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Abstract—Multimodal learning has been utilized for numerous
applications in cyber-physical power systems for load forecasting,
voltage control and power quality monitoring. Although this
learning technique has attained prominence in recent years, the
use of this technique for predicting physical anomaly for cyber
disruption is rather limited. This study uses the knowledge of t-
distributed stochastic neighbor embedding (t-SNE) as a method
widely used in multimodal learning for predicting the state of
operation of a cyber-physical system. Naturally the aim of a
power system is to keep the system operating which is termed as
the normal or stable operating state of the power system. In the
event of a possible contingency, the cyber-physical power system
should foresee such event and can take preventive measures
considering the comprehensive knowledge pertinent to this study.
The Western System Coordinating Council (WSCC) 9-bus power
system is taken as the test case for this study. In the event of
loss of a generator, the system is brought into stable operation
by load shedding. In the meantime, the system also underwent a
Denial of Service (DOS) attack which denied the load shedding
command. As a result, there was physical impact in the system
which caused the system to become unstable. This is mitigated by
issuing firewalls, which ensures the load shedding command will
be initiated. Fusing cyber-physical data from multimodal relays
and sensors located at strategic locations of the power system, the
analysis is performed. The fused data is used to give an accurate
estimation of the operating state that is visualized with t-SNE.

Index Terms—embedding, cyber physical system, denial of
service, load shedding

I. INTRODUCTION

In the realm of ever-evolving landscape of cyber-physical

systems (CPS), the integration of machine learning and op-

timization techniques has become increasingly crucial [1].

With the advent of renewable energy sources and their high

penetration in modern power grids, accurate prediction and

control are essential for grid reliability [2]. As a result, re-

searchers and experts have turned their attention to multimodal
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learning, a field that consolidates data from various sensors and

inputs to generate more robust inferences and insights [3]. This

article explores the potential of multimodal learning in power

systems, its benefits, scaling capabilities, and the opportunities

it presents across various industries.

In this work, we consider the Western System Coordinating

Council (WSCC) 9-bus power system as our testing envi-

ronment which is emulated with a real-time digital simulator

(RTDS) [4]. The description of this digital simulator is given

in Section II. From this testing environment, we are collecting

physical data from the relays and cyber data from the network-

ing devices, leading to a multimodal analysis of the system.

For the multimodal analysis of the system, dimensionality

reduction is necessary since low dimensional data helps in data

compression which is computationally efficient. This removes

the dependence of redundant features which can holistically

make simpler inference on the state of the system by plotting

in a 2D space. Apart from the t-distributed stochastic neighbor

embedding (t-SNE), principal component analysis (PCA), and

random forest are some of the state-of-the-art techniques that

are quite prominent for dimensionality reduction. Each of

these techniques has some drawbacks of their own. PCA

preserves the linear dependency of high dimensional data in

low dimensional feature space and as result, it is not suitable

for the non-linear feature space of a cyber-physical system.

Random forest is dependent on decision trees which can overfit

with much noise, and as a result, interpretation of the result

becomes complex. Despite these drawbacks, transient analysis,

voltage control and reliability analysis of power system have

been done with PCA and random forest, but in every study

they have used either only physical data or cyber data but not

a combination of cyber-physical data [5].

In our work, we are considering the loss of generator 1

of the 9-bus system. As a result of this loss, the system

becomes unstable, and to stabilize the system, load-shedding is

initiated to loads connected at bus 5 and bus 6. This causes the

system to become stable. In this instance, the power system

is compromised with a cyber disruption where a denial of

service (DOS) is initiated in the power system. Because of

this disruption, the load-shedding command at bus 5 and

bus 6 cannot be initiated. Finally, this disruption is mitigated

by imposing firewall rules where normal communication is

established and the load-shedding command is acknowledged
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Fig. 1: Western System Coordinating Council (WSCC) 9-Bus Power System (a) Physical Topology, (b) Cyber Topology

by bus 5 and bus 6. Based on multimodal learning, a state of

stable and unstable operating condition of the power system

is finally predicted. Prior to our work, a similar approach has

been used in prediction, but in that prediction dummy data was

used unlike our work [6]. Thus, a dynamic risk assessment

technique has been presented here that considers evolving

cyber threats by combining cyber-physical analysis with real

time data.

This paper is divided such that Section II introduces the

testing environment, Section III details the algorithm used,

Section IV presents the results of the multimodal learning,

and Section V concludes the paper.

II. TESTING ENVIRONMENT

For our testing environment, we are considering the WSCC

9-bus power system. It consists of 3 generators, 3 two-winding

power transformers, 6 lines, and 3 loads. The environment

is emulated with a real-time digital simulation (RTDS) [1],

which allows the C37.118, a standard defining synchropha-

sors, frequency, and rate of change of frequency (ROCOF)

measurement under all operating conditions [7], to stream data

from the phasor measurement unit (PMU) to the RTDS WSCC

9-bus model and SCEPTRETM which is a Sandia industrial

control system (ICS) simulation tool that allows modeling and

implementation of cybernetworks/control networks for process

control systems [8]. Existing communication protocols such as

Modbus and DNP3 are incorporated in SCEPTRETM .

Physical disturbance data sets were collected from 8 dif-

ferent PMUs in the WSCC 9-bus model. The cyber model

violation data sets were collected that include the round trip

time (RTT) of 3 different relays located in each substation

A, substation B, and substation C. These features are given

in Table I. A simplified approximation of the physical and

cyber topology of the power system is given in Fig. 1. In this

environment, two use cases are considered.

A. Baseline Scenario

First, the system begins in the steady state condition. Then,

due to some disturbance, the generator connected to bus 1 is

lost. Since the generator has tripped, the system is brought

into steady state condition by using calculated load-shedding

with the loads connected in bus 5 and bus 6 [1].

B. Use Case A: A DOS Prevents Special Protection Scheme
(SPS)’s Load Shed

For the first use case, a Denial Of Service (DOS) attack

is initiated on this particular synthetic power system which

compromised the relays connected to bus 5 and bus 6. Hence,

when the generator connected to bus 1 is lost, the load

shedding command does not reach bus 5 and bus 6, which

causes instability in the power system. The unstable nature of

the system is reflected in the physical changes of frequency,

voltage, and current. Moreover, the cyber entity such as the

round trip time was also greatly affected. To represent the

system holistically and to ensure reliability, analysis of the

system is done by considering only the cyber entities, only

the physical entities, and cyber-physical entities together. This

is the unstable first scenario without any type of mitigation.

C. Use Case B: Mitigation of DOS

For the second use case, the DOS attack is circumvented

with the help of firewalls and a mitigation technique. The load

shedding is initiated to bring the system into stability. Those

are further detailed in the results section.

III. ALGORITHM

The t-distributed Stochastic Neighbor Embedding (t-SNE)

is used in the multimodal learning; it is commonly applied

to high-dimensional data to visualize and explore patterns or

clusters within the data [9].

t-SNE measures the pairwise similarities between data

points in the high-dimensional space, X . It uses a Gaussian

kernel to compute the similarities, where nearby points have
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TABLE I: Cyber and Physical Features

Cyber Features
Feature Name Number of Features Total

Round Trip Time 2 per relay x 3 relays 6
Physical Features

Feature Name Number of Features Total
Voltage Magnitude 3 per bus for 3 phase system x 8 bus 24

Voltage Angle 3 per bus for 3 phase system x 8 bus 24
Current Magnitude 3 per bus for 3 phase system x 8 bus 24

Current Angle 3 per bus for 3 phase system x 8 bus 24
Number of Samples 8999

higher similarity values. Suppose there are N high dimensional

data X1, X1,..., XN , a conditional probability Pji proportional

to the similarity between Xi, Xj using (1); where, σi repre-

sents the variance of Xi.

Pji =
exp(−||Xi −Xj ||2/2σ2

i )∑
k �=i exp(−||Xk −Xj ||2/2σ2

i )
(1)

Similarly it constructs probability distributions, Qji based

on pairwise similarities between data points in the lower-

dimensional space, Y using (2) taking the variance of the

Gaussian to be 1/
√
2.

Qji =
exp(−||Xi −Xj ||2)∑
k �=i exp(−||Xk −Xj ||2) (2)

To minimize Pji and Qji, an optimization is reached with

the Kullback-Leibler (KL) divergence between the probability

distributions in the high-dimensional space, X and the low-

dimensional space, Y . A cost function, K considering KL

divergence is given in (3).

K =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

Pjilog
Pji

Qji
(3)

According to (3), Pi represents the conditional probability

of high dimensional space, X. Each point of high dimen-

sional data space has a different variance, σ. As a result

the entropy, E associated with Pi has a proportional relation

with σ. Stochastic Neighbor Embedding uses a concept called

perplexity, Perp and its mathematical relation with entropy,

E is given in (4):
Perp(Pi) = 2E(Pi) (4)

The entropy, E of Pi is given in (5):

E(Pi) =
∑

j

Pjilog2Pji (5)

The cost function, K given in (3), is minimized using the

method of gradient descent. The simplified gradient formula

of the cost function is given in (6):

∂K

∂Yi
= 4

∑

j

(Pji −Qji)(Yj − Yi)(1 + ||Yi − Yj ||2)−1
(6)

The term (Yj − Yi) in the gradient represents a spring be-

tween the points, (Yj , Yi). For positive value of the gradient, it

would exert a compression force, and for negative value of the

gradient, there would be a expansion force. The other terms,

(Pji − Qji), (1 + ||Yi − Yj ||2)−1
, represent the force exerted

on Yi by Yj . The total force on Yi is the summation of all the

forces exerted on Yi by all the other points in the embedding.

Thus, the gradient in SNE is represented with the concept

of attractive and repulsive force between the data points of

low dimensional space Yi and Yj . This determines how the

Fig. 2: Variation of KL Divergence with Perplexity

point moves in the embedding. The process is initialized with

random Gaussian distribution with small variance. As a result

in optimization process, to overcome the effect of local minima

with gradient descent, a large momentum, m is used. The

gradient update, G formula after the iteration t is given in 7

where l is the learning rate and m is the momentum.

G(t) = G(t−1) + l
∂K

∂G
+m(t)(G(t−1) −G(t−2)) (7)

In this work, we have used a fixed value of 30 for perplexity,

Perp. To make the plot of t-SNE reproducible, PCA is used in

the data preprocessing stage since the loss function associated

with t-SNE can refer to a local minima with this initialization

and can use this reference to generate similar plot. It needs to

be mentioned that t-SNE becomes computationally expensive

with the increase of sample size and the inference can become

dependent on the data. The results of the work are given in

the next section.

IV. RESULTS

The sample data used in this work was taken from the

synthetic grid of the WSCC 9-bus system. The features of

interest are broadly divided into cyber features and physical

features. Combining the cyber and physical features, a total of

102 features are taken into consideration.

From Table I, it can be seen that the dimensionality of the

system is high, and it increases with the number of devices

and quantities monitored in both cyber and physical layers.

Eight of the nine buses in the WSCC 9-bus system have PMU

devices installed. It is important to identify the most important

features to include in the multimodal learning for efficiently

detecting and monitoring the evolution of a cyber intrusion

event’s potential impacts on physical properties of the system.

Such a high dimensional feature set with a large number of

samples will not only increase the computation time but will

also affect the ability of a machine learning model to express

the underlying features clearly.

It should be mentioned that the cost function associated with

t-SNE is inherently a non-convex function. As a result, there

is every possibility the result might get stuck in a bad local

minima. To overcome this, there is a method known as early
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Fig. 3: Clustering of WSCC 9-Bus System with DOS Attack and
No Mitigation (a) Cyber Features, (b) Physical Features, (c) Cyber-
Physical Features

exaggeration which momentarily multiplies a constant term

with the probabilistic distances of all the points of the high

dimensional space. In this study, for the first 250 iterations,

early exaggerations is used.

As mentioned in Section III, we have taken a range of values

from 5 to 50 as perplexity, Perp, for the visualization of

the high dimensional feature space into a two dimensional

plot. Although the value of KL divergence decreases with

the increase of perplexity, it does not provide any additional

information. In t-SNE, the concept of perplexity is related to

the balance between attractive and repulsive forces. With a low

value of perplexity, the attractive forces between the cluster

is dominant, while on the other hand, with a high value of

perplexity, the points in lower dimensional spaces are pushed

further away. Thus, a high value of perplexity causes more

separation in the cluster, resulting in the formation of sub-

clusters. As a result, a value of 30 is taken as the optimized

value for perplexity, Perp [10]. This is shown in Fig. 2.

Fig. 4: Clustering of WSCC 9-Bus System with Mitigation after the
DOS attack (a) Cyber Features, (b) Physical Features, (c) Cyber-
Physical Features

As described in Section II, two use cases are considered. For

the first use case, a DoS attack is initiated which compromised

the special protection scheme (SPS) in the test environment.

The North American Electric Reliability Corporation (NERC)

standard for frequency is used to distinguish between stable

and unstable operation of the system [11]. Without any miti-

gation, the resulting visualization is shown in Fig. 3 in three

ways: considering only the cyber features, only the physical

features, and a combination of cyber-physical features. From

the visualization of the cyber features in Fig. 3a, a single

distinct cluster is dominant. Besides, when we shift our

focus to Fig. 3b and Fig. 3c which considers only physical

features and cyberphysical features combined respectively, it is

interesting to note that there are several clusters. When a closer

look is given at the combined cyber-physical graph of Fig. 3c,

it appears that there are numerous clusters which are closer

together around the center of the plot. These clusters represent

the voltage magnitude, voltage angle, current magnitude and

4
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current angle of three phases. The rest of the clusters are

the combined effect of round trip time and random noise

in the system. During the stage of data preprocessing the

covariance matrix of PCA initialization is considered. The

covariance matrix shows that the t-SNE plot is dominated

by phases of current and voltage magnitude. Besides, the t-

SNE plot is less dominated by phases of current and voltage

angles, and even less dominance is observed for round trip

times when the same covariance matrix is considered. It is not

clear which particular cluster represents which feature, but an

inference can be reached, with the understanding of covariance

matrix and t-SNE plot. The close together clusters are the

combined effect of voltage magnitude, voltage angle, current

magnitude and current angle of three phases and the more

spread-out clusters are the combined effect of round-trip time

and random noise in the system. Following this, when cyber-

physical features are considered, the dominant clusters are

close together in comparison with physical-only features. This

phenomenon is mathematically related to Kullback–Leibler

(KL) divergence. The lower the value of KL divergence, the

closer are the similar clusters and dissimilar clusters. Besides,

the Spearman’s Correlation Coefficient is also calculated for

physical and cyber-physical features. Positive value for this

coefficient indicates that the distance of samples in the cluster

will increase with sample size and negative value will indicate

the opposite effect. Thus, similar clusters are closer together

and so are the dissimilar clusters which effectively increases

the separation between them in Fig. 3c. This phenomenon is

further supported by 10-KNN accuracy where higher value

is observed in Fig 3c [10]. Two color profiles are used

to represent the operational state of the system. The orange

color represents stable operation and the blue color represents

unstable operation. The visualization accurately separates the

stable and unstable clusters. On close observation, further

inference can be made here. For unstable operation, we can

find a distinct set of clusters and the color map coincides

with these clusters, but for stable operation the color map is

concentrated to the random noise. This can act as a first line

of defense in detection, because for unstable operation distinct

clusters can be observed. The separation between these clusters

may be increased further by increasing the value of Perp,

but for this study, a value of 30 for Perp is high enough to

distinctly separate the clusters.

For the second use case, a mitigation strategy is applied

to the environment. The mitigation strategy is load-shedding.

The visualization is shown in Fig. 4. As in the first use case,

two color profiles are used, where orange represents a stable

system and blue represents an unstable system. In this case,

also the cyber-only features, physical-only features, and a

combination of cyber-physical features are considered. Fig. 4a

which considers the cyber-only features represents a single

distinct cluster. Fig. 4b and Fig. 4c represent the stable system

after the mitigation without any distinct cluster. It happens

because after the mitigation strategy, the whole system behaves

like a single system; this is distinctly unique from the initial

unstable system which is shown in Fig 3.

The results produce some unique findings: (1) Combination

of cyber and physical features produce better separation be-

tween the clusters in t-SNE. (2) t-SNE can be used to represent

an unstable cyber-physical system.

V. CONCLUSION

The high dimensional feature space of the WSCC 9-bus

sytem is modeled with t-SNE. 102 cyber-physical features are

embedded in a two-dimensional plot to represent the unstable

system under DOS attack. Results are further extended to rep-

resent a stable system after mitigation strategies. Although the

WSCC 9-bus system is small, the features used in this study

represent a cyber-physical system with a dataset substantial

for multimodal learning. The learning outcome of this study

could be used for studying large cyber-physical systems.
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