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Abstract—The power grid has historically been considered
independently from the communication networks, however the
physical system and the cyber system are becoming more in-
tertwined as grid modernization initiatives push toward modern
digital components. It is no longer sufficient to model the physical
power system in isolation; the full cyber-physical system must
be modeled for a complete system picture. Issues which were
once purely cyber issues can now directly affect the physical
system. This work investigates techniques for fusing cyber and
physical data to analyze a scenario which includes a physical
disturbance and a Denial-of-Service cyber attack which impedes
control commands during the physical disturbance. Principal
Component Analysis with Singular Value Decomposition, t-
distributed stochastic neighbor embedding, and autoencoders are
explored and compared for extracting features from cyber-only,
physical-only, and cyber-physical data, qualitatively comparing
the methods to provide cyber-physical situational awareness for
the power system.

Index Terms—feature extraction, data fusion, cyber-physical

I. INTRODUCTION

As the electric grid modernizes and adapts to the integration

of grid-edge distributed energy resource (DER) systems, data

fusion across the different systems becomes increasingly im-

portant. Data fusion can be defined as the process to combine

disparate data or information for understanding/estimating the

state of specific quantity or system state. Thus, to understand

power system states across an interconnected electric grid with

DERs, it is essential to collect power system measurements

across the systems and develop techniques to fuse them for

understanding the power system states. State estimation (SE) is

an established, highly valuable tool in electric grid operation,

[1]. Nonetheless, it is no longer sufficient to only collect

and process power system data, the physical system data, to

assess the state of the electric grid. With the addition of smart
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technologies, new communication types and interfaces, and

automated control functions, the grid has become a cyber-

physical system in which both cyber and physical data are

relevant to monitor [2], [3]. In this context, the cyber system

data can be defined as network communications, host data, etc.

A cyber-physical system (CPS) can be defined as a system that

integrates computation, networking and physical processes that

results in systems that are autonomous, intelligent, connected

and collaborative [4]. To estimate CPS states, identification

of relevant CPS states, CPS data types, and CPS data fu-

sion techniques is needed. In this paper, we will focus on

exploring the types of feature extraction techniques that can be

applied; specifically, we explore principal component analysis

(PCA) with singular value decomposition (SVD), t-distributed

stochastic neighbor embedding (t-SNE), and autoencoders for

for feature extraction. Using cyber-only, physical-only, and the

combination of cyber-physical data the methods are assessed

for their suitability to integrate the data types with temporal

and structural differences.

II. BACKGROUND ON CYBER-PHYSICAL SYSTEMS AND

NEED FOR FUSION/CPSA

With the increasingly cyber-physical grid and rising pene-

tration of DERs, cyber-physical situational awareness (CPSA)

is needed for holistic observability into the interconnected,

decentralized system. CPSA provides support to different

power systems stakeholders by increasing awareness of the

cyber-physical state, where state is a holistic view of whether

the cyber system is compromised and if the physical system is

operating in an operationally reliable state. Processes such as

IEEE 1547 DER grid-support functions and communication-

assisted protection schemes increase reliance on communica-

tions [5]. The highly interconnected nature of the grid with

growing, distributed grid-edge presence requires greater visi-

bility into the cyber and physical system states. It is no longer

sufficient for the grid to only monitor the physical power

system – the cyber-physical system must be monitored and

understood to efficiently operate the evolving, cyber-physical

grid as well as respond to disturbances quickly and adaptively.
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Achieving CPSA in the grid is a challenging goal, especially

due to the multilevel nature of the grid (e.g., establishing

trust between utility, aggregator, customer levels), the lack of

existent cyber-physical sensors to gather necessary concurrent

data, and techniques to fuse cyber-physical data for full system

CPSA. However, as more DERs and smart technologies are

connected to the traditional transmission and distribution grid,

it is paramount that grid operators have cyber-physical visibil-

ity into the connected system as a whole. The 2003 blackout

in the northeastern U.S. demonstrated the critical need for

situational awareness across utility systems; furthermore, as

cyber attacks increase in frequency and sophistication, this

situational awareness can no longer be limited to the physical

system dynamics [6][7].

Current methods focus on single-level physical situational

awareness in transmission systems. These include collecting

physical system measurements (e.g., voltage, current, fre-

quency) from PMUs and/or the supervisory control and data

acquisition (SCADA) system and applying traditional state

estimation techniques. Sensor data-fusion has mainly been

explored for fault diagnosis, focusing on fusing physical data

from disparate locations/levels. Cyber sensors are mainly used

to monitor IT/enterprise networks at the utility-level such as

network traffic sensors and layered monitoring frameworks

with government and commercial off-the-shelf tools. Con-

sequently, although cyber and physical data monitoring are

existent in the grid, there is a significant gap for correlating

the data, applying cyber-physical data-fusion techniques, and

using it to obtain CPSA. In [5], the authors explore the

capabilities of multi-source and multi-domain data fusion for

leveraging cyber-physical data for cyber attack detection in

power systems. This work focused specifically on detection

of abnormalities rather than general CPSA insights that can

inform planning and operation decisions in addition to re-

sponse. However, we will leverage this prior work to inform

approaches of fused cyber-physical data sets [6]. This paper

will focus on the objective of developing novel sensor data-

fusion techniques specific to CPSA insights.

III. CASE STUDY DATASET

The dataset used in this work is an emulated version of the

Western System Coordinating Council (WSCC) 9-bus model.

The simulated scenario begins with a generator and line outage

physical event, followed by a Denial-of-Service (DoS) attack

which impedes the load-shedding signal issued by the control

center. This results in an unstable system, as defined by

frequency instability.

The emulation is composed of a real-time digital simulator

(RTDS) that enables streaming C37.118 data from PMUs in

the RTDS WSCC 9-bus model and SCEPTRETM , a Sandia

industrial control system (ICS) emulation tool that enables

modeling of ICS cyber/control networks and implementation

of actual communication protocols such as Modbus and DNP3.

The details of this emulation, scenarios, and implementation

method are described in more detail in [7]. The physical

disturbance data sets are collected from 8 different PMUs

in the WSCC 9-bus model and the cyber disturbance data

sets, roundtrip times (RTTs), are collected from 3 different

relays in each of the three substations. The DoS attack targets

the substation located at bus number 6. As a result of the

DoS impact, the load shedding command is unable to be

executed. The physical data recorded includes frequency, per-

phase voltage, and per-phase current. The time resolution on

the cyber data is once per second and the resolution on the

PMU data is once per 33 milliseconds. For the purposes of

this work, the cyber data was upsampled to the resolution of

the PMU data.

IV. DATA FUSION AND FEATURE EXTRACTION

TECHNIQUES OF INTEREST

The following sections explore four techniques of interest

- PCA with SVD, t-SNE, and autoencoders. Each has advan-

tages and disadvantages which are described in detail below.

The selection of these techniques stems from their ability to

perform dimensionality reduction and feature extraction high-

dimensional and complex data. Each method has different

characteristics, i.e., a) Autoencoders: they are neural network-

based models that learn complex, non-linear representations

of data that can be valuable when dealing with the complex

patterns of the high-dimensional cyber-physical data. b) PCA

and SVD: They are linear dimensionality reduction techniques

that focus on capturing the highest variance in data. While

they may not capture non-linear relationships as effectively

as Autoencoders, PCA and SVD are simple and benchmarks

technique to include in the analysis, and c) t-SNE: It preserves

local similarities and it is well-suited for visualization tasks.

One key question for data fusion is the order in which fusion

and extraction steps take place. Fig. 1 illustrates two different

data pipelines considering this question. In the top panel, the

raw physical data and the raw cyber data are fused prior to

the feature extraction step. In our case this is simply done

with concatenation, i.e., one column per feature. In the bottom

panel, features are extracted from the raw physical data and

the raw cyber data independently and then the features are

fused and used collectively. The core issue for this question

is whether there are dependencies between the physical data

and cyber data which can only be extracted by considering the

raw data simultaneously.

Fig. 1. Two different data pipelines for fusing physical data with cyber data

• Principal Component Analysis (PCA) is considered be-

cause it provides the best approximation of a linear model

between a set of variables that may or may not be

dependent on each other; PCA can be used to perform
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dimensionality reduction and project the original data in a

much smaller space while preserving important attributes

of the data [8]. Singular Value Decomposition (SVD) is

often used to do the eigen decomposition of the input

matrices for a PCA analysis. For more details on SVD

see, [9]

• The t-SNE algorithm is used to project a high dimen-

sional data set into two-dimensional feature space, [10].

t-SNE preserves the ranking of small distance among

the Gaussian distribution closer to zero distance and

calculates the Kullback-Leibler (KL) divergence between

the distribution of high dimensionality with that of low

dimensionality. A perplexity parameter is used to calcu-

late the similarity of each cluster (width of the kernel)

which in turn affects the similarity scores of each point

with all the other points. A t-distribution is used so that

the points do not get cluttered in the middle.

• Long Short-Term Memory Autoencoder (LSTM AE)

Data. The Autoencoder (AE) technique [11] is one of

the most fundamental Manifold Learning techniques and

it falls under the Unsupervised Learning (UL) category.

The AE are Artificial Neural Networks (ANN) whose

structure is symmetrical consisting of an encoder and

a decoder, and this specific architecture allows them to

learn an internal representation of the input data during

the training process. This phase consists of reproducing

the input in the output of the ANN through a series of

hidden layers. As soon as the task of decreasing the input

space dimensionality is completed, the internal coding

must be of smaller dimensionality than the original data.

The structure of the AE allows a coded representation

of the input information to be obtained in the middle

layer without the need for labeling or prior processing.

However, in the case of the cyber-physical data, the order

of daa points is important, and standard AE do not take

into account temporal dependencies between data points.

For this reason, Long Short-Term Memory (LSTM) AE,

which can capture temporal patterns in the data, are

utilized. The encoder and decoder components of the

AE are built using LSTM instead of simple linear neural

network layers. LSTM units are designed to memorize

past units and utilize this memory to make predictions

about future inputs [12].

V. RESULTS AND ANALYSIS

This section details the results from each of the dimen-

sionality reduction techniques described above. The results are

categorized by normal versus abnormal operating conditions.

That is strictly defined by the frequency in the system where

frequencies greater than or equal to 61Hz or less than or equal

to 59Hz are considered abnormal; this is based on operating

standards from [13]. This definition, while simplistic, does

provide valuable insight into the performance of the dimen-

sionality reduction techniques and can be detailed further in

the future. Voltage and other measures of system health are

necessary for a complete picture and will be considered in

future work, as well as taking into account the transitional

period from normal to abnormal conditions which is not

considered here. Future work will compare these techniques

quantatively using a downstream classification task, however,

we can compare these techniques implicitly through their inter-

nal metrics. In particular, for the autoencoders we can measure

the reconstruction error (lower reconstruction error means

better data patterns performance), for PCA the cumulative

explained variance (higher variance means higher preservation

of the data information) and for t-SNE there is not a direct

reconstruction error but we can compute the KL divergence

(higher KL divergence means better separation). Additionally,

the visualizations of all the dimensionality techniques’ results

are provided to visually inspect how well they capture the

data’s underlying structure. Further testing using downstream

classification of events, clustering metrics, and robustness

testing is planned for future work.

A. PCA with SVD

The Matlab implementation was used for the PCA analy-

sis, and the sklearn implementation was used for the SVD

analysis. In both cases, normalization was performed on the

input data prior to applying the technique. Fig. 2 shows the

top two principal component vectors (blue) for each feature,

with cyber-only data in a), physical-only data in b), and the

combination of cyber-physical data in c). Individual samples

are plotted in red using their top two components. The tables

in each pane indicate the explainability of variance in that

component as a percent for each of the top four principal

components in each case. Circles indicate potential clusters

within the PCA results. From analysis using the physical-only

data we know that the first component in the physical-only

data and the cyber-physical data corresponds to frequency.

The scatterplot using the just the SVD method for calcu-

lating the components is shown in Fig. 3. The results for

cyber-only data are shown in a), physical-only data in b)

and cyber-physical data in c). Red points indicate abnormal

operating conditions, defined by system frequency, blue points

indicate normal operating conditions, and green points indicate

the DoS attack. For plotting purposes three SVD components

are shown. In subfigure a) we see several tight groupings of

datapoints. As the cyber data is not directly related to the

frequency disturbance it is not surprising that the red points

overlap with some of the blue points, and there is some

separation for the DoS attack points (green). Subfigures b)

and c) are nearly identical to each other which implies that the

physical features are dominating the dimensionality reduction.

This confirms the feature component explainability results

discussed above. One reason for this may be the fact that there

are significantly more physical features compared to cyber

features, and intuitively we would expect the frequency to be

the most important feature in this event. Another possibility

for the similarity between the cyber-physical and physical only

results in Fig. 3 is the issue of the differing time resolution

between the cyber data and the physical data. These will

be addressed in future work. In subplot b) and c), while
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Fig. 2. PCA components for a) cyber-only, b) physical-only, and c) cyber-physical

Fig. 3. SVD top 3 components for a) cyber-only, b) physical frequency only, and c) cyber-physical. Abnormal power-system operating points (as defined by
frequency) shown in red and normal operating points shown in blue.

Fig. 4. t-SNE results for a) cyber-only, b) physical frequency only, and c) cyber-physical

not completely separated, we do see three distinct groupings

corresponding to abnormal, normal, and DoS conditions which

indicate that this method may be well-suited for use in this

type of cyber-physical analysis.

B. t-SNE

The results for the t-SNE method are shown in Fig. 4.

The cyber-only data is shown in a), the physical-only data in

b) and the combination cyber-physical data in c). Abnormal

datapoints (defined by frequency) are shown in orange and

normal operating points are shown in blue. There are no

distinguishing clusters in the cyber-only case, a). Again we

see good clustering for physical-only and cyber-physical cases,

where the results are nearly identical between the two cases.

C. Autoencoder

The results from the autoencoder testing are shown in Fig.

5. For cyber-only data, a), physical-only data, b), and the

combination of cyber-physical data, c), the MSE reconstruc-

tion error for the autoencoder is shown. The normal operat-

ing conditions are shown in the top row and the abnormal

operating conditions are shown in the bottom row, with the

loss shown at the top of each panel. Notice that in each case

the reconstruction loss for the abnormal points is significantly

higher than for the normal conditions, an order of magnitude

for cyber-only and cyber-physical data and two orders of

magnitude for the physical-only case. One interesting finding

is that for the AE method, there are some key differences in

the physical-only versus cyber-physical results, unlike in the

SVD case where there is no discernible difference between

subplots b) and c) in Fig. 3. Here in Fig. 5 we see an increase

in the loss for the normal operating condition (top row) of in

the cyber-physical case, subplot c) compared to the physical-

only case, subplot b), by a full two orders of magnitude. In this

case, the cyber-physical data contains additional features and

interactions that are not present in the physical-only data. In

other words, the feature space of the cyber-physical data has

more dimensions compared to the physical-only dataset, which

makes it more difficult for the auto encoder. Additionally, for
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Fig. 5. Autoencoder reconstruction errors for a) cyber-only, b) physical frequency only, and c) cyber-physical. Top row shows normal operating condition (as
defined by frequency) and the bottom row shows results for abnormal operating condition points. MSE loss is shown at the top of each pane

the abnormal operating case (bottom) row there is actually

a small decrease, although same order of magnitude, in the

loss for the cyber-physical case, subplot c) compared to the

physical-only case, subplot b). This increase is likely due to

the additional contextual information provided by including

the cyber data (such as high RTTs during the DoS attack).

Autoencoders are well placed to provide preliminary results

on the classification task as well. For the case shown in Fig. 5,

the autoencoder achieved 100% accuracy in distinguishing

normal from abnormal operating conditions using cyber-only

data, physical-only data, and the combination cyber-physical

data. For these classification results abnormal conditions were

defined using both the DoS event and the physical frequency

disturbance. This indicates that autoencoders are extremely

promising for use in this data fusion data.

VI. CONCLUSIONS AND NEXT STEPS

This work compares PCA, SVD, t-SNE, and autoencoders

for the task of feature extraction on cyber and physical data

for power systems applications. As the cyber and physical

components of the power system become more and more

intertwined, ensuring that both are considered is a critical

priority. Each of the techniques was demonstrated to be a

feasible choice for the data fusion and feature extraction task

in cyber-physical systems. PCA with SVD demonstrated good

clustering for normal versus abnormal conditions, as did the t-

SNE technique. The autoencoder approach provides insight via

the reconstruction errors and demonstrated excellent prelimi-

nary classification results. One differentiating factor between

techniques is the higher runtime complexity of the autoencoder

approach compared to PCA with SVD and t-SNE. However,

the ability of autoencoders to capture non-linearity in the

data may provide an advantage in feature extraction. Future

work includes detailed investigation of the event classification

process, a more fine-grained definition of abnormal conditions

and the transition to abnormal conditions, further analysis of

the impact of the differing time resolution between the cyber

and physical data streams, and exploration of determining

the precise timing of an event. Fusion of cyber data with

physical measured data will continue to be a key component

for CPSA in the modern power grid. A clear understanding of

the challenges and opportunities of leveraging the cyber and

physical data simultaneously will be critical.
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