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Abstract—Solar cells hold great potential for the future of
energy production. Dye Sensitized Solar Cells (DSSCs) emerge as
a promising contender among third-generation solar cells, due to
their cost-effectiveness and flexibility. Ongoing experiments aim
to further enhance their performance by exploring alternative
materials, with a specific emphasis on refining the photoanode for
increased efficiency. Within the photoanode, the semi-conducting
oxides demonstrate excellent conductivity and porosity. However,
despite their promise, testing various material variations in
DSSCs is challenging due to time and resource constraints. This
research builds on past studies by introducing machine learn-
ing to predict efficiencies for alternative DSSC configurations,
specifically emphasizing the semiconducting oxide. This machine
learning algorithm aims to be a cost-effective approach to identify
low-cost, high-performance configurations for DSSCs and predict
the system’s performance across various parameters, including
Power Conversion Efficiency (PCE) and Fill Factor (FF). Using
machine learning, this study aims to simplify the evaluation
process and speed up the identification of optimal materials
and their weight percentages for the semi-conducting oxide,
contributing to the advancement of sustainable and efficient
DSSC technologies.

Index Terms—Dye-Sensitized Solar Cells, Materials Optimiza-
tion, Machine Learning, Performance Prediction

I. INTRODUCTION

Solar energy is one of the most sustainable and abundant re-
sources available, capable of meeting global energy demands.
While silicon-based solar cells have achieved efficiencies of
15-21% with a lifespan of over 25 years [1], their bulki-
ness and manufacturing challenges have led to high costs
and significant waste [2]. Second-generation thin-film solar
cells, though more durable, suffer from lower efficiencies and
scaling difficulties [1]. Third-generation solar cells, including
quantum dots, perovskites, and DSSCs, are being explored for
their non-toxic and organic properties, although they currently
exhibit relatively low PCE [3].

DSSCs (Fig. 1) utilize non-toxic, sustainable materials for
electricity production via photoelectrochemical processes [3].
This study emphasizes the role of semiconductor oxide mate-
rials in the photoanode, a critical component for light absorp-
tion and electron generation. While titanium dioxide (TiO2)
remains the top-performing material, alternative materials such
as Au-TiO2, ZnO, Ag2O-ZnO, and others are also investigated
[4, 5].

Fig. 1. Dye-Sensitized Solar Cell Schematic (Image reproduced under open
access license) [6]

The ultimate goal of this research is to enhance the per-
formance of DSSCs by optimizing the photoanode material
composition, focusing on improving PCE by utilizing machine
learning (ML) models. The expected outcomes include accu-
rate predictions of PCE and bandgap for various semiconduc-
tor oxide materials in DSSC photoanodes. This study utilizes
ML models trained with open-source material data to predict
the performance of DSSCs, offering a cost-effective and effi-
cient computational alternative to experimental methods.

A. DSSC Fabrication Process and Components in ML Model

DSSCs aim to utilize non-toxic, sustainable materials for
cost-effective electricity production, leveraging photoelectro-
chemical principles to convert solar energy into electricity
[3]. Their conductivity and porosity make them ideal for
electrochemical energy production and storage [7].

1) DSSC Components: Key components of DSSCs include:

• Transparent Conductive Oxide (TCO) Substrate: Typ-
ically made of fluorine-doped tin oxide (FTO) or indium
tin oxide (ITO) glass, allowing light into the cell while
protecting it from the weather.

• Photoanode: Comprising of a porous semiconducting
oxide (SCO) like titanium dioxide (TiO2) and dye, it
determines how much charge transport occurs.
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Fig. 2. Fabrication Process of a DSSC

• Counter Electrode: Conductive glass coated with a
catalyst, often platinum (Pt), completing the electrical
circuit.

• Electrolyte: Typically containing a redox couple such as
iodide/triiodide ions (3I−/I−3 ), enabling electron transfer
between the photoanode and counter electrode to keep the
cell stable.

The photoanode is crucial for light absorption and electron
generation. While TiO2 is the current top-performing material
due to its stability and electron mobility, other materials such
as Au − TiO2, ZnO, Ag2O − ZnO, Nb2O5, SnO2, WO3,
and Fe2O3 are being explored [4, 5].

2) DSSC Fabrication Process: The fabrication process fol-
lows below [8], as shown in Fig. 2:

1) Prepare conductive glass plates and coat them with a
TiO2 suspension.

2) Apply a thin layer of TiO2, spread it evenly over the
glass plate, dry on a hot plate, and anneal in an oven at
150°C for 2 hours.

3) Soak the photoanode in dye in a dark room for 20
minutes to 24 hours.

4) Coat the counter electrode with platinum and anneal in
an oven at 150°C for 2 hours.

5) Apply the tri-iodide electrolyte to the counter electrode,
followed by placing the soaked TiO2 layer to complete
the DSSC.

In this project, the ML model assumes a fabrication process
similar to the above, with variations in the photoanode semi-
conductor oxide composition. Specifically, the composition of
the photoanode semiconductor oxide varies, with a suggested
ratio of 50% TiO2 and 50% of the desired material selected
by the user.

B. Feature Selection for ML Model PCE & I-V Curve Predic-
tion

While ML models have previously predicted PCE and
DSSC performance [9], this project aims to predict perfor-
mance for DSSCs not created in a lab, using open-sourced

Fig. 3. Simple Flowchart of ML Model

material property data. The models will predict performance
efficiencies of DSSCs with various semi-conducting oxide
materials & compositions in the photoanode, enhancing solar
energy conversion and storage [10–14].

Six features significantly impact DSSC performance: Ab-
sorbance & Transmittance, Bandgap, Electrical Conductivity
& Impedance, and Recombination Rate [14].

• Absorbance & Transmittance: These quantify light
absorbed by the SCO, essential for energy conversion
efficiency in DSSCs. Higher absorbance increases photon
capture, leading to more electron-hole pairs and improved
photocurrent and PCE. Optimizing these factors is vital
for maximizing DSSC performance and understanding
light energy availability for current generation.

• Bandgap: Determines the energy needed for electron
promotion between the conduction and valence bands,
affecting device stability. A narrower bandgap allows
lower-energy photons to create more electron-hole pairs,
while a wider bandgap requires higher-energy pho-
tons, reducing light absorption efficiency. Extremely low
bandgaps can lead to instability, while high bandgaps
limit electron transitions.

• Electrical Conductivity & Impedance: These evaluate
current flow within the SCO, impacting overall per-
formance. High conductivity in materials like titanium
dioxide (TiO2) facilitates efficient electron transport,
while impedance hinders charge movement, arising from
material resistance and interfaces. High impedance re-
duces solar cell efficiency, making optimization crucial
for DSSC stability.

• Recombination Rate: Optimal levels are essential to
prevent the rapid degradation of solar cells. In DSSCs,
recombination occurs when photo-generated electrons
and holes combine before generating electrical output,
reducing efficiency. Minimizing recombination is crucial
for enhancing charge carrier separation and collection.
Understanding and controlling the recombination rate in
semiconductor materials is vital for optimizing DSSC
performance. Strategies to reduce recombination include
optimizing material morphology, removing surface de-
fects, and precise doping. The user must input hole and
electron mobility to calculate the recombination rate in
this ML model.

II. METHODOLOGY

This investigation employed both experimental and compu-
tational methods to achieve a comprehensive understanding of
the topic. The flow chart (Figure 4) outlines the various aspects
investigated and what was aimed to be completed.
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Fig. 4. High-Level Diagram of ML Model

A. Datasets

The data collection process involves two methods, as il-
lustrated in Figure 5. The MaterialsProject.org API [15] was
utilized to obtain the dielectric constant and bandgap of all
compounds and elements accessible on the Materials Project
platform. However, while Materials Project offers approxi-
mately 5,000 dielectric constants for various compounds and
elements and 17,000 bandgaps for different compounds and
elements, it lacks single-element predictions, especially for
elements doped with TiO2. Thus, an ML model is employed
to predict these values for any elements and compounds doped
with TiO2 as well as other metal oxides.

B. Machine Learning Models

This research employs four primary ML models to identify
the most accurate ones. These models are Linear Regression,
K-nearest neighbors (KNN), Partial Least Squares (PLS), and
Support Vector Machine (SVM). Within each model type, a
dual-model system is used: one model assesses the absorbance
coefficient, while the other evaluates the bandgap.

a) Linear Regression: Linear Regression models the
relationship between input features and the target variable by
determining the best-fitting line that minimizes the differences
between predicted and actual values [16]. In this study, it
is used under the assumption that the relationship between
predictors and the target in DSSC prediction is linear.

b) K-Nearest Neighbors: The K-Nearest Neighbors
(KNN) algorithm classifies or predicts target values based on
the characteristics of the nearest neighbors in the feature space
[17]. In this research, KNN predicts the target by averaging

Fig. 5. Materials Project Website (Not API)

or classifying based on the majority of k-nearest neighbors,
where the value of k is chosen to balance sensitivity to local
variations.

c) Partial Least Squares: Partial Least Squares (PLS) is
employed to address datasets with many correlated predictors
by combining elements of principal component analysis and
multiple regression [18]. This method identifies latent vari-
ables that capture maximum variance in both predictors and
the target variable, iteratively extracting components to make
predictions.

d) Support Vector Machine: Support Vector Machine
(SVM) is utilized to construct hyperplanes in high-dimensional
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space for classification or regression tasks, optimizing the
margin between classes or predicted values for enhanced
accuracy [19]. The model leverages support vectors and kernel
functions to manage non-linear decision boundaries in the data
efficiently.
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1) Math Modeling: To find the I-V Curve of each DSSC
configuration with the X-Doped metal oxide as the semi-
conducting oxide in the photoanode, math modeling, and as-
sumptions were utilized [20], as seen in Equations 1–3. Table
I summarizes the assumptions in the ML model equations.
Values labeled as ”ML Model” are predicted by the model
itself. The result is an I-V curve that plots from 0 to 0.85 volts.
Typically, the Voc of the circuit is from 0.7 to 0.8, so the graph
plots to 0.85. The only portion of the equation that changes
when generating the I-V curve is the absorption coefficient
and length or area of the cell depending on user input.

TABLE I
PARAMETERS AND FEATURES

Parameters/Features Value Information
k 1.381× 10−23 J/K Boltzmann Constant
Q 1.602× 10−19 C Electron Charge
L 2.2361× 10−3 cm Length of electron diffusion
d User Input Length of T iO2 (SCO)
α ML Model Absorption Coefficient
m 4.5 Ideal Factor
D 2.3× 10−5 cm2/s Diffusion Coefficient
n0 1016 e-/cm2 Electron Concentration
t 0.01 seconds Lifetime
ϕ 1× 1017 cm-2/s-1 Sunlight Intensity
T 300 K Temperature
FF 0.65 Fill Factor
ϵ MP api Dielectric Constant
λ 600 nm Wavelength of Light
Λ – I-V Curve Multiplier

III. RESULTS

A. Feature Results

1) Absorbance and Transmittance: In this ML model, key
assumptions were derived from literature [20]. A dataset from
the Materials Project API, comprising approximately 7,300
compounds, was used to determine the absorbance coefficient.
Equation 4 converts the dielectric constant to absorbance:

α =
2
√
2π

λ
ϵ (4)

Dielectric constants were found on the Materials Project
API. With the absorbance coefficient established, Equations
1–3 were applied to calculate short circuit current density and
open circuit voltage, both critical for assessing PCE.

Fig. 6. Bandgap Prediction Results

2) Bandgap: The bandgap is essential for electron tran-
sitions between the valence and conduction bands in semi-
conductor materials. Based on the data in Figure 6, the ML
model’s predicted bandgap values differ from literature values.
For instance, the predicted bandgap for TiO2 (Rutile) is higher
than the actual value, while FeO and Fe2O3 show significantly
lower predictions. Conversely, the model performs well for
CuO and V2O3, where predictions are closer to literature
values. These results indicate areas for potential refinement
in the model’s predictive capabilities while demonstrating its
ability to detect factors influencing bandgap fluctuations.

3) Electrical Conductivity and Impedance: Conductivity
and impedance are critical for the performance of DSSCs,
as they influence charge carrier flow [14]. The equations 5-
6 were used to determine impedance and conductivity, with
the Length (L) and Width (W) of the SCO set to a default of
1 cm.

ρ =
R ·A
L

=
Voc · (L ·W )

Isc · L
(5)

σ =
1

ρ
(6)

4) Recombination Rate: The recombination rate is based on
the relationship between hole (p) and electron (n) mobilities
and a constant, B [21]. After analyzing further literature [22],
it was found that the B constant is the Stefan-Boltzmann
Constant (k) and emissivity. Additionally, if the solar cell is
at thermal equilibrium, its emissivity equals the absorption
coefficient, which is accounted for in the ML model. Thus,
the recombination rate in the ML model is calculated by
multiplying the Boltzmann constant, absorption coefficient,
electron mobility, and hole mobility, as seen in Equation 7.

R = Bnp = (kϵ)np = (kα)np (7)

B. Front End Results

As seen in Figures 7 and 8, various values are calculated
and put on display in the front end. All Front-End results are
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Fig. 7. ML Model User Input

Fig. 8. Front End Output Results

locally hosted through Streamlit and are available on Github1.
The user can input a variety of values seen in Figure 7, notably

1https://github.com/deepachowdhury4/dssc machine learning.git

able to adjust the percent of the dopant in the SCO metal oxide.

Fig. 9. PCE Prediction Results

The PCE was calculated based on Equation 3, which is
derived from the ideal diode equation [23]. In this ML model,
a multiplier (Λ) ranging from 3.2 to 6.4, which is the same
for the absorption coefficient and bandgap, is necessary to
obtain a value within a reasonable PCE range. This multiplier
is derived from an intrinsic material property that requires
further investigation. In the future, exploring this property
could enhance the model’s predictive accuracy and overall
performance. The FF is determined through Equations 8 and
9. Voc is the x-intercept of the I-V curve, and Jsc is the y-
intercept. Pmax is calculated as Jmax · Vmax, which is found by
identifying the maximum area under the curve up to Voc.

FF =
PMAX

Jsc · Voc
(8)

PMAX = JMP · VMP (9)

IV. CONCLUSIONS AND FUTURE WORKS

This paper explores the potential of Dye-Sensitized Solar
Cells as a sustainable energy solution by investigating various
semiconducting oxide materials and utilizing machine learn-
ing (ML) to enhance material selection and predict perfor-
mance cost-effectively. The model demonstrated varying per-
formance, with bandgap prediction significantly outperforming
PCE prediction due to a greater volume of available data. This
highlights the critical role of data availability in influencing
model accuracy. Insights gained from this research could drive
advancements not only in DSSC technology but also in other
solar technologies, such as perovskites, underscoring the need
for efficient and sustainable energy solutions to combat climate
change.

The developed ML model offers a user-friendly interface
for predicting DSSC performance, integrating several models
with KNN as the top performer. It provides predictions for
Absorption Coefficient, PCE, and Bandgap. This research
highlights the potential of ML models in advancing solar
energy technologies by addressing the need for improved
accuracy and reduced computational demands, focusing on key
areas for improvement such as data availability, expanding ML
model range, and increasing user input combinations.
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“Pathways for solar photovoltaics,” Energy Environmental Science,
vol. 8, no. 4, pp. 1200–1219, 2015. [Online]. Available: http:
//dx.doi.org/10.1039/C4EE04073B

[2] T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto,
A. Reale, and A. Di Carlo, “Progress in flexible dye solar cell
materials, processes and devices,” Journal of Materials Chemistry
A, vol. 2, no. 28, pp. 10 788–10 817, 2014. [Online]. Available:
http://dx.doi.org/10.1039/C4TA00902A

[3] G. Nandan Arka, S. Bhushan Prasad, and S. Singh, “Comprehensive
study on dye sensitized solar cell in subsystem level to excel
performance potential: A review,” Solar Energy, vol. 226, pp. 192–213,
2021. [Online]. Available: https://www.sciencedirect.com/science/articl
e/pii/S0038092X21006927

[4] S. K. Balasingam, M. Lee, M. G. Kang, and Y. Jun, “Improvement of
dye-sensitized solar cells toward the broader light harvesting of the solar
spectrum,” Chemical Communications, vol. 49, no. 15, pp. 1471–1487,
2013. [Online]. Available: http://dx.doi.org/10.1039/C2CC37616D
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