMIP6 models in which the models were run 

using historically-observed forcings. We focus on the 1979-2014 interval, the maximum for 

which all models and observational data are available and for which the models were run with 

historical forcings. What was previously a tropical bias is now global. All model runs warmed 

faster than observations in the lower and mid-troposphere, in the tropics and globally. On 

average, and in most individual cases, the trend difference is significant. Warming trends in 

models tend to rise with the model Equilibrium Climate Sensitivity (ECS), and we present 

evidence that the distribution of ECS values across the model is unrealistically high. 

1 Introduction 

Numerous studies have pointed to a tendency across climate models to project too much 

contemporary warming in the tropical troposphere (Karl et al. 2006, Douglass et al. 2007, 

McKitrick et al. 2010, Fu et al. 2011, Bengtsson and Hodges 2011, Thorne et al. 2011, Po-

Chedley and Fu 2012, McKitrick and Vogelsang 2014) with additional evidence pointing to a 

global tropospheric bias as well (Christy and McNider 2017). Here we present an updated 

comparison using the first 38 models made available in the newly-released 6th generation 

Coupled Model Intercomparison Project (CMIP6) archive comparing model reconstructions of 

historical layer-averaged lower- and mid-troposphere temperature series against observational 

analogues from satellites, balloon-borne radiosondes and reanalysis products. We compare trends 

over 1979-2014, the longest interval for which all three observational systems are available and 

for which models were run with historically-observed forcings. None of our conclusions would 

be different if we extended the end date to 2018. We examine four atmospheric regions: the 

global lower troposphere and mid-troposphere, and the tropical lower- and mid-troposphere 

layers.  

In previous studies, although a warm bias was typically present, over large atmospheric regions 

the model spread at least partly overlapped the observational analogues, especially at the global 

level. This is no longer the case. Every model overpredicts warming in both the lower- and mid-
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troposphere layers, in the tropics and globally. On average the discrepancies are statistically very 

significant and the majority of individual model discrepancies are statistically significant as well.  

2 Data and Methods 

2.1 Data 

2.1.1 Observations 

We use the temperature data collected from three general categories.  (1) Radiosonde (or sonde) 

data are measured by thermistors carried aloft by balloons at stations around the world which 

radio the information down to a ground station.  Sondes report temperatures at many levels, and 

we use here annual averages at the standard pressure-levels: 1000 (if above the launch site), 850, 

700, 500, 400 300, 200 150, 100, 70, 50, 30 and 20 hPa.  As noted in Table 1 there are four 

datasets available: NOAA (RATPAC, Free et al. 2005), U WIEN, Austria (RAOBCORE and 

RICH, Haimberger et al. 2012) and the University of New South Wales, Australia (UNSW, 

Sherwood and Nishant 2015). Note that the commercial software used to process sonde data was 

revised in 2011 with the result that inferred humidity levels increased after 2009 by several 

percent (Jauhiainen et al. 2011). This induced a slight warming step which is not observed in 

other other systems and may be an artifact (Christy et al. 2018.)  

(2) Since late 1978, several polar-orbiting satellites carried some form of a microwave sensor to 

monitor atmospheric temperatures.  These spacecraft would circle the globe roughly pole-to-pole 

making a complete orbit in about 100 minutes.  They were (and are) sun-synchronous so the 

Earth would essentially rotate on its axis underneath as the spacecraft orbited pole to pole so that 

essentially the entire planet is observed in a single Earth-rotation (or day).  The intensity of 

microwave emissions from atmospheric oxygen are directly proportional to temperature, thus 

allowing a conversion of these measurements to temperature.  Since the emissions come from the 

most of the atmosphere, they represent a deep layer-average temperature.  For our purposes we 

shall focus on two deep layers, the lower troposphere (LT, surface to ~ 9 km) and the mid-

troposphere (MT, surface to ~ 15 km).  The University of Alabama in Huntsville (UAH) and 

Remote Sensing Systems (RSS) produce averages every month of both products (Spencer et al. 

2017, Mears and Wentz 2016).  NOAA provides values for MT globally and the University of 

Washington (UW) produces tropical value of MT (Po-Chedley et al. 2015).  There are 

differences in all of the products discussed here and the reader may want to consult the listed 

publications for more information. 

(3) The third category of these datasets are known as Reanalyses.  In this category, a global 

weather model with many atmospheric layers ingests as much data as possible, from surface 

observations, sondes and satellites, to generate a global depiction of the surface and atmosphere 

that is made globally consistent through the model equations.  We will access the temperature 

data from these datasets at 17 pressure levels from the surface to 10 hPa and will be able to 

calculate the deep-layer averages that match those of the satellite measurements.  Four such 

datasets are available to us, two from the European Centre For Medium Range Forecasts (ERA-I 

and ERA5, Dee et al. 2011, Hersbach et al. 2018), and one each from the Japanese 



forthcoming Earth and Space Science 

 

Meteorological Agency (JRA55, Kobayashi et al. 2015) and NASA (MERRA2, Gelaro et al. 

2017).   

 

2.2.2 Climate models 

The climate model simulations utilized here are those accepted for analysis in CMIP6 for which 

the models are executed in standardized simulations so they may be intercompared properly.  We 

obtained the model runs from the Lawrence Livermore National Laboratory archive 

https://pcmdi.llnl.gov/CMIP6/.   For this study we used the period 1979-2014 from the 

simulation set that represents 1850-2014 in which the models were provided with “historical” 

forcings.  These time-varying forcings are estimates of the amount of energy deviations that 

occurred in the real world and are applied to the models through time.  These include variations 

in factors such as volcanic aerosols, solar input, dust and other aerosols, important gases like 

carbon dioxide, ozone and methane, land-surface brightness and so on.  With all models applying 

the same forcing as believed to have occurred for the actual Earth, the direct comparison between 

models and observations is appropriate. The models and runs are identified in Table 2. We also 

list the estimated Equilibrium Climate Sensitivity (ECS) values for the 31 models for which we 

were able to find values, usually through unpublished online documentation (sources available 

on request). 

Global LT and MT data are presented in Figures 1 and 2. Individual model runs are shown as 

gray lines, the model average is the thick black line, and the observational mean is the thick blue 

line. 

 

2.2 Methods 

Linear trends were estimated on annual observations over the 1979-2014 interval, which is the 

maximum-length interval for which all observational series are available and for which the 

models were run using observed forcings. We pre-test the temperature series for unit roots, 

which if present imply nonstationarity of a form that makes conventional trend regressions 

invalid (Wooldridge 2019). We use the form of the test derived in Elliott et al (1996), allowing 

for a trend stationary alternative and an autoregressive lag. The null hypothesis of the test is that 

the series contains a unit root. Such tests can exhibit a tendency to under-reject in the presence of 

autocorrelation due to low power so we expanded the time interval to 1959-2014, which means 

the sonde record, specifically the mean of the RAOBCORE, RICH, RATPAC and UNSW 

products, serves as the observational series. We reject the null hypothesis for all individual 

model runs and the sonde mean series, thus indicating that the data can be treated as trend 

stationary. An appropriate method in this case for constructing confidence intervals and 
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hypothesis tests of trend equivalence is the autocorrelation-robust method of Vogelsang and 

Franses (2005). See McKitrick et al. (2010) for details on implementation. 

 

3 Results 

Figure 3 shows the trends and 95% confidence intervals in degrees C per decade in the 38 

individual climate models (red), the climate model ensemble mean (thick red) and the three mean 

observational series (respectively, radiosondes, reanalysis and satellites, thick blue). The dashed 

blue line shows the satellite trend level. Differing data availability leads to somewhat different 

observational series combinations. For the sonde data, the average includes RAOBCORE, RICH, 

and RATPAC in all specifications, and additionally includes UNSW in the MT layers (global 

and tropics). The mean of the reanalysis data uses ERA-I, ERA5, JRA55 and MERRA2 for the 

global LT and the topical LT and MT layers, uses ERA5, JRA55 and MERRA2 for the global 

MT layer. The mean of the satellite data uses UAH and RSS for global LT and MT and for 

topical LT, and additionally uses NOAA and UW for tropical MT.  

The top row of Figure 3 shows the MT layer results for the global (left) and tropical (right) 

samples. The bottom row shows the same for the LT layer. It is immediately apparent that every 

model run in every regional and layer average has a mean trend that exceeds the corresponding 

observed trends regardless of how they are measured.  

Tables 3 and 4 show the trend coefficients and symmetric 95% confidence interval widths (in 

degrees C/decade) for all individual models, for the average of all models, and for the three 

observational system averages. For example, the global LT trend in the ACCESS model (top row 

of Table 1) is 0.250±0.103 degrees C/decade. Table 3 shows the Vogelsang-Franses test scores 

on the null hypothesis of trend equivalence for each test region. A value greater than 41.53 is 

significant at 5%. The first row shows the results of testing whether the average model trend 

exceeds the average sonde trend. The second row shows the corresponding result for reanalysis 

data and the third row shows the results for satellite data. The fourth row shows the number of 

individual model runs in which the trend significantly exceeds the satellite average. In the first 

three rows we see that all 12 tests reject, meaning the average model significantly exceeds the 

average observed series regardless of region or atmospheric layer, and regardless of 

observational measurement system. The final row shows that a majority of models also reject 

individually against the satellite data except in the global LT case, in which 18 of 38 models 

reject. If we were to extend the data sample to a 2018 end date, the sum would still be 24 and 26, 

respectively, for the global LT and MT layers, and would increase to 22 and 23 in the tropical LT 

and MT layers.  

An increasingly common form of model diagnostic involves examining what are called 

“emergent constraints” (Caldwell et al. 2018). ECS values across models vary widely but the 

correct value cannot be directly determined by measurement. The emergent constraint concept 

involves looking for observable features of the climate that have measurable counterparts in 

models that are correlated with the model ECS. The observed measurement of the correlate will 

then indicate which model ECS values are more likely to be true. Various metrics have been 

proposed, such as the difference between tropical and Southern Hemisphere midlatitude total 
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cloud fraction, Tropical zonal-average lower-troposphere relative humidity in the moist-

convective region, model error in total cloud amount between 60 degrees N/S and the fraction of 

tropical clouds with tops below 850 mb whose tops are also below 950 mb (see list in Caldwell 

et al. 2018 Table 1). The correlations between the proposed metrics and ECS vary widely, and as 

noted in Caldwell et al., many do not have a valid physical underpinning. Since we are here 

analysing model warming rates, which is directly connected to ECS, it is worthwhile examining 

if an emergent constraint interpretation can be applied to our results.  

The correlations between ECS and trend terms are as follows: LT-global 0.67, MT-global 0.60, 

LT-tropics 0.50 and MT-tropics 0.50. Hence the models with low ECS values tend to have lower 

tropospheric trends, thus closer to observed values, and therefore are more likely to be realistic. 

Figure 4 provides more insight into the data. The models cluster into two distinct groups based 

on whether the ECS is above (red squares) or below (blue circles) 3.4K. A solid square or circle 

indicates the trend is from the LT and an open shape indicates MT. The mean values in each 

cluster for both the LT and MT layers are indicated by + signs, and the layer averages are joined 

by the gray lines (dashed-MT, solid-LT) which represent the emergent constraint.  

Within clusters, ECS and warming trend values are not correlated, but as is indicated by the gray 

lines the correlation emerges when comparing between low and high clusters. In the high group 

the overall mean trend is 0.28 C/decade and the mean ECS is 4.67K. In the low group the overall 

mean trend is 0.21 C/decade and the mean ECS is 2.76K. The mean observed trends in the LT 

and MT layers across all measurement types are indicated by the arrows along the horizontal axis 

(LT solid 0.15 C/decade, MT open 0.09 C/decade). Since the mean trends even in the low ECS 

model group are still too high compared to the observed trends the emergent constraint implies a 

need to extrapolate into even lower ECS levels to approximately match observations. Examining 

where the dotted lines cross the arrows informally indicates how far such extrapolation would 

need to go, however as drawn this would imply ECS values well below 1.0K. Since a curve of 

any shape can be fitted between two points one could equally use concave lines which would still 

imply ECS values below 2.0K in order to have associated warming trends consistent with 

observations. 

5 Conclusions 

The literature drawing attention to an upward bias in climate model warming responses in the 

tropical troposphere extends back at least 15 years now (Karl et al. 2006). Rather than being 

resolved the problem has become worse, since now every member of the CMIP6 generation of 

climate models exhibits an upward bias in the entire global troposphere as well as in the tropics. 

The models with lower ECS values have warming rates somewhat closer to observed, but are 

still significantly biased upwards and do not overlap observations. Models with higher ECS 

values also have higher tropospheric warming rates, and applying the emergent constraint 

concept implies that an ensemble of models with warming rates consistent with observations 

would likely have to have ECS values at or below the bottom of the CMIP6 range. Our findings 

mirror recent evidence from inspection of CMIP6 Equilibrium Climate Sensitivities (Vosen 
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2019) and paleoclimate simulations (Zhu et al. 2020) which also reveal a systematic warm bias 

in the latest generation of climate models. 
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Figure 1. Time series of model and observation temperature anomalies, global lower 

troposphere. Individual model runs (gray lines), model mean (black line), observational mean 

(blue line). All series shifted to begin at 0 in 1979.  
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Figure 2. Time series of model and observation temperature anomalies, global mid-troposphere. 

Individual model runs (gray lines), model mean (black line), observational mean (blue line). All 

series shifted to begin at 0 in 1979.  
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Figure 3. Trends and 95% CI’s for individual models (red dots and thin bars), CMIP6 mean (red 

dot and thick bar) and observational series (blue). Horizontal dashed line shows mean satellite 

trend.  
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Figure 4. Model ECS values plotted against model warming trends. Red squares: high ECS group, 

Blue circles: low ECS group. Open shape: MT trend, closed shape: LT trend. Inverted triangles: 

mean observed LT trend (solid), mean observed MT trend (open).   
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 Dataset Citation 

Radiosonde NOAA/RATPACvA2 Free et al. 2005 

 RAOBCOREv1.7 Haimberger et al. 2012 

 RICHv1.7 Haimberger et al. 2012 

 UNSWv1.0 Sherwood and Nishant 2015 

Satellite RSSv4.0 Mears and Wentz 2016 

 UAHv6.0 Spencer et al. 2017 

 NOAA/STARv4.1 Zou and Wang 2011 

 UWv1.0 Po-Chedley et al. 2015 

Reanalyses ERA-I Dee et a. 2011 

 ERA5 Hersbach, H. et al. 2018 

 JRA-55 Kobayashi et al. 2015 

 NASA/MERRA-2 Gelaro et al. 2017 

Table 1. Listing of observational datasets utilized in this study. 
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Model Name Run Origin ECS 

ACCESS-CM2 r1i1p1f1_gn Australia 4.7 

ACCESS-ESM1-5 r1i1p1f1_gn Australia 3.8 

AWI-CM-1-1-MR r1i1p1f1_gn Germany 3.2 

BCC-CSM2-MR r1i1p1f1_gn China 3.1 

CAMS-CSM1-0 r1i1p1f1_gn China 2.3 

CanESM5 r1i1p1f1_gn Canada 5.6 

CanESM5-CanOE r1i1p2f1_gn Canada 5.6 

CESM2 r3i1p1f1_gn US NCAR 5.2 

CESM2-WACCM r1i1p1f1_gn US NCAR 4.7 

CIESM r1i1p1f1_gr China  
CNRM-CM6-1 r5i1p1f2_gr France 4.8 

CNRM-ESM2-1 r5i1p1f2_gr France 4.8 

E3SM-1-0 r1i1p1f1_gr US DOE 5.3 

EC-Earth3 r24i1p1f1_gr Europe 4.2 

EC-Earth3-Veg r1i1p1f1_gr Europe 4.3 

FGOALS-f3-L r1i1p1f1_gr China 3.0 

FGOALS-g3 r1i1p1f1_gn China 3.0 

FIO-ESM-2-0 r1i1p1f1_gn China  
GFDL-CM4 r1i1p1f1_gr1 US NOAA 3.9 

GFDL-ESM4 r1i1p1f1_gr1 US NOAA 2.7 

GISS-E2-1-G r1i1p1f1_gn US NASA 2.7 

HadGEM3-GC31-LL r1i1p1f3_gn UK 5.5 

INM-CM4-8 r1i1p1f1_gr1 Russia 1.8 

INM-CM5-0 r1i1p1f1_gr1 Russia  
IPSL-CM6A-LR r1i1p1f1_gr France 4.5 

KACE-1-0-G r1i1p1f1_gr So. Korea  
MCM-UA-1-0 r1i1p1f2_gn US U-AZ 3.6 

MIROC6 r1i1p1f1_gn Japan 2.6 

MIROC-ES2L r1i1p1f2_gn Japan 2.7 

MPI-ESM1-2-HR r1i1p1f1_gn Germany 3.0 

MPI-ESM1-2-LR r1i1p1f1_gn Germany 2.8 

MPI-ESM-1-2-HAM r1i1p1f1_gn Europe  
MRI-ESM2-0 r1i1p1f1_gn Japan 3.2 

NESM3 r1i1p1f1_gn China 4.7 

NorESM2-LM r1i1p1f1_gn Norway 2.5 

NorESM2-MM r1i1p1f1_gn Norway  
SAM0-UNICON r1i1p1f1_gn So. Korea 3.6 

UKESM1-0-LL r1i1p1f2_gn UK 5.3 

Table 2: Models and runs used in this study. ECS denotes model Equilibrium Climate Sensitivity.  
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 Glob LT CI Glob MT CI 

ACCESS 0.250 0.103 0.197 0.089 

ACCESS_E 0.357 0.132 0.286 0.119 

AWI 0.299 0.079 0.235 0.078 

BCC 0.235 0.098 0.158 0.066 

CAMS 0.177 0.069 0.136 0.074 

Can5 0.411 0.107 0.365 0.108 

Can5OE 0.396 0.079 0.339 0.078 

CE2r3 0.290 0.152 0.229 0.158 

CE2_WAC 0.305 0.091 0.240 0.093 

CIESM 0.351 0.103 0.294 0.098 

CNRM_C61r5 0.203 0.053 0.139 0.049 

CNRM_E2 0.217 0.068 0.144 0.089 

E3SM 0.310 0.107 0.237 0.104 

EC_E3 0.285 0.180 0.232 0.170 

EC_E3V 0.271 0.082 0.214 0.075 

FGOALS_f3 0.256 0.060 0.205 0.066 

FGOALS_g3 0.269 0.104 0.208 0.095 

FIO 0.264 0.064 0.206 0.059 

GFDL-CM4 0.306 0.111 0.250 0.116 

GFDL-ESM4 0.263 0.104 0.212 0.116 

GISSE21G 0.197 0.121 0.129 0.135 

HadGEM 0.386 0.139 0.316 0.123 

INM48 0.238 0.075 0.200 0.086 

INM50 0.225 0.088 0.175 0.087 

IPSL6A 0.293 0.075 0.243 0.069 

KACE 0.285 0.071 0.232 0.066 

MCM_UA 0.334 0.093 0.301 0.091 

MIROC 0.232 0.123 0.189 0.131 

MIROC_2L 0.202 0.117 0.149 0.113 

MPI_H 0.210 0.130 0.161 0.116 

MPI_L 0.217 0.062 0.164 0.062 

MPI_HAM 0.228 0.070 0.173 0.061 

MRI_E2 0.211 0.092 0.156 0.087 

NESM 0.331 0.093 0.261 0.091 

NOR_LM 0.283 0.123 0.220 0.124 

NOR_MM 0.224 0.118 0.171 0.123 

SAM0 0.270 0.081 0.212 0.092 

UK10LL 0.394 0.089 0.286 0.113 

Model Avg 0.276 0.080 0.218 0.078 

SONDE Avg 0.164 0.049 0.091 0.051 

REANAL Avg 0.130 0.051 0.088 0.044 

SAT Avg 0.150 0.053 0.093 0.044 
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Table 3: Trend coefficients and symmetric 95% CI widths for all model runs and average 

observations from each observing system, global LT and MT layers. Data span 1979-2014.  
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 Trop LT CI Trop MT CI 

ACCESS 0.231 0.106 0.214 0.096 

ACCESS_E 0.388 0.156 0.367 0.142 

AWI 0.281 0.110 0.272 0.091 

BCC 0.221 0.109 0.196 0.090 

CAMS 0.176 0.103 0.154 0.095 

Can5 0.439 0.143 0.442 0.130 

Can5OE 0.367 0.108 0.372 0.101 

CE2r3 0.220 0.228 0.219 0.231 

CE2_WAC 0.232 0.132 0.229 0.141 

CIESM 0.352 0.173 0.355 0.172 

CNRM_C61r5 0.224 0.078 0.200 0.074 

CNRM_E2 0.195 0.099 0.166 0.117 

E3SM 0.285 0.098 0.276 0.094 

EC_E3 0.302 0.194 0.290 0.192 

EC_E3V 0.254 0.121 0.240 0.110 

FGOALS_f3 0.257 0.117 0.241 0.116 

FGOALS_g3 0.230 0.117 0.227 0.109 

FIO 0.258 0.093 0.247 0.099 

GFDL-CM4 0.276 0.145 0.271 0.135 

GFDL-ESM4 0.274 0.150 0.259 0.149 

GISSE21G 0.232 0.199 0.211 0.199 

HadGEM 0.340 0.166 0.332 0.163 

INM48 0.228 0.074 0.230 0.089 

INM50 0.221 0.088 0.205 0.090 

IPSL6A 0.308 0.121 0.306 0.121 

KACE 0.259 0.119 0.240 0.108 

MCM_UA 0.361 0.122 0.356 0.128 

MIROC 0.250 0.183 0.235 0.189 

MIROC_2L 0.182 0.172 0.170 0.163 

MPI_H 0.227 0.160 0.214 0.166 

MPI_L 0.203 0.105 0.187 0.095 

MPI_HAM 0.163 0.071 0.160 0.065 

MRI_E2 0.162 0.127 0.151 0.125 

NESM 0.306 0.104 0.314 0.105 

NOR_LM 0.279 0.166 0.277 0.167 

NOR_MM 0.211 0.221 0.196 0.226 

SAM0 0.258 0.124 0.262 0.127 

UK10LL 0.336 0.169 0.307 0.149 

Model Avg 0.263 0.095 0.252 0.088 

SONDE Avg 0.127 0.056 0.058 0.046 

REANAL Avg 0.091 0.055 0.069 0.051 

SAT Avg 0.115 0.061 0.106 0.065 

Table 4: Trend coefficients and symmetric 95% CI widths for all model runs and average 

observations from each observing system, tropical LT and MT layers. Data span 1979-2014.  
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 Glob LT Glob MT Trop LT Trop MT 

>SONDE Avg 227.3 362.1 136.3 248.1 

>REANAL Avg 262.9 200.2 129.0 147.1 

>SAT Avg 97.1 118.7 68.5 70.1 

Num > SAT Avg 24 26 18 20 

Table 5: Vogelsang-Franses (2005) test scores for test of trend equivalence.  

 

 

 


