Item C6 Staff Report Item 22 **TO:** East Bay Community Energy Board of Directors **FROM:** Marie Fontenot, Sr. Director Power Resources SUBJECT: EBCE 2020 Integrated Resource Plan Compliance Filing (Action Item) **DATE:** July 15, 2020 #### Recommendation A. Approve and use the analysis and findings resulting from the 2020 Integrated Resource Planning (IRP) study process; B. Complete California Public Utilities Commission (CPUC) required IRP documents; and C. Authorize the CEO to approve the final IRP reports and file two compliance portfolios by September 1, 2020. #### **Background and Discussion** The IRP proceeding includes two primary components: the biennial study workstream and the mandated procurement workstream. This memo refers only to the biennial study workstream. The IRP is a long-term planning proceeding intending to evaluate all of the CPUC's electric procurement policies and programs and the reliability and cost-effectiveness of the CPUC-jurisdictional entities¹' electric supply with the goal of reducing the cost of achieving GHG reductions and other CPUC policy goals. The IRP proceeding looks 10 years forward to determine the least-cost resource mix required to meet these goals while maintaining system reliability. The IRP also evaluates the contribution of individual entities' resource portfolios to the State's greenhouse gas (GHG) emissions. This IRP cycle, the CPUC is requiring each entity to submit distinct portfolios that achieve their proportional share of two alternative statewide electric sector GHG targets. EBCE will report analysis results and proposed resource portfolios that address the question "what are the desired portfolios of resources based on a statewide ¹ In context of IRP requirements, includes Investor Owned Utilities (IOUs), Energy Service Providers (ESPs), and Community Choice Aggregators (CCAs). electric sector goal of achieving (1) 46 million metric tons (MMT) of GHG emissions by 2030; and (2) a maximum of 38 MMT of GHG emissions by 2030." The inputs and assumptions used in the 46 MMT and 38 MMT scenario must be consistent with CPUC-assumptions; the required assumptions are discussed below. Entities are also permitted to submit an alternative portfolio that uses different assumptions, provided those assumptions are identified and justification for the discrepancies are described. EBCE is electing not to file an alternative portfolio and will instead focus its efforts on analysis to develop a portfolio of resources that would contribute to more aggressive GHG emissions reduction and organizational goal-setting related to achieving those reductions. This supplemental analysis and Staff recommendations for emissions reductions will be presented to the Board at a later date. All CPUC-jurisdictional entities are required to file and serve their individual IRPs with the CPUC by September 1, 2020. The initial deadline for IRP submission was May 1, 2020, which was subsequently delayed first until July 1, 2020 and ultimately September 1, 2020 for several reasons, including the timing of the CEC's IEPR load forecast adoption, multiple delays in the CPUC's development of the IRP templates and filing requirements, and the late-added additional requirement to show a 38MMT portfolio. The filings must include three documents provided by the CPUC: the Narrative Template, the Resource Data Template, and the Clean System Power (CSP) Calculator. Staff is seeking Board approval of the analysis and quantitative findings that will populate these required materials. Each document and the associated data that will populate the document is described below. #### Discussion Compliance with the CPUC's IRP filing requires completion and submittal of three documents by September 1, 2020: the IRP Narrative Template, the Resource Data Template, and the Clean System Power Calculator. Each document is described below, followed by a discussion of the CPUC's modeling inputs and assumptions, an overview of EBCE's approach to IRP analysis and a discussion of the results of EBCE's analysis. Finally, Staff describes the next steps, including portfolio planning work beyond what is required for IRP compliance purposes. #### Narrative Template This document will provide written description of the approach EBCE took in performing its IRP including a description of the analytical work and EBCE's plan of action as a result. #### Resource Data Template This document is an excel workbook in which EBCE must report its existing energy and capacity contracts and identify the volumes of planned energy and capacity contracts that are indicated from the analysis as necessary to contribute to the 46 MMT and 38 MMT portfolios. The portfolios of resources must be described in terms of total annual contracted volumes and expected monthly volumes. The CPUC uses this document to analyze and aggregate individual entities' IRP portfolios #### Clean System Power Calculator ² CPUC Decisions 18-02-018, 19-11-016, and 20-03-028 define these filing requirements. ³ The Narrative Template, Resource Data Template and CSP Calculators for 46MMT and 38MMT portfolios were finalized by the CPUC and made available on June 15, 2020. Staff is currently in the process of populating the templates. The document also takes the form of an excel workbook. It is used to calculate the estimated GHG and air pollutant emissions associated with the 46 MMT and 38 MMT resource portfolios detailed in the Resource Data Template. This workbook calculates the CPUC-determined implied emissions values associated with each type of generating resource. The CPUC uses this document to check that each entity meets the required GHG targets. #### Required Assumptions In this IRP cycle, the CPUC is requiring its jurisdictional entities use certain standardized inputs and assumptions. The required assumptions include: - Load forecast: each load serving entity is required to use the CPUC-approved, California Energy Commission (CEC)-developed 2019 Integrated Energy Policy Report (IEPR) demand forecast update, as modified by CPUC Rulemaking 16-02-007. The 2019 IEPR forecast identified annual retail sales for entities out to 2030; then added and subtracted load to reflect the CEC's forecast for the expansion of Additional Achievable Energy Efficiency (AAEE), behind-the-meter solar PV generation, behind the-meter combined heart & power generation, other self-generation, time of use rate effects, electric vehicle expansion, and other transport electrification. EBCE secured a correction from the CPUC to the approved IEPR forecast, bringing EBCE's load forecast more closely in line with internal assumptions. - Baseline resources: represent generating resources that are currently online or are contracted to come online during the IRP's planning timeframe. This list includes generating resources inside and outside California, but within the Western Electricity Coordinating Council (WECC). - Candidate resources: represent resources that have not yet been built or contracted. The CPUC provides the types of future generating resources that may be included in entities portfolios. The eligible resources types are natural gas generation (of various turbine and engine technologies), renewables (biomass, geothermal, solar pv, onshore wind, offshore wind), energy storage and demand response. The CPUC identified certain geographic assumptions related to the placement of these potential resources; the resources could be in California or out of state with eligible regions tied to existence or planned expansion of transmission lines. The CPUC also includes their own cost assumptions for each type of generating resource. - Proforma Financial Model: used by the CPUC to create levelized fixed costs for each candidate resource type. These costs are then used as inputs to modeling to establish the least-cost portfolio. - Operating Assumptions: the CPUC inputs resource-specific operating costs. Components of the operational costs are aggregated costs for classes of generation resources, unit commitment costs, costs associated with dispatching resources for energy or ancillary services, and transmission costs based on zones (i.e. costs to move electricity over the transmission system in WECC). - Resource Adequacy Requirements: the CPUC assumptions require a 15% planning reserve margin, based on and consistent with the rules in place for System Resource Adequacy for CPUC-jurisdictional entities. • GHG Emissions and Renewable Portfolio Standard: the 46 MMT and 38 MMT scenarios represent two different 2030 statewide electric sector GHG constraints under which least-cost resource portfolios are developed. The CPUC evaluated other potential GHG scenarios (including a 30 MMT scenario) before finalizing their selections. The emissions accounting is consistent with the California Air Resource Board's regulation of the electric sector under California's cap and trade program. #### Reference System Plan As part of the IRP process, the CPUC develops a Reference System Plan (RSP) which represents the total mix of resources at the system-level that the CPUC modeling shows is the most cost-effective way to achieve the 46 MMT scenarios. The RSP becomes formally adopted by the CPUC; following that, it is sent to the CAISO for inclusion in the CAISO's annual Transmission Planning Process. The RSP includes four important elements. First, it identifies the 2030 statewide electric sector GHG planning target (in this case, 46 MMT). Second, it recommends a portfolio of resources that the CPUC believes represents the least-cost, least risk way to achieve the GHG target (these resources are identified based on the CPUC's required inputs and assumptions, described above). Third, a GHG planning price is reported that represents the marginal cost of GHG abatement associated with the RSP; this is intended to provide a consistent way to demonstrate the value of demand and supply resources. Fourth, near-term CPUC policy
actions are incorporated with the stated intention of ensuring results from the IRP modeling inform other CPUC proceedings. While the 46 MMT scenario was adopted as the RSP this cycle, the CPUC also developed a 38 MMT scenario and, in April of 2020, modified the filing requirements for entities to include both targets. #### EBCE's Approach to IRP Compliance Analysis EBCE staff developed recommended portfolios to meet the CPUC's 46 MMT (Scenario 1) and 38 MMT (Scenario 2) scenarios. Both of EBCE's recommended scenarios were developed based on the CPUC's system-level resource portfolios. Working with our consultant, Ascend Analytics, staff incorporated details of EBCE's existing contracts as the baseline for the portfolios. The next step was to identify EBCE's proportional share of the nameplate capacity of each resource type in the 46 MMT RSP and 38 MMT scenario. Adjustments were then made to represent EBCE organization and customer preferences, as well as staff's knowledge of the electric system and resource availability (e.g. the likelihood that resources currently under contract will become available for recontracting during the planning horizon). Some of these adjustments include: not selecting any energy to be produced directly by nuclear or natural gas generation facilities; assuming a lower volume of energy generated from/contracted with in-state hydro facilities due to the limited availability of these resources and the strong market appetite to contract with them; assuming a lower volume of energy generated from/contracted with out of state hydro resources due to strong appetite amongst California load serving entities, especially CCAs, to contract with these resources. The baseline list of existing contract resources incorporated into both Scenarios 1 and 2 is listed in Appendix 1, Table 1.1. The forecasted list of resources to build portfolios consistent with Scenarios 1 and 2 are described in Appendix 1, Tables 2 and 3, respectively. #### Results of Analyses & Recommended Compliance Portfolios Using the approach described herein, EBCE was able to achieve compliance with its share of the CPUC GHG emissions limits in both Scenarios 1 and 2. Specifically, by 2030 Scenario 1 will achieve a limit of 1.23 MMT of emissions and Scenario 2 will achieve a limit of 0.984 MMT. Both scenarios assume a 2030 load of 6,910 GWh.⁴ A summary of results follows; additional details and visual aids are included as Attachment 1, "Integrated Resource Plan Compliance Results" PowerPoint. #### Forecast Costs of Portfolios - Scenario 1 (46 MMT) Portfolio: estimated cost \$73.70/MWh to serve load. Average cost per year of \$507 million over the 2021 2030 planning horizon. Note these values are calculated using the CPUC's resource cost assumptions which in many cases are higher than current values or internal projections. - Scenario 2 (38 MMT) Portfolio: estimated cost \$75.00/MWh to serve load. Average cost per year of \$516 million over the 2021 2030 planning horizon. Note these values are calculated using the CPUC's resource cost assumptions which in many cases are higher than current values or internal projections. #### Resource Mix of Portfolios - Scenario 1 (46 MMT) Portfolio: Total contracted nameplate capacity of 2,277 MW by 2030. 1,220 MW resulting from new-build resources. 1,057 MW expected to be contracted from existing resources. - Scenario 2 (38 MMT) Portfolio: Total contracted nameplate capacity of 2,578 MW by 2030. 1,486 MW resulting from new-build resources. 1,092 MW expected to be contracted from existing resources.⁵ #### Risk Management associated with Portfolios - Overall: Both scenarios are trying to fill an energy need of approximately 6,900 GWh in 2030. Scenario 1 requires fewer resources under long-term contract to meet RPS and GHG emissions targets than are required in Scenario 2, the result is that a larger portion of Scenario 1 can be filled with Spot Market and/or Short-Term Contract transactions than can be utilized by Scenario 2. - EBCE staff intends to enter into Short Term Contracts in the form of fixed-price energy transactions to fill a portion of its un-hedged position to ensure EBCE is not overly relying on the CAISO system, providing negative contribution to system reliability and as a means of insurance, to protect its customers from volatility in Spot Market prices. Staff assessed the total position unhedged by long-term resources under Scenarios 1 and 2 and applied a 3:2 ratio (ratio of ⁴ For reference, EBCE's forecast 2020 emissions for 5,900 GWh of load will be .970 MMT. ⁵ "Existing resources" in both scenarios represents EBCE's existing long-term contracts with generating resources (as identified in Table 1.1) as well as resources currently built and operational within the CAISO but not yet under contract to EBCE. The total nameplate capacity of current EBCE resources under contract in both scenarios is 661MW. Note: EBCE's capacity-only contracts (as identified in Table 1.2) are not included as EBCE does not have contractual right to energy from these resources. - short-term contracts to spot market purchases) to both scenarios to fill the remaining open position.⁶ - Summary of Portfolios: Over the 2021-2030 study timeframe, the long-term resources that comprise the Scenario 1 portfolio are forecasted to provide approximately 4,150 GWh of energy per year that can be used to meet demand. This leaves an average forecasted open position in Scenario 1 of 2,700 GWh per year (1,800 GWh in Short-Term transactions; 900 GWh in Spot Market purchases). During the same timeframe, the resources that comprise the Scenario 2 portfolio are forecasted to provide approximately 4,500 GWh of energy per year that can be used to meet demand. This leaves an average forecasted open position in Scenario 2 of 2,400 GWh per year (1,625 in Short-Term transactions; 775 GWh in Spot Market purchases). The percent breakdowns of each portfolio's average contribution to demand from 2021 to 2030 is summarized here: | | % Long-Term | % Short-Term | % Spot Market | |--------|-------------|--------------|---------------| | 46 MMT | 60.5% | 26.5% | 13% | | 38 MMT | 65% | 24% | 11% | - Scenario 1 (46 MMT) Portfolio: Approximately 925 GWh or 13.5% of EBCE demand will need to be purchased in the Spot Market in 2030. - Scenario 2 (38 MMT) Portfolio: Approximately 650 GWh or 9.5% of EBCE demand will need to be purchased in the Spot Market in 2030. #### Reliability of Portfolios - Staff evaluated portfolio reliability in relation to EBCE's ability to meet its CPUC-designated Resource Adequacy obligations on an annual basis and in the month of September for every year during the study period. The results indicate that RA obligations can be achieved through a combination of existing RA contracts, long-term generation contracts (i.e. the resources described in the portfolios of Scenarios 1 and 2) and with additional RA purchases, similar to those EBCE engages in today. The analyses also evaluated the number of "forced" & "simulated" hours of portfolio market exposure. In this case, "forced exposure" represents the number of hours where generating resources and energy storage are insufficient to meet demand. "Simulated exposure" represents the number of hours with net market purchases including energy storage charging. - Scenario 1 (46 MMT) Portfolio: - Resource Adequacy: The long-term contracts anticipated in this portfolio do not represent sufficient capacity to meet annual or September RA obligations. Additional RA procurement will be necessary for each year from 2021 to 2030. The forecast costs for each year and for the month of September are in Table 4. - Forced market exposure hours: Forecasted forced exposure hours decrease over time. By 2030 the mean forecasted forced exposure hours for this portfolio are approximately 6300 hours per year. Analysis indicated a range of expected outcomes for forced exposure hours; the ⁶ 3:2 ratio of short term contracts to spot market purchases is included as an approximate representation of EBCE organizational risk tolerance. Actual ratios and risk tolerances incorporated into procurement strategy will be evaluated with EBCE's Risk Oversight Committee and approved by EBCE's Board. - P5 is approximately 6050 hour and P95 is approximately 6500 hours. For comparison, there are 8760 hours in a calendar year, thus 6300 hours of represents exposure in approximately 72% of hours in 2030. - Simulated market exposure hours: Forecasted simulated exposure hours decrease over time. By 2030 the mean forecasted simulated exposure hours for this portfolio are approximately 6700 hours per year. Analysis indicated a range of expected outcomes for simulated exposure hours; the P5 is approximately 6500 hours and P95 is approximately 6800 hours. 6700 hours of represents exposure in approximately 76% of hours in 2030. - Scenario 2 (38 MMT) Portfolio: - Resource Adequacy: The long-term contracts anticipated in this portfolio do not represent sufficient capacity to meet annual or September RA obligations. Additional RA procurement will be necessary for each year from 2021 to 2030. The forecast costs for each year and for the month of September are in Table 5. - Forced market exposure hours: Forecasted forced exposure hours decrease over time. By 2030 the mean forecasted forced exposure hours for this portfolio are approximately 6000 hours per year. Analysis indicated a range of expected outcomes for forced exposure hours; the P5 is approximately 5750 hours and P95 is approximately 6450 hours. 6000 hours of represents exposure in approximately 68% of hours in 2030. - Simulated market exposure hours: Forecasted simulated exposure hours decrease over time. By 2030 the mean forecasted simulated exposure hours for this portfolio are approximately 6400 hours per year. Analysis indicated a range of expected outcomes for simulated exposure hours; the P5 is approximately 6100 hours and P95 is approximately 6700 hours. 6400
hours of represents exposure in approximately 73% of hours in 2030. - It is important to note the term "hours of market exposure" refers solely to an hour where some portion of EBCE's demand is exposed to the market. It is not a representation of volume or severity of demand exposed to the market. An hour in which one MW of demand is exposed to the market would contribute to the market exposure hours the same as an hour where 600 MW of demand is exposed to the market. Table 6 provides an estimation of severity of exposure to the Spot Market associated with both Scenarios 1 and 2. #### Fiscal Impact There is no financial impact associated with the recommended action as this filing is intended to meet the CPUC compliance requirement and actual procurement authorization will be brought forth to the board in accordance to EBCE's risk management policies. #### **Next Steps** Staff will populate the three CPUC required documents with detail about EBCE's analysis and findings, have the CEO approve the final IRP reports, and tile two compliance portfolios by September 1, 2020. Concurrently, Staff will initiate an additional study to evaluate the possibility of setting more aggressive organizational goals related to GHG emissions reduction. The results of this study will also identify: Carbon Free metrics of the proposed Portfolio, Forecast Costs, Resource Mix, Risk Management, and Reliability of the proposed portfolio. Staff will present these supplemental findings to the Board in the fall and will seek Board approval to establish an EBCE target for GHG emissions reduction. #### Attachments Attachment 1: Integrated Resource Plan Compliance Results PowerPoint Attachment 2: CPUC Narrative Template Attachment 3: CPUC Resource Data Template Attachment 4.1: 46 MMT CPUC Clean System Power Calculator Attachment 4.2: 38 MMT CPUC Clean System Power Calculator ### Appendix 1 **Table 1.1:** Baseline List of EBCE's Existing Generating Contract Resources | Counterparty
/ Project | County | Location | Technology | Term
(years) | COD | Renewable
Capacity | Battery
Capacity
MW | Duration
- Hours | Battery
MWhs | |---------------------------|---------|--------------|--------------------|-----------------|----------|-----------------------|---------------------------|---------------------|-----------------| | Raceway | Kern | Southern_PGE | Solar +
Storage | 20 | 1/1/2023 | 125 | 80 | 2 | 160 | | Edwards | Kern | Southern_PGE | Solar | 15 | 1/1/2023 | 100 | | | | | EDPR/Sonrisa | Fresno | Southern_PGE | Solar +
Storage | 20 | 1/1/2023 | 100 | 30 | 4 | 120 | | Rosamond | Kern | Southern_PGE | Solar | 15 | 5/1/2021 | 112 | | | | | Tulare | Tulare | Southern_PGE | Solar | 15 | 1/1/2022 | 56 | | | | | Salka | Alameda | Generic | Wind | 20 | 1/1/2021 | 57.5 | | | | Table 1.2: Baseline List of EBCE's Existing Capacity-Only Long-Term Contract Resources | Counterparty
/ Project | County | Technology | Term
(years) | COD | Renewable
Capacity | Battery
Capacity
MW | Duration
- Hours | Battery
MWhs | |---------------------------------------|---------|------------|-----------------|-----------|-----------------------|---------------------------|---------------------|-----------------| | esVolta Tierra
Robles | Alameda | Storage | 13 | 12/1/2021 | n/a | 7 | 4 | 28 | | Sunrun PDR | Alameda | Storage | 10 | 1/1/2022 | n/a | .5 | 4 | 2 | | Vistra Oakland
Energy Storage
1 | Alameda | Storage | 10 | 1/1/2022 | n/a | 36.25 | 4 | 145 | Table 2: List of Resources included in EBCE Scenario 1 (46 MMT Portfolio) | Table 2: List of Res | sourc | es inclu | ueu in | EDCE 3 | cenari | 0 1 (40 |) /VVV\ I F | OLLIO | 10) | | | 1 | | | | | |-----------------------|-------|------------|-----------|--------|--------|---------|-------------|----------|----------|------|------|----------|-----------|------|------|------| | | | | | | | | | | | | % of | max | | | | | | | | | | | | | | | | | Pro- | | Overall I | | Rata | | | | | MT Referen | ce Systei | m Plan | | | EBCE RS | P Pro-Ra | ita Shar | е | Rata | ed | Portfolio |) | | | | | MW/ | | | | | | | | | | | | | | | | | Resource | GWh | Туре | 2020 | 2022 | 2026 | 2030 | 2020 | 2022 | 2026 | 2030 | | | 2020 | 2022 | 2026 | 2030 | | 2-hr Battery Storage | MW | Storage | 542 | 559 | 990 | 6727 | 20 | 19 | 33 | 225 | 125% | 6 | 0 | 0 | 80 | 281 | | 4-hr Battery Storage | MW | Storage | 1304 | 4158 | 8075 | 5410 | 48 | 141 | 272 | 181 | 125% | ó | 0 | 176 | 226 | 226 | | Pumped Storage (long- | | | | | | | | | | | | | | | | | | duration) | MW | Storage | 1599 | 1599 | 2573 | 2573 | 59 | 54 | 87 | 86 | 75% | 6 | 0 | 0 | 0 | 64 | | | | Large | | | | | | | | | | | | | | | | Large Hydro | MW | Hydro | 7070 | 7070 | 7070 | 7070 | 259 | 239 | 238 | 236 | 70% | 100 | 0 | 100 | 100 | 100 | | | | Imported | | | | | | | | | | | | | | | | Imported Hydro | MW | Hydro | 2852 | 2852 | 2852 | 2852 | 104 | 96 | 96 | 95 | 70% | 6 | 0 | 67 | 67 | 67 | | Coal | MW | Coal | 480 | 480 | 0 | 0 | 18 | 16 | | | 0% | 6 | 0 | 0 | 0 | 0 | | Biogas | MW | Biogas | 278 | 278 | 278 | 278 | 10 | 9 | 9 | 9 | 50% | 6 | 0 | 0 | 0 | 5 | | Biomass | MW | Biomass | 625 | 625 | 625 | 623 | 23 | 21 | 21 | 21 | 50% | 6 | 0 | 0 | 0 | 10 | | | | Geother | | | | | | | | | | | | | | | | Geothermal | MW | mal | 1851 | 1851 | 1851 | 1851 | 68 | 63 | 62 | 62 | 100% | á | 0 | 12 | 75 | 75 | | | | Small | | | | | | | | | | | | | | | | Small Hydro | MW | Hydro | 974 | 974 | 974 | 974 | 36 | 33 | 33 | 33 | 100% | 20 | 0 | 20 | 20 | 20 | | Shed DR | MW | DR | 2195 | 2418 | 2418 | 2418 | 80 | 82 | 81 | 81 | 50% | ó | 0 | 41 | 41 | 40 | | Nuclear | MW | Nuclear | 2935 | 2935 | 635 | 635 | 107 | 99 | 21 | 21 | 0% | ó | 0 | 0 | 0 | 0 | | Candidate Wind | | | | | | | | | | | | | | | | | | Resources | | | | | | | | | | | 112% | 6 | | | | | | Southern_CA_Desert_So | | | | | | | | | | | | | | | | | | uthern_NV_Wind | MW | Wind | 0 | 0 | 600 | 600 | 0 | 0 | 20 | 20 | | | 0 | 119 | 131 | 131 | Sacramento_River_Wind | MW | Wind | 0 | 1442 | 1442 | 1442 | 0 | 49 | 49 | 48 | | | 0 | 58 | 58 | 58 | | Tehachapi_Wind | MW | Wind | 0 | 275 | 275 | 275 | 0 | 9 | 9 | 9 | | | 0 | 119 | 131 | 131 | | Generic_CA_Wind | MW | Wind | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 23 | | New_Mexico_Wind | MW | Wind | 0 | 0 | 0 | 606 | 0 | 0 | 0 | 20 | | | 0 | 60 | 65 | 65 | | Candidate Solar | | | | | | | | | | | | | | | | | | Resources | | | | | | | | | | | 113% | <u>,</u> | | | | | | Southern_PGE_Solar | MW | Solar | 0 | 143 | 1895 | 2078 | 0 | 5 | 64 | 69 | | | 0 | 168 | 493 | 493 | | Southern_CA_Desert_So | | | | _ | | | | | | | | | | | | | | uthern_NV_Solar | MW | Solar | 1196 | 2058 | 2306 | 4340 | 44 | 70 | 78 | 145 | | | 0 | 187 | 187 | 187 | | Tehachapi_Solar | MW | Solar | 804 | 3402 | 3402 | 4202 | 29 | 115 | 115 | 140 | | | 0 | 187 | 187 | 187 | | Generic_CA_Solar | MW | Solar | | | | | 0 | 0 | 0 | 0 | 368 | | 0 | 0 | 0 | 106 | | | | | | | | | | | | | | | | | | | Table 3: List of Resources included in EBCE Scenario 2 (38 MMT Portfolio) | Table 3: List of Re | Soul | ces inclu | ded III | LDCL | Scenar | 0 2 (30 | /VVVII P | <u>OI LIOU</u> | 0) | | % o | : | | | | | |-----------------------|---------|----------------|-----------|-----------|-----------|-----------|----------|----------------|----------|------|-----|-------|-----------|----------|----------|------------| | | | | | | | | | | | | | | Overall I | TDCE Dec | Doto | | | | 20 84 | NAT Deferen | aa Cuatau | n Dlan | | | EDCE DCE | Due Det | o Chava | | Pro | | Portfolio | | Rata | | | | MW/ | MT Referen | ce syster | n Pian | | | EBCE RSF | Pro-Kat | a Snare | | Rat | led | Portion | , | | · | | Resource | | Туре | 2020 | 2022 | 2026 | 2030 | 2020 | 2022 | 2026 | 2030 | | | 2020 | 2022 | 2026 | 2030 | | 2-hr Battery Storage | MW | Storage | 541 | 559 | 990 | 5367 | 2020 | 19 | 33 | 179 | 12 | :0/ | 0 | 0 | 80 | 224 | | 4-hr Battery Storage | MW | Storage | 1304 | 4158 | 6983 | 7612 | 48 | 141 | 235 | 254 | 12 | _ | 0 | 176 | 294 | 318 | | Pumped Storage (long- | IVIVV | Storage | 1304 | 4136 | 0303 | 7012 | 40 | 141 | 233 | 234 | 12. | 770 | U | 170 | 234 | 318 | | duration) | MW | Storage | 1599 | 1599 | 3204 | 3204 | 59 | 54 | 108 | 107 | 7. | 5% | 0 | 0 | 0 | 80 | | duration | 10100 | Large | 1333 | 1333 | 3204 | 3204 | 33 | 34 | 100 | 107 | , | ,,,, | J | Ü | J | | | Large Hydro | MW | Hydro | 7070 | 7070 | 7070 | 7070 | 259 | 239 | 238 | 236 | 7- | 100 | 0 | 100 | 100 | 100 | | <u> </u> | | Imported | | | | | | | | | | | | | | | | Imported Hydro | MW | Hydro | 2852 | 2852 | 2852 | 2852 | 104 | 96 | 96 | 95 | 7. | 1% | 0 | 71 | 71 | 71 | | Coal | MW | Coal | 480 | 480 | 0 | 0 | 18 | 16 | | | (|)% | 0 | 0 | 0 | 0 | | Biogas | MW | Biogas | 278 | 278 | 278 | 278 | 10 | 9 | 9 | 9 | 5 |)% | 0 | 0 | 0 | 5 | | Biomass | MW | Biomass | 625 | 625 | 625 | 623 | 23 | 21 | 21 | 21 | 5 |)% | 0 | 0 | 0 | 10 | | | | Geother | | | | | | | | | | | | | | | | Geothermal | MW | mal | 1851 | 1851 | 1851 | 1851 | 68 | 63 | 62 | 62 | 10 |)% | 0 | 0 | 78 | 78 | | | | Small | | | | | | | | | | | | | | | | Small Hydro | MW | Hydro | 974 | 974 | 974 | 974 | 36 | 33 | 33 | 33 | 10 |)% 20 | 0 | 20 | 20 | 20 | | Shed DR | MW | DR | 2195 | 2418 | 2418 | 2418 | 80 | 82 | 81 | 81 | 5 |)% | 0 | 41 | 41 | 40 | | Nuclear | MW | Nuclear | 2935 | 2935 | 635 | 635 | 107 | 99 | 21 | 21 | (|)% | 0 | 0 | 0 | 0 | | Candidate Wind | | | | | | | | | | | | | | | | | | Resources | | | | | | | | | | | 11 | 5% | | | | | | Southern_CA_Desert_So | | | | | | | | | | | | | | | | | | uthern_NV_Wind | MW | Wind | 0 | 442 | 1042 | 1042 | 0 | 15 | 35 | 35 | | | 0 | 125 | 152 | 152 | Sacramento_River_Wind | | Wind | 0 | 1442 | 1442 | 1442 | 0 | 49 | 49 | 48 | | | 0 | 58 | 58 | 58 | | Tehachapi_Wind | MW | Wind | 0 | 275 | 275 | 275 | 0 | 9 | 9 | 9 | | | 0 | 125 | 152 | 152 | | Generic_CA_Wind | MW | Wind | | | | 0 | 0 | 0 | 0 | 0 | | | 0
| 0 | 0 | 168 | | New_Mexico_Wind | MW | Wind | 0 | 0 | 0 | 1500 | 0 | 0 | 0 | 50 | | | 0 | 62 | 76 | 76 | | Candidate Solar | | | | | | | | | | | | 107 | | | | | | Resources | D 43.47 | Calan | ٥ | 442 | 4065 | 2400 | | 4 | 62 | 447 | 11 | l% | | 4.60 | 402 | 402 | | Southern_PGE_Solar | MW | Solar | 0 | 113 | 1865 | 3498 | 0 | 4 | 63 | 117 | | | 0 | 168 | 493 | 493 | | Southern_CA_Desert_So | N 41A7 | Color | 1226 | 2000 | 2020 | 3898 | ٥٦ | 71 | 103 | 120 | | | | 205 | 205 | 205 | | uthern_NV_Solar | MW | Solar | 1226 | 2088 | 3020 | | 45 | 71 | 102 | 130 | | | 0 | 205 | 205 | 205 | | Tehachapi_Solar | MW | Solar
Solar | 774
0 | 3402
0 | 3402
0 | 4202
0 | 28 | 115
0 | 115
0 | 140 | 401 | | 0 | 205 | 205
0 | 205
118 | | Generic_CA_Solar | MW | Solar | U | U | U | U | U | U | 0 | 0 | 401 | | U | U | 0 | 118 | Table 4: Scenario 1 Forecast Supplemental RA procurement costs | ٨ | n | nı | เล | ı | |---|---|-----|----|---| | Д | H | 111 | 14 | 1 | | 202 | 1 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | |-------|---|------|-------|-------|-------|-------|-------|-------|-------|-------| | \$13/ | М | \$4M | \$11M | \$27M | \$24M | \$33M | \$30M | \$30M | \$30M | \$30M | #### September only | Septembe | or or cy | | | | | | | | | | |----------|----------|------|------|------|------|------|------|------|------|--| | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | | | \$2M | <\$1M | \$2M | \$3M | \$3M | \$4M | \$4M | \$4M | \$4M | \$4M | | Table 5: Scenario 2 Forecast Supplemental RA procurement costs #### Annual | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | |-------|------|-------|-------|-------|-------|-------|-------|-------|-------| | \$13M | \$4M | \$18M | \$23M | \$20M | \$27M | \$24M | \$24M | \$23M | \$23M | September only | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | |------|-------|------|------|------|------|------|------|------|------| | \$2M | <\$1M | \$2M | \$3M **Table 6:** Visual representation of portfolio interactions with Spot Market. Note: hours of negative market interaction represent hours when EBCE is buying from the market; hours of positive interaction represent hours where EBCE is selling to the market. Tables assume EBCE has engaged in Short-Term Transactions as described in section titled "Risk Management associated with Portfolios". ### **Attachments:** - A. Resolution to Approve and use the results of the IRP analysis and Authorize the CEO to file the final results; - B. CPUC Narrative Template; - C. CPUC Resource Data Template; - D. CPUC CSP_46MMT_june_2020 (link); - E. CPUC CSP_38MMT_june_2020(link); - F. IRP Compliance Approval Presentation #### **RESOLUTION NO.** # A RESOLUTION OF THE BOARD OF DIRECTORS OF THE EAST BAY COMMUNITY ENERGY AUTHORITY WHEREAS The East Bay Community Energy Authority ("EBCE") was formed as a community choice aggregation agency ("CCA") on December 1, 2016, Under the Joint Exercise of Power Act, California Government Code sections 6500 et seq., among the County of Alameda, and the Cities of Albany, Berkeley, Dublin, Emeryville, Fremont, Hayward, Livermore, Piedmont, Oakland, San Leandro, and Union City to study, promote, develop, conduct, operate, and manage energy-related climate change programs in all of the member jurisdictions. The cities of Newark and Pleasanton, located in Alameda County, along with the City of Tracy, located in San Joaquin County, were added as members of EBCE and parties to the JPA in March of 2020. WHEREAS the California Public Utilities Commission (CPUC) issued Decisions 18-02-018, 19-11-016 and 20-03-028 requiring its jurisdictional load serving entities file their 2020 Integrated Resource Plans (IRP) with the CPUC on or before September 1, 2020; and WHEREAS the CPUC further requires entities utilize three document templates to complete their filings: the Narrative Template, the Resource Data Template, and the Clean System Power (CSP) Calculator; and WHEREAS EBCE staff worked with Ascend Analytics to perform analysis and develop IRP portfolios to meet the CPUC's requirements; and WHEREAS, EBCE staff has presented the IRP analysis performed by Ascend Analytics and EBCE staff to the Board. ## NOW, THEREFORE, THE BOARD OF DIRECTORS OF THE EAST BAY COMMUNITY ENERGY AUTHORITY DOES HEREBY RESOLVE AS FOLLOWS: <u>Section 1.</u> The Board hereby approves the results of the IRP analysis performed by Ascend Analytics and EBCE staff and presented at this Board meeting. Section 2. The Board hereby authorizes staff to utilize the results of its IRP analysis to populate CPUC-required document templates, delegates authority to the CEO to approve the final IRP reports on behalf of the Board, and submit the 2020 IRP compliance filing by September 1, 2020. ADOPTED AND APPROVED this 15th day of July, 2020. | Dan Kalb, Chair | | | |-----------------|--|--| | ATTEST: | |---------------------------------------| | | | Stephanie Cabrera, Clerk of the Board | | Date | Version | Change type | Release notes | Tab Name | Cell Reference | Link | | | |------------------------|---------|---|---|--|---------------------------------|---|--|--| | 12/26/2019 | 1 | Initial release | Initial public release of template. Emailed to service list and posted to https://www.cpuc.ca.gov/General.aspx?id=6442459770 | N/A | N/A | N/A | | | | 2/14/2020 | 2 | General | Added version_notes tab for documenting changes between versions. | This tab | N/A | N/A | | | | 2/14/2020 | 2 | General | Highlighted changes since v1 in yellow for ease of finding. | Throughout workbook; see below. | Throughout workbook; see below. | Throughout workbook; see below. | | | | 2/14/2020 | 2 | General | Added hyperlinks to new changes for ease of finding (see columns to the right of this table). | This tab | N/A | N/A | | | | 2/14/2020 | 2 | Instructions | General update to instructions tabs to reflect new changes listed below, and questions from the 1/16 webinar. | N/A | N/A | N/A | | | | 2/14/2020 | 2 | Instructions | New deadline of July 1st, 2020 for submitting this workbook. | instructions_3_high_level_steps | D15 | #instructions 3 high level steps!D15 | | | | 2/14/2020 | 2 | Instructions | Instructions now specify a cutoff date of 4/30/2020 for determining the set of contracts that are planned, online, or under development. | instructions 3 high level steps | D4 | #instructions 3 high level steps!D4 | | | | 2/14/2020 | 2 | Instructions | Changed instructions to clarify, for storage_max_discharge: If the resource is a storage or hybrid resource, report the battery's maximum rate of discharge in MW here. | instructions_7_data_dict | D31 | #instructions 7 data dict!D31 | | | | 2/14/2020 | 2 | Hybrid / storage accounting | Reordered columns in unique_contracts to group the hybrid-resource related items together. All variables related to hybrids now have "hybrid" in the name. | unique_contracts | U:X | #unique_contracts!U:X | | | | 2/14/2020 | 2 | Hybrid / storage accounting | Added is_hybrid field (1 or 0) to clearly identify hybrid resources. | unique_contracts | U1 | #unique contracts!U1 | | | | 2/14/2020 | 2 | Hybrid / storage accounting | Add a new hybrid resource variable: hybrid_combined_max_mw. This is the maximum rate of discharge of the hybrid resource (including generator + battery). E.g. a hybrid could be 100 MW solar, 20 MW 4-hr battery, but only have a max total MW of 110 MW. This field would contain 110. | unique_contracts | W1 | #unique_contracts!W1 | | | | 2/14/2020 | 2 | Hybrid / storage accounting | Add new var, hybrid_can_charge_from_grid: 1/0 variable. 1 means can charge from grid as well as the resource to which it is paired, 0 means it can only charge from the paired resource. | unique_contracts | X1 | #unique_contracts!X1 | | | | 2/14/2020 | 2 | Accounting for incremental resources per D. 19-11-016 | Added instructions for the following special case resources counting towards the D.19-11-016 procurement requirement: new build resources that are energy-only in 2021, demand side resources, and upgrades to existing resources (including capacity increases or adding a battery to an existing resource to make a hybrid resource). | instructions_10_incrementality | A1 | #instructions 10 incrementality!A1 | | | | 2/14/2020 | 2 | Contract Types | The "planned" contract type is now split into planned_existing and planned_new. Definitions are provided in the contract_status tab. | contract_status | A5 | #contract_status!A5 | | | | 2/14/2020 | 2 | monthly_gwh_mw tab | Template now prompts users to fill out a MW amount for ALL imports, unspecified and specified. | resources | D:D | #resources!D:D | | | | 2/14/2020 | 2 | monthly_gwh_mw tab | For transfer_purchase and transfer_sale, template now asks for approximate resource mix in note. | resources | B:B | #resources!B:B | | | | 2/14/2020 | 2 | Resource list | Updated baseline resources list in "resources" tab to reflect 1/3/2000 ALI ruling finalizing baseline, available at https://www.cpuc.ca.gov/General.aspx?id=644263413 . Staff crosswalked and combined this new
list, the list included in 11, and the latest CAISO NQC list to get the most complete set of resource names possible. Note that some of these identifiers from these two datasets might be redundant and "point" to the same resource; LSEs can use whichever one they prefer. For resources in the baseline list with no CAISO ID, staff used the generator name as the identifier. | resources | A:I | #resourcesIA:1 | | | | 2/14/2020 | 2 | Resource list | Corrected note types for unspecified_imports | resources | B:B | #resources!B:B | | | | 2/14/2020 | 2 | Resource list | Corrected note types for unspecified imports Corrected note type for unspecified rec | resources | B:B | #resources!B:B | | | | 2/14/2020 | 2 | Resource list | Corrected note type for unspecified non import | resources | B:B | #resources!B:B | | | | 2/14/2020 | 2 | Resource list | | instructions 8 supertypes | A:A | | | | | 2/14/2020 | 2 | Resource list | Changed supertype names for clarity. Added "sellers choice" contract option for resource ("special" supertype). | | A.A
A9 | #instructions 8 supertypes!A:A
#instructions 9 special notes!A9 | | | | 2/14/2020 | 2 | | | | | #unique_contracts[F:F | | | | | 2 | unique_contracts tab | The unique_contracts tab now asks for online_date for new resources. | unique_contracts | F:F | | | | | 2/14/2020 | 2 | unique_contracts tab | Added columns to account for incrementality of resources per CPUC Decision 19-11-016. | unique_contracts | M:N
G:G | #unique_contracts!M:N_
#unique_contracts!G:G | | | | | | 4.45 | Template now requests contract execution date. | unique_contracts | 4.4 | | | | | 2/14/2020 | 2 | monthly_gwh_mw tab | Contract status is now a blue field rather than a purple one, meaning it is NOT auto-populated and the LSE must fill it out. | monthly_gwh_mw | 1:1 | #monthly_gwh_mw!l:I | | | | 2/14/2020 | 2 | monthly_gwh_mw tab | Added currently_online field in purple. | monthly_gwh_mw | N:N | #monthly gwh mw!N:N | | | | 2/14/2020
2/25/2020 | 2
2a | Instructions Contracts tab | Added language to clarify the purpose of notes and why they are needed for staff to uniquely identify contracts Added lookup formulas to show max MW (nameplate for physical resources) and NQC MW in the contracts tab. These are used 1) for LSE data checking | instructions_5_notes_explained
unique_contracts | A5
AJ:AQ | #instructions_5_notes_explained!A5
#unique_contracts!AJ:AQ | | | | 2/25/2020 | 2a | Dashboard tab | and 2) summed up in the new incremental procurement dashboard in the "dashboard" tab. | dashboard | B15 | #dashboardIB15 | | | | 2/25/2020 | 2a | monthly_gwh_mw tab and unique_contracts tab | Added table to calculate incremental procurement per D.19-11-016 to "dashboard" tab. Added some example data to demonstrate new incremental procurement counting functionality, lines 49-51 in the monthly_gwh_mw tab | monthly_gwh_mw | 49:51 | #monthly gwh mw!49:51 | | | | 2/25/2020 | 2a | Instructions | Added language to clarify that "baseline" refers to baseline in D.19-11-016 against which incremental procurement will be measured, not baseline for | instructions_1_general | 49.31
A9 | #instructions 1 general!A9 | | | | 2/25/2020 | 2a | Resource list | capacity expansion modeling purposes. | resources H1888 | | | | | | | | | unspecified_import resource type is no longer counted as incremental for purposes of D.19-11-016. | | | #resources!H1888 | | | | 2/25/2020 | 2a | Instructions | Clarified language around contract time frames to report. | instructions_3_high_level_steps | D4 | #instructions 3 high level steps!D4 | | | | 2/25/2020 | 2a | Instructions | Corrected language around "new" contracts and RESOLVE-selected resources in instructions_8. | instructions_8_supertypes | B5:B6 | #instructions 8 supertypes!B5:B6 | | | | 2/25/2020 | 2b | Contracts tab | Wording tweaks to definition of "development" resources | contract_status | B3 | #contract_status!B3 | | | | 5/11/2020 | 3 | Instructions | Updated due date for this data template to September 1, 2020. | instructions_1_general | A5 | #instructions_1_general!A5 | | | | 5/11/2020
5/11/2020 | 3 | Instructions Instructions | Cutoff for determining contract status is now June 30th, 2020. | instructions_3_high_level_steps | D8 | #instructions_3_high_level_steps!D8 | | | | 5/11/2020 | 3 | Instructions | Added instructions for "opt-out" LSEs as identified in D.19-11-016. Per Ordering Paragraphs (OPs) 2 and 3 of D.20-30-208 and the latest Narrative Template, LSEs must now submit at least two data templates, one "preferred conforming" for a 46 MMT portfolio and another "preferred conforming" for a 38 MMT portfolio (and more than two if the LSE plans on | instructions_3_high_level_steps
instructions_3_high_level_steps | D8 | #instructions_3_high_level_stepsID8 #instructions_3_high_level_stepsID3 | | | | 5/11/2020 | 3 | Instructions | submitting multiple conforming or alternative portfolios). Instructions are updated to reflect this. | instructions_3_high_level_steps | D19 | finetructions 2 high lovel stone D10 | | | | 5/11/2020 | 3 | Instructions | Updated submission instructions, including new rules on naming conventions for multiple conforming/preferred/alternative portfolios. Updated data dictionary to include fields added to template since v2. | | | #instructions_3_high_level_steps!D19 #instructions_7_data_dict!C17 | | | | 5/11/2020 | 3 | Dashboard tab | Dashboard now contains a System Reliability Progress Tracking Table, displaying estimated NQC by resource type and planned/existing status for a given month. This table now uses the CPUC's currently adopted monthly average ELCC in the short term (2020-2031), and RESQLVE-calculated average ELCC in the long term (2024-2030). Wind has different ELCC values, a "high" and a "low" depending on its capacity factor; see the "resources" tab for an assignment of wind resources to ELCC values. Note that this table is different from the D.19-11-016 incremental procurement NQC, because that decision | instructions 7, data_dict C17 dashboard C6 | | #dashboardIC6 | | | | 5/11/2020 | 3 | monthly_gwh_mw tab | specifies different counting rules than the "standard" NQC used in PRM calculations. ELCC types are now assigned on a by-resource level, rather than by RESOLVE categories. This change was implemented to allow the updated NQC counting | | | #resources!K:K | | | | -,,-520 | - | ,, | functionality described above. | | | | | | | 5/11/2020 | 3 | monthly_gwh_mw tab | ELCC calculation logic is changed in monthly_gwh_mw to accommodate the changes above. This includes formulas for calculating storage NQC. If a battery | | O:U | #monthly_gwh_mw!O:U | | | | 5/11/2020 | 3 | monthly_gwh_mw tab | Added cns_mapping tab to allow users of this data template to map individual resources to categories in the CNS tool. This tab is for information only and is intended to help LSEs cross-reference their data in the CNS tool with their data in this template. | cns_mapping | A1 | #cns_mapping!A1 | | | | 5/11/2020 | 3 | elcc | Updated ELCC values. ELCC is now dependent on the MMT of the portfolio (38 vs 46) and varies by both year and month. This tab assumes 0% NQC for unknown resources (i.e. the template cannot map a type) by default. If yee is unknown and you want to get NQC from a resource, you must provide a contracted NQC value. Otherwise the template will estimate zero by default. | elcc | A1 | #elcc!A1 | | | | 5/11/2020 | 3 | 38 vs 46 MMT portfolio | You must now select 38 or 46 MMT in the portfolio_toggle tab, depending on which portfolio you are entering into this data template. | portfolio_toggle | A1 | #portfolio_toggle!A1 | | | | 5/11/2020 | 3 | Reliability | The template now estimates a system RA obligation through 2030, based on a user-entered 2021 RA obligation. This will be kept confidential. | estimate_system_ra_requirement | B68 | #estimate_system_ra_requirement!B68 | | | | | | | Added formulas in Column T of the dashboard tab to test to see if there is a mismatch between the totals of the various tables. This is caused by improper | | | | | | | 5/11/2020 | 3 | Error checking | data entry. All of the values here should read "TRUE." If you see FALSE, please correct underlying data. This is often caused by the template being unable to assign an ELCC type to a resource—a formula flags this. | dashboard | T:T | #dashboard!T:T | | | | 5/11/2020 | 3 | Reliability | Summary table in dashboard can now display NQC MW for the System Reliability Progress Tracking Table. It will compare this to the RA obligation estimated in the estimate_system_ra_requirement tab. Note that this table can also display GWh by using the toggle in Cell A1. | dashboard | 67:70 | #dashboard!67:70 | |-----------|---|--------------|---|---------------------------------|-------|-------------------------------------| | 5/11/2020 | 3 | List of LSEs | Updated list of filing LSEs to match new IRP OIR, available here: http://docs.cpuc.ca.gov/Published/O000/M333/K039/333039523.PDF | lse_names | A:A | #Ise_names!A:A | | 5/11/2020 | 3 | Q and A | Added link to CPUC Q&A on this workbook. Please review the Q&A after reviewing the instructions. | instructions_11_q_and_a | A1 | #instructions_11_q_and_a!A1 | | 5/11/2020 | 3 | Instructions | Added new instructions tab for dealing with special case resources: CAM, PCIA, D.19-11-016 optout resources | instructions_12_cam_pcia_optout | A1 | #instructions_12_cam_pcia_optout!A1 | #### General instructions for Load Serving Entities (LSEs): PURPOSE: This workbook is for reporting your existing and planned energy and capacity contracts in the context of Integrated Resource Planning (IRP). Please review all the tabs in this workbook carefully before entering data.
Follow all instructions. Once you understand the structure of the workbook, please review the Q&A posted here for more detailed technical questions: ftp://ftp.cpuc.ca.gov/energy/modeling/Filling%20Requirement%20QA%20_%2004232020.pdf Please send this Resource Data Template to irpdatarequest@cpuc.ca.gov via the CPUC's secure FTP application, following the instructions in Part 3. More information on using the FTP can be found in the Filing Requirements Standards document. You must submit at least two "preferred conforming" portfolios, one corresponding to your 38 MMT portfolio, the other to your 46 MM1 portfolio. See instructions_3 for more detail on naming conventions and instructions for submitting optional additional portfolios. Additional documentation can be found in the Glossary section of the Narrative Template. Please reach out to IRPDataRequest@cpuc.ca.gov with any questions on the template. Write "2020 Data Template Question" in the subject line. All numbers should be entered as zero or positive numbers. Do not enter negative numbers Only modify the four blue tabs: "portfolio_toggle", "monthly_gwh_mw", "unique_contracts", "estimate_system_ra_requirement". More detailed instructions for using these tabs follows Note: all rererences in this template to "baseline" refer to the baseline in D.19-11-016 against which incremental procurement will be measured. It does NOT refer to the RESOLVE baseline, or, more generally, any other baseline used for capacity expansion modeling purposes. Review, but <u>do not</u> modify, the <u>orange</u>, green and purple tabs. Do not change the position or text of any of the column headers in any tab (i.e. do not insert rows above the headers; do not insert columns between existing headers). Do not change any of the tab names, or the order in which they appear. There is no need to mark this data as confidential; staff will treat it as confidential. NOTE ON COLOR CODING: Tabs in this spreadsheet are color-coded to help the user understand and use them effectively. -Broadly speaking, the orange tabs are instructions, the blue tabs are for inputting and validating procurement data, the green tabs are standardized lists of acceptable values that can be entered into the blue tab, and the purple tabs are for error checking and creating summary statistics. -The orange, green and purple tabs should be reviewed, but not modified directly; LSEs should enter their data ONLY in the blue tabs, and use the green and purple tabs to ensure data quality. -More detail on how to use each tab is provided in the instructions. | version_notes Documentation Instructions 1_general Instructions General instructions 0 functions of purpose and structure of this workbook. Tab-specific documentation. Instructions 3 high level steps Instructions 1_general Instructions 0 instructions 0 instructions 0 instructions of purpose and structure of this workbook. Review; do not modify Instructions 3 high level steps Instructions 0 instructions 0 instructions of rentering data into this workbook. Review; do not modify Instructions 4_cell_color_codes Instructions 0 instructi | | |--|-----------------------------------| | instructions 2 tab overview instructions Tab-specific documentation. Review; do not modify instructions 2 tab overview instructions Instructions (Instructions for entering data into this workbook. Review; do not modify instructions 4 cell color codes Instructions Describes the purpose and use of color-coding of cells. Review; do not modify instructions 5- notes explained Instructions Describes the purpose of the "notes" column and how notes should be used when entering data. Review; do not modify notes should be used when entering data. Review; do not modify instructions 6 types of notes Instructions Describes specific types of notes to be used. Review; do not modify instructions 7- data dict Instructions Technical information on data fields. Review; do not modify instructions 8 supertypes Instructions in the "resources" tab. A supertype concerns whether a resource is new or baseline, physical or nonphysical, etc. Instructions 9- special notes Instructions Documentation on different nonstandard resource types. Review; do not modify instructions 10 incrementality Instructions Pocumentation on different nonstandard resource types. Review; do not modify mandate in 0.19-11-016 Instructions 10 incrementality Instructions Instructions Instructions Pocument Review; do not modify mandate in 0.19-11-016 Instructions 12 cam pcia_optout Instructions Instructions Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT portfolio Sheet for Experting the depotement Sheet resources and the procument of | | | Instructions 3 high level steps | | | Instructions 4 cell color codes Instructions | | | Instructions Describes the purpose of the "notes" column and how notes should be used when entering data. Instructions Describes specific types of notes to be used. Describes specific types of notes to be used. Describes specific types of notes to be used. Technical information on data fields. Documentation on the different "supertypes" of resources in the "resources" tab. A supertype concerns whether a resource is new or baseline, physical or nonphysical, etc. Instructions Describes Describ | | | Instructions | | | Instructions 7 data_dict Instructions Technical information on data fields. Documentation on the different "supertypes" of resources in the "resources" tab. A supertype concerns whether a resource is new or baseline, physical or nonphysical, etc. Instructions_9_special_notes Instructions Documentation on different nonstandard resource types. Instructions_10_incrementality Instructions Instructions for how to enter certain nonstandard resources to the procurement mandate in 0.19-11-016 Instructions_11_q_and_a Instructions Instructions_12_cam_pcia_optout Instructions Instructions for special case resources such as PCIA, CAM, and 0.19-11-016 opt-out Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT using the dropdown menu | | | Documentation on the different "supertypes" of resources in the "resources" tab. A supertype concerns whether a resource is new or baseline, physical or nonphysical, etc. Instructions 9_special_notes Instructions Documentation on different nonstandard resource types. Instructions for how to enter certain nonstandard resources as being incremental to the procurement mandate in D-19-11-016 Instructions 11_q_and_a Instructions Instructions 12_cam_pcia_optout Instructions Instructions for special case resources such as PCIA, CAM, and D-19-11-016 opt-out Review; do not modify Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT portfolio Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT portfolio | | | in the "resources" tab. A supertype concerns whether a resource is new or baseline, physical or nonphysical, etc. Instructions 9_special_notes Instructions Documentation on different nonstandard resource types. Instructions for how to enter certain nonstandard resource as a being incremental to the procurement mandate in 0.19-11-016 Instructions_11_q_and_a | | | Instructions 10_incrementality Instructions Instructions for how to enter certain nonstandard resources as being incremental to the procurement mandate in 1.19-11-016 Instructions 11_q_and_a Instructions Instructions 12_cam_pcia_optout Instructions Instructions 10_instructions 10_instr | | | instructions_10_incrementality | | | Instructions_12_cam_pcia_optout Instructions Instructions of respecial case resources such as PCIA, CAM, and D.19-11-016 opt-out Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT optfolio Sheet for estimation that ISE's system 84 requirement. | | | portfolio_toggle Data input Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT portfolio
Select 38 or 46 MMT using the dropdown menu Sheet for LSE to choose whether they are entering information for a 38 or 46 MMT portfolio Sheet for extinating that provides the second provid | ppears. | | portfolio_toggle Data input information for a 38 or 46 MMT portfolio Select 38 or 46 MMT using the dropdown menu | | | Sheet for estimating the LSE's system RA requirement | in Cell A1. | | estimate_system_ra_requirement Data input University Un | 8. This will be kept confidential | | monthly_gwh_mw Data input & automatic validation Sheet for LSE to enter their monthly procurement data. Contains pre-written formulas for error checking and validation. Enter data and copy down formulas here, per Part 3 of validation. | the instructions. | | Unique_contracts Data input & automatic validation Sheet for LSE to enter data about unique contracts. Contains pre-written formulas for error checking and validation. Enter data and copy down formulas here, per Part 3 of the instruction must populate monthly_gwh_mw FIRS | | | errors Error checking dashboard Error checking dashboard input tabs. Automatically summarizes data errors from the blue data input tabs data input tabs data where an error is iden | | | fillmes Error checking dashboard Shows the LSE where they need to provide more information in cells containing "fillme." Review to ensure your portfolio is accurately entered. Do not modify to go back to the blue tab data and fill in cells mark | | | dashboard Error checking dashboard Automatically generates a summary of the LSE's portfolio. Review to ensure your portfolio is accurately entered. Do not mod however, use the dropdown menus in Column B). Fix errors in blu | | | resources List of acceptable values List of acceptable generating resources, and supporting info When entering data into the blue tabs, only use resource identified. | iers from Col A of this tab. | | Ist of acceptable values List of acceptable values List of acceptable LSE names, and supporting info When entering data into the blue tabs, only use LSE names | from Col A of this tab. | | elcc ELCC value lookup table Used to assign an estimate of the NQC value of new resources Review; do not modify | | | contract_status List of acceptable values List of acceptable contract statuses, and supporting info When entering data into the blue tabs, only use contract status | ses from Col A of this tab. | | month_map Month string to numeric lookup table Map of month numbers to names Review; do not modify | · | | caiso_interconnection_queue CAISO interconnection queue for assessing viability of new projects 4 Allow LSEs to identify where their project is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where a new resource is in the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col A of this tab to identify where the collection of the CAISO use Col | | | Information Inform | interconnection queue. | The following is a summary list of high-level steps for using this workbook. Please review and understand the steps below. More documentation and detail is provided in the other "instructions" tabs. | Step
number | Tab Name | Action | or using this workbook. Please review and understand the steps below. More documentation and detail is provided in the other "instructions" tabs. Instructions | | | | | | | |----------------|------------------------------------|-----------------------|--|--|--|--|--|--|--| | Note: Pe | | | emplate, LSEs are required to file at least two data templates, a preferred conforming 38 MMT version and a preferred conforming 46 MMT version (and | | | | | | | | they wish | to do multiple confor | ming or alternative p | ortfolios). The instructions below describe the preparation of one data template, so LSEs should follow them for each template. Note that the instructions are effectively the same for each individual template, except for the file naming convention in the last step. Residual that is this instruction when the same that the instructions cannot be a first that the same that the properties of the same that th | | | | | | | | 1 | All | Review | teview all tabs in this workbook to ensure that you understand the instructions. Sample data is provided for illustrative purposes—you can clear it be enter your data, but make sure you keep the first row of the pre-written formulas, as you will be copying these later. Note the error flagging formul understand why they are doing so. Review the CPUC Q&A for the Resource Data Template and Narrative Template, available here: | | | | | | | | 2 | N/A | Review | ftp://ftp.cpuc.ca.gov/energy/modeling/Filling%20Requirement%20QA%20_%2004232020.pdf | | | | | | | | 3 | portfolio_toggle | Enter Data | Select 38 or 46 MMT using the dropdown menu in Cell A1, as appropriate for the resources you are entering in this template. | | | | | | | | 4 | estimate_system_ra
_requirement | Enter Data | Please input your LSE's 2021 System RA allocation, NQC MW in Cell B68. This will be kept confidential. | | | | | | | | 5 | monthly_gwh_mw | Enter data | Enter monthly energy and capacity procurement data, by contract, year, and month, into the light blue columns. Enter all contracts with delivery start dates on or after January 1st, 2020, and before January 1st, 2031. If an LSE opted-out of its procurement obligation under D.19-11-016, or was not assigned a procurement obligation under D.19-11-016, and thus will have a certain amount of procurement occurring on their behalf, the LSE must enter an amount and type of resource(s) communicated to it by Energy Division staff. Staff will coordinate LSEs that are not self-procuring and IOUs procuring on their behalf to prevent double counting and to ensure that reported resources align with procurement that has already occurred or is consistent with the RSP. Enter all contracts that fall into either of the following two categories. 1) You have already executed the contract as of this filing, regardless of whether the resource is currently online or will come online in the future. Note that this | | | | | | | | 3 | monthly_gwn_mw | Enter data | set of contracts should include the ones you are currently using to serve load (e.g. you must include a contract signed in 2017 that is serving your load as
of this | | | | | | | | | | | filing). 2) You plan to execute the contract in the future with a start date before January 1st, 2031. | | | | | | | | | | | For purposes of determining the contract_status (i.e. whether a resource is planned or in development or under review by decision-makers), use June 30th, 2020 as the cutoff date. | | | | | | | | | | | Each contract needs an energy value in GWh and a capacity value in MW, meaning that you must enter a number >=0 in EITHER the contracted_nqc_mw_if_known column or the nqc_fraction_if_nqc_not_known column (but not both). Note that where possible you should use only items from the list of identifiers in the green tabs (first green column of each green tab). | | | | | | | | 6 | monthly_gwh_mw | Copy formulas | To the right of the data just entered, in purple and gray columns, you will see some pre-written formulas in the first row. Copy these formulas down to the last row of data. | | | | | | | | 7 | monthly_gwh_mw | Review | Review the formulas' results. | | | | | | | | 8 | monthly_gwh_mw | Correct | Correct any data errors in the data you entered in Step 2 that was caught by the formulas. It is OK to overwrite default values in the purple columns, but do NOT overwrite formulas in the gray columns. If you see the text "fillme" displayed in any purple cell, overwrite it with the correct value. | | | | | | | | 9 | unique_contracts | Copy formulas | In Columns B-E, copy down formulas in unique_contracts until all the unique contracts listed in monthly_gwh_mw are displayed. The template will automa generate a list of unique contracts from the monthly data. Note this will only work if steps 1-5 are complete. | | | | | | | | 10 | unique_contracts | Enter data | Enter contract data into the light blue columns. | | | | | | | | 11 | unique_contracts | Copy formulas | Adjacent to the data just entered, you will see some pre-written formulas in the first row, in purple and gray. Copy these formulas down to the last row of data. | | | | | | | | 12 | unique_contracts | Correct | Correct any data errors caught by the formulas. It is OK to overwrite default values in the purple columns, but do NOT overwrite formulas in the gray columns. If you see the text "fillme" displayed in any cell, overwrite it with the correct value. | | | | | | | | 13 | errors | Review | Review. Where there are errors in the previous tabs, they are flagged here. Trace the errors and correct as needed in monthly_gwh_mw and unique_contracts. | | | | | | | | 14 | fillmes | Review | Review. Where there are values that you need to populate in the previous tabs, they are flagged here. Trace the errors and populate values as needed in monthly_gwh_mw and unique_contracts. | | | | | | | | 15 | dashboard | Review | Review and ensure your procurement is accurately reflected. | | | | | | | | 16 | None | Submit | Send completed workbooks (using the CPUC's secure FTP application) to IRPDataRequest@cpuc.ca.gov by September 1st, 2020. NOTE: Per the Narrative Template, LSEs may study and report multiple "Conforming Portfolios" for each GHG target. LSEs are required to select two "Preferred Conforming Portfolios" among all "Conforming Portfolios" developed and submitted: one "Preferred Conforming Portfolio" to the 46 MMT GHG target, and a second "Preferred Conforming Portfolio" to the 38 MMT GHG target. LSE may also study and report additional "Alternative Portfolios" developed from different assumptions (including different load and load modifier assumptions) from the Reference System Plan. Before submitting, please change this template's file name using the following naming convention. The file name must contain the seven elements below, in the order provided. Use an underscore to separate each element (i.e. the final file name should have six underscores in it). All letters should be lower-case. 1) your lse's abbrevation, provided in this workbook in the "Ise" tab 2) the letters "rdt" (denoting this Resource Data Template) 3) "38mmt" or "46mmt", as appropriate, depending on the carbon target corresponding to the portfolio. 4) if portfolio is preferred, write "preferred", else write "na" 5) if portfolio is preferred, write "alternative," else write "na" 6) if portfolio is alternative, write "alternative," else write "na" 7) version number, written as the letter "v", followed by a number. If you have to re-submit a file for any reason, increase this number by 1. For example, Southern California Edison could send the following five workbooks (although, at a minimum, they are only required to send the first two, a preferred conforming each for 38 and 46 MMT): sce_rdt_38mmt_preferred_conforming_na_v1.xlsx sce_rdt_46mmt_preferred_conforming_na_v1.xlsx sce_rdt_46mmt_preferred_conforming_na_v1.xlsx sce_rdt_46mmt_na_na_alternative_v1.xlsx | | | | | | | This tab contains a description of the meanings of color coding in different cells. Please enter data into the blue tabs according to the instructions below. | Step | Color | Purpose | Description | Instructions | |------|------------|-----------------|---|---| | 1 | Light Blue | LSE Data entry | Columns for LSE entry of procurement data (blank fields, <u>not</u> pre-populated) | Enter procurement data here. You must do this first for the formulas to work. | | 2 | Purple | LSE Data entry | Columns for LSE entry of procurement data (with <u>prepopulated</u> default values). To reduce redundant data entry and the probability of error, staff has created lookup formulas to pre-populate certain fields with default values. | 1) Note the formulas adjacent to the light blue column data, which point to the first row of this data. Copy these formulas down from the first row all the way to the last row of the dataset. 2) Review the resultant values, and confirm that they are correct. 3) If you see a value that is incorrect, enter the correct data into the cell. It is OK to overwrite the formula with your values. 4) If you see a value of "fillme", this means the template cannot populate the value by default, and you need to enter the correct value. Enter the correct data into the cell. It is OK to overwrite the formula with your values. Note that these formulas are provided for your convenience and to demonstrate how staff plans to classify and aggregate the data. If you are manually entering data, it is probably easier to individually overwrite each "fillme" sell. If you are generating your data programatically, it might be easier to overwrite the purple columns wholesale. 5) Review the resultant values, and confirm that they are correct. | | 3 | Gray | Data Validation | Columns with pre-written formulas that perform testing, data validation (i.e. ensure that the data is in the range of acceptable values), and other calculations | 1) Formulas are already populated in the first row of the data. Copy these formulas down from the first row all the way to the last row of the dataset. DO NOT overwrite these formulas. 2) Review the resultant values, and confirm that they are correct. 3) If you see a value that is incorrect, correct the data in the column that the cell is pointing to, but do not correct the gray cell itself. 4) If you see a value of 0 in the TEST column, that means that an invalid data point was supplied. Correct that data point so that the value = 1. | Resources that do not correspond to existing physical resources require a special note when reporting them. Please review the information below and follow the guidance below for these resources. For the purposes of this template, a contract is defined as a unique combination of three columns: resource, cpuc_contract_id, and notes. For the majority of existing physical resources or specified imports (i.e. has a CAISO ID), the resource and cpuc_contract_id alone will allow staff to uniquely identify a contract, so there is no need to provide a note. However, staff requires an explanatory note to distinguish between different contracts for resources where the name and contract_id alone are not sufficient to identify the resource. This is often the case for contract types such as unspecified power, behind-the-meter resources, new resources which do not exist yet, or very small or very recently online resources that do not appear in the CAISO generator list. The template will automatically flag these as requiring a note. Where you see the text "fillme", please provide a note following the guidance in the next tab. Important: The resource_contract_note column D in unique_contracts should reflect the set of contracts you are planning or have executed. This column should NOT contain duplicates. If it does, this means you need to write a note in monthly_gwh_mw to distinguish between resources. The
calculator will then AUTOMATICALLY label these as two separate contracts, which should be reflected in the unique_contracts tab. Review the table below to determine what type of note you should write if the UI prompts you to do so with "fillme" in a cell. | Item in note | Example | | | | | |---|---|------------------------------------|--|--|--| | approximate resource mix Approximate mix of resources in a contract. One decimal place is sufficient. | | 90% solar, 10% firming natural gas | | | | | carbon content | Carbon content of this resource. Provide units, e.g. 0.428 MT CO2 / MWh | 0.39 MT CO2/MWh | | | | | buyer | If you are selling energy, this is the name of the buyer. | Marin Clean Energy | | | | | seller | If you are buying energy, this is the name of the seller. | Pacific Gas and Electric | | | | | intertie | Name of the intertie over which you are importing power. | Malin Intertie | | | | | name | Resource name. | Iron Sun Solar | | | | | type | Type: solar, battery, wind, geothermal, etc. | Dual-axis solar PV | | | | | mw | MW. Please write the number of MW followed by "MW" | 200 MW | | | | For example, if you plan to build a a Gold Coast Solar Unit in an area corresponding to RESOLVE's Greater Imperial Solar area, and a Silver Star Solar Unit also in the same area, these would both be listed as Greater_Imperial_Solar for the resource name, but they considered are two separate contracts. You need to supply a note to help staff distinguish between these two, and to make sure that unique_contracts shows them as two separate resources. The template will prompt you to do so by displaying "fillme_name,type,mw" in the "notes" column. Please fill out <u>at least</u> this information in-cell, And anything else that will help staff understand the nature of the resource. For example, the cell could read "Silver Star Solar, 100 MW dual-axis tracking PV, COD Nov 2021 in Sun County" or "Gold Coast Solar, 200 MW fixed PV, COD Dec 2022 in Moon County" #### The table below explains the fields in the data template in more detail. Please review these definitions and the Acceptable Values carefully before entering data. | - | tab | Field | Description Standardized abbreviation for the LSE. Where possible, please use names from Col A of Ise names tab | data type | units | Acceptable Values | | | | | |----------|----------------------------------|--|--|------------------------|-------------------------------------|---|--|--|--|--| | 1 | monthly_gwh_mw | lse | Standardized abbreviation for the LSE. Where possible, please use names from Col A of Ise_names tab Canonical name for a specific generating resource. Where possible, please use names from the "resource" column in Column A | text string | na | Col A of Ise_names tab | | | | | | 2 | monthly_gwh_mw | resource | Canonical name for a specific generating resource. Where possible, please use names from the "resource" column in Column A of the "resources" tab. | text string | na | Col A of resources tab | | | | | | 3 | monthly_gwh_mw | cpuc_contract_id | Contract ID matching Contract ID in CPUC Contracts Database | text string | na | #N/A | | | | | | 4 | monthly_gwh_mw | Year | Year of the energy/capacity procured | integer | na | Integers 2020 to 2030 | | | | | | 5 | monthly_gwh_mw | Month | Month of the energy/capacity procured | integer | na | Integers 1 through 12 | | | | | | 6 | monthly_gwh_mw | contract_gwh | Enter the amount of energy contracted for, in GWh. If this is an RA only contract, enter zero here. Do not leave this blank. | numeric | GWh | Any number greater than or equal to zero | | | | | | 7 | monthly_gwh_mw | contracted_nqc_mw_if_known | If the contract for this resource in this year and month contains an Net Qualifying Capacity (NQC) value that counts for
Resource Adequacy (RA) credit, report it here in NMV. DO NOT estimate this value if it is not explicitly reported in the
contract. If the contract is energy only, enter of here. If you plan to buy capacity value but do not know the NQC for example,
because this is a to-be-built future resource), leave this column blank and use the ngc_fraction_if_ngc_not_known instead to
report capacity. | numeric | MW (NQC) | Any number greater than or equal to zero | | | | | | 8 | monthly_gwh_mw | nqc_fraction_if_nqc_not_known | The purpose of this field is to allow LSEs to report that they are buying RA capacity for a resource that either does not exist yet, or does not have a known NDC value. In this field, please enter a fraction between 0 and 1, where 0 means completely energy-only, and I means that the LSE plans to purchase all available RA capacity value from the resource. 0.5 means that the LSE is planning to purchase capacity value corresponding to half of total capacity value that is available. ONLY fill this field out if you plan on purchasing capacity value, but have not filled out the contracted_ngc_mw_if_enown column. If you filled out contracted_ngc_mw_if_enown column. If you filled out | numeric | na | Decimal between 0 and 1. Do not enter a percent. | | | | | | 9 | monthly_gwh_mw | contract_status | Status showing maturity of contracting process for this resource. Where possible, please match one of the entries in the
"contract status" column in the contract status tab. | text string | na
hours | Col A of contract_status tab | | | | | | 10
11 | monthly_gwh_mw
monthly_gwh_mw | storage_duration_hours | Storage duration in hours. Notes explaining nonstandard resources. The UI will prompt you with "fillme" if you need to fill this out. | integer
text string | nours | Positive integers See other parts of instruction for guidance. | | | | | | 12 | monthly gwh mw | | If this is a physical resource, this is the resource's nameplate in MW. If it is not, enter the maximum MW it can deliver at any | | MW (nameplate) | Any number greater than or equal to zero | | | | | | | monthly_gwh_mw | max_mw | given time. The UI will prompt you with "fillme" if you need to fill this out. | numeric | | | | | | | | 13 | monthly_gwh_mw | resource_type | Type of the resource (solar, wind, etc). Use types in Column E of resources to fill out "fillmes" | text string | na | Column E of "resources" tab | | | | | | 14 | monthly_gwh_mw | currently_online | Indicator variable if unit is currently online or not. Automatically calculated for resources with a known ID, but the UI will prompt you with "filline" if you need to fill this out. ELCC type of the resource (solar, wind, etc), use to estimate ngc. Use the types in Column A of the "elcc" tab to fill out | 1 or 0 | na | 1 or 0 | | | | | | 15 | monthly gwh mw | elcc type | ELCC type of the resource (solar, wind, etc), used to estimate nqc. Use the types in Column A of the "elcc" tab to fill out | text string | na | Column A of elcc tab | | | | | | | | 1.50 | "fillmes" A string that consists of the ELCC Type, the year, and the month, separated by underscores. This is the key that is used to look | | | | | | | | | 16 | monthly_gwh_mw | elcc_type_year_month | up an ELCC % in the "elcc" tab | text string | na | Column D of elcc tab | | | | | | 17 | monthly_gwh_mw | elcc_percent | The resource's Effective Load Carrying Capability, expressed as a percent. ELCC times a given resource's nameplate equals its NQC value in a given year and month. | numeric | percent | 0 - 100% | | | | | | 18 | monthly_gwh_mw | battery_multiplier | This is the template's method for derating the NQC of storage resources with durations of less than 4 hours. For example, a 3-hour resource gets an multiplier of 3/4 = 75%. | numeric | percent | 0 - 100% | | | | | | 19 | monthly_gwh_mw |
calculated_nqc_mw_for_resources_with_no_contracte
d_nqc | If the LSE wishes to buy capacity from a certain resource, but they do not have a contracted NQC value (often the case for resources that are not built yet), the template will estimate an NQC value based on the ELCC fields described above. | numeric | MW (NQC) | Any number greater than or equal to zero | | | | | | 20 | monthly gwh mw | final_nqc_mw | The NQC MW value that will be used for capacity counting. If the LSE reports a contracted NQC value, the template will use | numeric | MW (NQC) | Any number greater than or equal to zero | | | | | | 21 | monthly gwh mw | test nac | that as-is; else, the template will use the calculated estimate. Ensures that NOC values are properly estimated. Flags errors. | string | N/A | Will display "OK" or "error" | | | | | | | monday_Swi_inw | | Date the resource comes online. You only need this for resources that are not online as of this filing. NOTE: In Excel, dates are | String | 1911 | wardspay or or cro | | | | | | 22 | unique_contracts | online_date_for_new_resources | actually numbers that are formatted to be displayed as dates. This should be displayed in "Short Date" format (in Excel, go to Home->Number and display as Short Date) | Excel date | na | Dates; see note to left of this | | | | | | 23 | | contract_execution_date | Date the contract was executed. NOTE: In Excel, dates are actually numbers that are formatted to be displayed as dates. This should be displayed in "Short Date" format (in Excel, go to Home->Number and display as Short Date) | Excel date | na | Dates; see note to left of this | | | | | | 24 | | contract_start | Date energy/capacity deliveries are contracted to start. NOTE: In Excel, dates are actually numbers that are formatted to be displayed as dates. This should be displayed in "Short Date" format (in Excel, go to Home->Number and display as Short Date) | Excel date | na Dates; see note to left of this | | | | | | | 25 | | contract_end | Date energy/capacity deliveries are contracted to end. NOTE: In Excel, dates are actually numbers that are formatted to be displayed as dates. This should be displayed in "Short Date" format (in Excel, go to Home-Number and display as Short Date) | Excel date | Excel date na Dates; see note to le | | | | | | | 26 | unique_contracts | interconnection_queue_position | Queue position assigned by CAISO, ISO, or Utility. Enter "TBO" if developer hasn't
applied yet. Enter "In/A" if a project never needed a queue position (e.g. Legacy OF
contracts, REC only), if the queue position is unknown as the contract is already online or
if project is out of CAISO area. | numeric | na | Col A in caiso_interconnection_queue tab, TBD, N/A | | | | | | 27 | | to amond | tabe and the treat was a second to the treat and | 1 or 0 | na | 10 | | | | | | 27
28 | unique_contracts | lse_owned | Is the resource owned by the LSE? 1 = Yes, 0 or blank = no Is the resource a Capacity Allocation Mechanism (CAM) resource? 1 = Yes, 0 or blank = no | 1 or 0 | 1,0 | | | | | | | 29 | unique contracts | is incremental | Is the resource incremental to the baseline established in D.19-11-016? 1=yes, 0=no. Note that this column is pre-populated | 1 or 0 | na | 1.0 | | | | | | | 11211111 | | via a formula. | | | <u> </u> | | | | | | 30 | unique_contracts | incremental_explanation | Explanation for why special case resources should be counted as incremental. See instructions_10_incrementality for guidance on filling this out. | text string | na | See instructions_10_incrementality for guidance | | | | | | 31 | | viability_cod_reasonableness | Choose 1,2, or 3 below to report on project viability. This is only necessary for projects not online yet. 1 - Interconnection Phase II study complete; permitting application approved; these support reported COD. 2 - Interconnection Phase II study in progress; permitting application in progress; LSE has plan that supports reported COD. 3 - One or more of criteria for rating "2" not in place. | Categorical | na | 12,3 | | | | | | 32 | unique_contracts | viability_technical_feasibility | Choose 1 or 2 below to report on technical feasibility. This is only necessary for resources not yet online. *1 - Project will use a commercialized technology solution that is currently in use at a minimum of two operating facilities of similar or larger size. *2 - Criteria for rating 1 not in place. | Categorical | na | 12 | | | | | | 33 | | viability_resource_sufficiency | Choose 1 or 2 below to report on resource sufficiency. This is only necessary for resources not yet online. • 1 - Project-specific independent engineering assessment is complete and supports the delivery profile (capacity and/or production). • 2 - Criteria for rating 1 not in place. | Categorical | Categorical na 1,2 | | | | | | | 34 | unique_contracts | viability_financing | Choose 1,2,3,4 or N/A below to report on financing. This is only necessary for resources not yet online. 1 - All Financing Secured. 2 - Partial Financing Secured. 3 - Secured. 4 - Secured. 5 - Secured. 6 - N/A-NA Financing Required. | Categorical | Categorical na 1,2,3,4,n/a | | | | | | | 35 | unique_contracts | storage_max_discharge_mw | If the resource is a standalone storage or a hybrid (generator + storage) resource, report the <u>battery's</u> maximum rate of
discharge in MW here. | numeric | MW nameplate | Any number greater than or equal to zero | | | | | | 36 | unique_contracts | storage_depth_mwh | If the resource is a standalone storage or a hybrid (generator + storage) resource, report the <u>battery's</u> total depth in MWh | numeric | MWh | Any number greater than or equal to zero | | | | | | 37 | unique_contracts | is_hybrid | 1 = resource is a hybrid, 0 = not (i.e. standalone storage is marked 0) A hybrid resource consists of a generator and a battery. This is the name plate of the generator portion of the resource in | 1 or 0 | na | 1,0 | | | | | | 38 | unique_contracts | hybrid_generator_mw | Anyono resource consists of a generator and a butter, inits is the namepiate of the generator portion of the resource, in MW. Only report this for hybrid resources. The maximum rate the hybrid resource can send energy to the grid. In most cases this will be close to the sum of the | numeric | MW nameplate | Any number greater than or equal to zero | | | | | | 39 | unique_contracts | hybrid_combined_max_mw | generator portion of the hybrid, plus the battery portion of the hybrid. | numeric | MW nameplate | Any number greater than or equal to zero 1,0 | | | | | | 40 | unique contracts | hybrid_can_charge_from_grid | 1 = hybrid can charge from grid AND paired resource. 0 = hybrid can ONLY charge from paired resource | 1 or 0 | na | | | | | | The table below describes the different types of resources in the "resources" tab. Please review and use the table below to guide your entry of procurement data. | resource_supertype | Description | |--------------------|--| | physical | Physical resources from CAISO, RPS, and WECC datasets. Includes both existing resources and resources that are already contracted but not yet | | priysical | online. | | existing generic | Generic resource contract corresponding to a class of existing generators, but not any particular one. The UI will prompt you for a note with | | existing_generic | "fillme." | | new_resolve | New resource that does not yet exist, corresponding to the set of physical candidate resources in RESOLVE. Note that the resources tab provides a list of all of these candidate resources, not only the ones selected in the Reference System Planyou can choose to enter any of the candidate resources regardless of whether or not it was selected in the Reference System Plan. You must use this category for all new resources whose commercial operating date (COD) is on or before Dec 31st, 2026. NOTE: for new resources whose COD is after that date, you can also optionally specify the resource without a location, as new_generic (see definition below). The UI will prompt you for a note with "fillme." | | new_generic | Generic resource contract corresponding to a class of new generators (have not been built yet), but not any particular one. You can use this category for all resources whose commercial operating date (COD) is on or after January 1st, 2027 (or, optionally, you can use "new_resolve" above if desired). The UI will prompt you for a note with "fillme." | | new_loadmod | New load modifying resources procured as a result of the IRP procurement track decision. The UI will prompt you for a note with "fillme." | | specified_imports | Specific resource with a CAISO ID that is imported from out of CAISO. | | special | Nonstandard contracts not corresponding to a physical resource. Please explain these with a note in the "notes" column so that CPUC staff can | | special | understand the nature of the contract. The UI will prompt you for a note with "fillme." | #### Please review the table below, which describes the miscellaneous resources that fall under the "special" supertype that can be entered into the template. | resource | description | Example | | | | | |------------------------|---|--------------------------------------|--|--|--|--| |
unspecified import | Imports from out of CAISO, over an intertie. | Unspecified power over MALIN500 | | | | | | unspecified_import | Resource mix not known. | Intertie | | | | | | transfer nurshase | Your LSE is purchasing energy from another LSE. | example_lse buying 500 MWh solar | | | | | | transfer_purchase | Your LSE is purchasing energy from another LSE. | from PG&E | | | | | | transfer cale | Vous ICE is salling an army from another ICE | example_lse selling 200 MWh | | | | | | transfer_sale | Your LSE is selling energy from another LSE. | geothermal to SDG&E | | | | | | blended | Blended contracts, consisting of a mix of | 90% solar with 10% firming natural | | | | | | blended | resources. | gas | | | | | | unbundled_rec | PCC only resources (NOT bundled with energy) | PCC3, 60% solar 40% wind | | | | | | | | low-carbon CAISO system energy, | | | | | | unspecified_non_import | Unspecified System Power | resource mix unknown, 0.06 MT | | | | | | | | CO2/MWh | | | | | | | RA contract in which the seller chooses the | | | | | | | | resources that will provide RA credit to the | Seller's choice contract between CCA | | | | | | sellers_choice | buyer. The buyer does not necessarily know in | and IOU for 100 NQC MW in March | | | | | | | advance exactly which resources these | 2021 | | | | | | | comprise. | | | | | | The instructions below pertain to filling out the "incremental_explanation" column in the unique_contracts tab, which is included in the template to allow LSEs to explain using nonstandard, special-case resources to count towards the incremental procurement requirement in D.19-11-016. Please follow the instructions below for entering notes into this field. 1) If the contract is for a new supply-side resource (i.e. corresponds to resolve_new or generic_new, resource type), and that resource will be energy-only in 2021, please write "eo2021". Otherwise you can leave this column blank. For resources that fall into this category, please put a value of 1 in the nqc_fraction_if_nqc_not_known column in monthly_gwh_mw for the year 2021 ONLY. The purposes of this is to allow the NQC counting functions in unique_contracts to work. - 2) If the contract is for demand-side resources such as demand response or energy efficiency (corresponds to new_loadmod resource type), please affirm that the resource is NOT already accounted for in the utility's IEPR demand forecast by writing "not in IEPR demand forecast" If the resource is already accounted for in the IEPR forecast, the resource is not incremental. - 3) If you are upgrading an existing resource by adding capacity (for example, adding a battery to an existing resource to make a hybrid resource, or replacing a turbine to increase the nameplate of an existing gas-fired resource), please write "adding [x] MW to existing resource [y]," where X is the number of nameplate MW you are adding to the existing resource, and y is the name of the existing resource. Note that the template will label these as is_incremental = 0 (because the resource that the MW were added to is already in the baseline), but staff will treat the added MW as incremental. - 4) If none of the special cases above apply, you can leave incremental explanation blank. - 5) If they DO apply, you can overwrite is_incremental with a value of 1. | ftp://ftp.cr < | -Please review the informa | ation in this link before enter | ring any data. It contair | ıs helpful Q&A's, compiled | d from ED webinars with | LSEs. | |----------------|----------------------------|---------------------------------|---------------------------|----------------------------|-------------------------|-------| Each LSE should input any eligible resources that are currently subject to the cost allocation mechanism (CAM). In estimating its share of resources subject to the CAM, each LSE should refer to the most recent year-ahead CAM resource list available on the Commission's Resource Adequacy Compliance Materials webpage. The year-ahead CAM list reflects the contract start and end dates of Commission approved CAM resources. The list itemizes the resource adequacy capacity value by month for each IOU service territory. An LSE's proportional share is determined by its year-ahead share of the total coincident peak load for each IOU service territory, as assigned in the Commission's annual resource adequacy process. The LSE's proportional share of that resource is assumed static through the IRP planning horizon, but it will be updated each IRP cycle based on the current proportional share assignment from the Commission's annual resource adequacy process. LSEs should not make assumptions or predictions on what resources may be procured on behalf of all load and subject to the CAM in the future beyond what is already included in the most recent year-ahead CAM resource list. **Note that, in the unique_contracts tab, an LSE labels resources as CAM in the "cam" column.** PCIA resources must be included in the IOU baseline of resources in this template. Other LSEs should not include PCIA resources in their baseline resources, unless otherwise directed by the Commission in the PCIA proceeding or another venue. If an LSE opted-out of its procurement obligation under D.19-11-016, or was not assigned a procurement obligation under D.19-11-016, and thus will have a certain amount of procurement occurring on their behalf, the LSE must enter an amount and type of resource(s) communicated to it by Energy Division staff. Staff will coordinate LSEs that are not self-procuring and IOUs procuring on their behalf to prevent double counting and to ensure that reported resources align with procurement that has already occurred or is consistent with the RSP. 38 MMT Portfolio 46 MMT Portfolio | Form 1.5b - STATEWIDE | | | | | | | | | | | | | | | | |---|---|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------------------|--------------------------| | California Energy Comman 2012 3:200 Managad from Central Laboratory (And AAEC Case 1-0-1 MELETRICITY (And AND ALL ACT Case) 1-0-1 MELETRICITY (AND AND ALL ALL ALL ACT CASE) 1-0-1 MELETRICITY (AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL | | | | | | | | | | | | | | | | | | 1-in-2 Net Electricity Peak Demand by Agency and Bal | ancing Authority (A | IW) | Average | | | | | | | | | | | | | | | | | Annual | CAISO area N | | Balancing Authority | Agency | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | Growth | IOU,CCA,ES
demand fla | | | | | | | | | | | | | | | | (2019-2020) | Demand to | | | PGBE Service Area - Greater Bay Area
NCPA - Greater Bay Area | 7,223 | 7,113 | 6,970
190 | 6,926
188 | 6,902 | 6,893
185 | 6,922 | 6,951 | 6,977
186 | 7,032 | 7,025 | 7,062 | | | | | Power Enterprise of the San Francisco PUC | 125 | 194 | 120 | 118 | 186 | 117 | 186 | 117 | 117 | 118 | 110 | 118 | | | | | Silicon Valley Power | 530 | 542 | 540 | 546 | 553 | 562 | 569 | 570 | 570 | 573 | 571 | 575 | | 1 | | | Other NP15 LSEs - Ray Area | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | -0.69% | 1 | | | CDWR - Greater Bay Area | 55 | 55 | 57 | 57 | 57 | 57 | 56 | 56 | 94 | 56 | 54 | 60 | 0.92% | | | | WAPA - Greater Bay Area | 52 | 2 | 52 | 52 | 52 | 52 | 22 | 52 | Ω | 52 | 52 | 52 | 0.00% | 1 | | Greater Say Area Subtotal | | 8,188 | 8,083 | 7,933 | 7,892 | 7,873 | 7,876 | 7,907 | 7,937 | 7,964 | 8,023 | | 8,061 | | | | | PGSE Service Area - Non Bay Area | 9,955 | 9,803 | 9,606 | 9,545 | 9,513 | 9,527 | 9,540 | 9,580 | 8,616 | 9,691 | 9,682 | 9,734 | | | | | NCPA - Non Bay Area | 211 | 207 | 202 | 200 | 199 | 198 | 198 | 198 | 199 | 200 | 299 | 200 | | - 1 | | | Other NP25 LSEs - Non Bay Area | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | -0.49% | - 1 | | | CDWR - Non Ray Area | 55 | 55 | 57 | 57 | 57 | 57 | 54 | 56 | 56 | 56 | 54 | 60 | | | | Total North of Path 15 | WAPA - Non Bay Area | 185 | 185 | 185
17,991 | 185
17.886 | 185
17.832 | 185
17,829 | 185
17,893 | 17,964 | 185
18.026 | 185 | 185
18,142 | 185 | | | | | PGBS Senice Area - 2926 | 2.047 | 2,016 | 17,991 | 17,886 | 17,832 | 17,829 | 1,893 | 17,994 | 19,026 | 18,161 | 19,142 | 2,002 | | | | | CDW8 - 2926 | 115 | 115 | 120 | 120 | 120 | 120 | 119 | 118 | 118 | 118 | 118 | 127 | | | | | WAPA - 2926 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | 1 | | Total Zeon Path 26 | | 2.177 | 2.146 | 2.110 | 2.097 | 2.091 | 2,090 | 2.095 | 2.103 | 2.111 | 2.126 | 2.124 | 2.144 | | | | Total Valley | | 12,591 | 12,403 | 12,167 | 12,091 | 12,050 | 12,043 | 12,081 | 12,130 | 12,173 | 12,265 | 12,253 | 12,330 | | | | Total North of Path 26 (Total PGBE TAC Area) | | 20,779 | 20,486 | 20,100 | 19,983 | 19,923 | 19,919 | 19,988 | 20,067 | 20,137 | 20,287 | 20,266 | 20,391 | | | | | Turiock Irrigation District | 543 | 535 | 531 | 530 | 528 | 527 | 525 | 524 | 524 | 524 | 525 | 527 | | | | Total Turlook Intraction District Control Area | Merced | 229 | 108 | 107 | 107 | 106 | 206 | 106 | 106 | 106 | 106 | 106 | 106 | | | | seas sunoc impasion unitrict control area | SMUD | 652
2,959 | 2.916 | 638
2,899 | 637
2,897 | 634
2,890 |
633
2,881 | 631
2,870 | 630
2,861 | 629
2,861 | 630
2,869 | 631
2,882 | 2.8% | | | | | Modesto Irriestion District | 2,959
634 | 2,916 | 4,899 | 658 | 2,890 | 2,881 | 2,870
652 | 2,891
651 | 2,861
650 | 2,869 | 2,882 | 2,006 | | | | | Modelto Irrigicon District | 325 | 321 | 318 | 318 | 316 | 316 | 215 | 316 | 314 | 314 | 315 | 216 | | | | | Redding | 221 | 217 | 216 | 215 | 215 | 214 | 213 | 213 | 213 | 213 | 213 | 214 | | | | | City of Shasta Lake | 35 | 34 | 34 | 34 | 24 | 34 | 22 | 33 | 23 | 22 | 34 | 34 | | | | | WAPA (BANC) | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | | | | Total Balancing Authority of Northern California Control | trea | 4,304 | 4,242 | 4,215 | 4,211 | 4,200 | 4,188 | 4,174 | 4,163 | 4,161 | 4,171 | 4,186 | 4,202 | | | | | SCE Service Area - LA Basin | 16,297 | 16,109 | 15,975 | 15,861 | 15,850 | 15,796 | 15,753 | 15,749 | 15,769 | 15,789 | 15,883 | | -0.15% | | | | Anaheim | 536 | 520 | 515 | 512
265 | 511 | 509 | 508
364 | 508
364 | 509
264 | 509
264 | 512 | 517
368 | | | | | Pasadena Water and Power Riverside | 273
594 | 270
587 | 267
582 | 578 | 577 | 294
575 | 204
574 | 294
574 | 574 | 575 | 266
579 | 584 | | | | | Vernot | 349 | 147 | 171 | 170 | 169 | 169 | 169 | 169 | 169 | 169 | 170 | 171 | | 1 | | | Other SP15 LSEs - LA Basin | 346 | 243 | 241 | 240 | 239 | 239 | 238 | 238 | 228 | 239 | 240 | 242 | | 1 | | | MWD - LA Rasin | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | | 1 | | LA Gazin Subtotal | | 18,104 | 17,895 | 17,771 | 17,645 | 17,633 | 17,572 | 17,525 | 17,521 | 17,542 | 17,565 | 17,669 | 17,829 | | | | | SCE Service Area - Big Creek/Ventura | 3,996 | 3,950 | 3,917 | 2,889 | 3,886 | 3,873 | 3,862 | 3,861 | 3,866 | 3,871 | 3,994 | 3,929 | | | | Big Creek/Ventura Subtotal | CDWR - Big Creek/Ventura | 290 | 275 | 275
4.192 | 275
4.164 | 275
4.161 | 275
4,148 | 275
4.137 | 276 | 276
4.142 | 303
4.174 | 303
4,197 | 303
4.223 | | - 1 | | Bug Leesky versus 3 SUDDOTH | SCE Service Area - Other | 4,286 | 4,224 | 4,192
990 | 4,164 | 4,161 | 4,148
979 | 4,137
977 | 4,137
976 | 4,142
977 | 4,174
979 | 4,197 | 4,233 | | | | | Other SPIS ISSs - Other | 26 | × × | 25 | 25 | 25 | 25 | 25 | 370 | 25 | 25 | 25 | 25 | | | | | CDWR - Other | 47 | 45 | - 6 | 45 | 45 | 45 | 45 | - 6 | 45 | 50 | 50 | 50 | | - 1 | | | MWD - Other | 163 | 154 | 154 | 154 | 154 | 154 | 154 | 154 | 154 | 171 | 172 | 172 | | 1 | | Total SCETAC Area | | 23,637 | 23,343 | 23,177 | 23,015 | 23,000 | 22,923 | 22,862 | 22,859 | 22,886 | 22,964 | 23,097 | 23,301 | | | | | SCORETAC Area | | 4.128 | 4,158 | 4.194 | 4.224 | 4,250 | 4.273 | 4.292 | 4,313 | 4,334 | 4,354 | 4,373 | 0.38% | | | SOGRETAC Area | | 4,194 | | | | | | | | | | | | | | | SDG&ETAC Area Valley Electric Association (CA +NV Territory) | | 123 | 145 | 153 | 156 | 159 | 161 | 164 | 166 | 169 | 171 | 171 | 176 | 2.52% | . 1 | | SOGRETAC Area | | 133
27,964 | 145
27,625 | 153
27,488 | 156
27,366 | 159
27,383 | 161
27,334 | 164
27,299 | 166
27,317 | 169
27,368 | 171
27,469 | 173
27,625 | 176
27,850 | 2.52%
-0.04% | 1 | | SDG&ETAC Area Valley Electric Association (CA +NV Territory) | LAZWP
Barbank | 123 | 145 | 153 | 156 | 159 | 161 | 164 | 166 | 169 | 171 | 171 | 176 | 2.52%
-0.04%
-1.55% | 1 | | Please input your LSE's 2021 System RA allocation. NDC MW here. This will be kept confidential. | 1,000 | |---|-------| | | | | | | 2.020 | 2.021 | | | 2.024 | 2.025 | 2.026 | 2.027 | 2.028 | 2.029 | | |--|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | CAISO area Non-IOU,CCA,ESP non-coincident demand | | 3,985 | 3,997 | 3,988 | 3,992 | 3,995 | 3,999 | 4,004 | 4,009 | 4,068 | 4,077 | 4,120 | | CAISO area IOU,CCA,ESP non-coincident derrand | | 44,127 | 43,592 | 43,361 | 43,314 | 43,259 | 43,288 | 43,390 | 43,496 | 43,689 | 43,813 | 44,121 | | coincident adjustment | | 95% | 95% | 96% | 96% | 97% | 97% | 97% | 97% | 97% | 98% | 97% | | CASO area IOU, CCA, ESP coincident demand | | 41,866 | 41,389 | 41,466 | 41,612 | 41,754 | 41,951 | 42,123 | 42,326 | 42,533 | 42,726 | 43,000 | | | | | | | | | | | | | | | | Your LSE'S estimated percent of CAISO area IOU, CCA, ESP coincident demand | 2% | Your LSE's estimated system RA requirement, NQC MW | | 1,012 | 1,000 | 1,002 | 1,005 | 1,009 | 1,014 | 1,018 | 1,023 | 1,028 | 1,032 | 1,039 | Test TRU | - | - | 00,000,00 | , | | _ | | comment, ray, may (), mass | 49,74490,6,40,40,40 | | - | nein | ~~~ | receive, light | surrently and no | dischipe | de jacon jeda | discount. | t battery, multiplier solds, | lated papers
greatering
any particular
all papers | End, rep., ma | W | Laperigue | O're happy owing from
Moneton | of a beging a goodly from | mana, armet, and | 1,514,000000 | | Non-Served Adverger for conserve | Non-terminologie for Nor | Test test and desired for the | | - | Teat to contract party may tra | THE REPARENCE OF THE | **** | |-----------------------------------|------------------------------|-------------|-----|----|---|-------|----------------------------|---------------------|------------------|---|--|--------|------------------|------------------|----------|--|-----------|------------------------------|--|---------------|--|--|----------------------------------|---------------------------
--|--------------|-----|----------------------------------|--------------------------|-------------------------------|---|---|--------------------------------|----------------------|-------| | peur, jumps
denue, mana | Market Comme | ment) | | | | | | | Audence | | | | 7885 77FF | | | Access to the party of | | | | 200 | | advantant. | - | | Mark of Personal Street Community Street | | | - | - | - | | | | | _ | | percent prompts | | | | | | - | | | Autopius
2004 | | Francis and channel and APM and CPM demand | 40.00 | Mandad | *** | | | Ann | | | | | | - 1 | - : | NAME AND ADDRESS OF THE PARTY O | | | | | | | | | | | | ADDIT ON THE | | | | | | - 7 | | | Automore | | Central Imparts at Malin Interior | Allen | unamifed import | Allen | unimum | uninesen 2022 9 | ~ | | | ž. | | semial | - 1 | - 1 | constitute accommendation | - 1 | | | | | | | | | | | genera puerspie | MM47.00 | man, r | | | | | | | and a | | | | CHEO Hodge | | | | 779 | | | | - | aboriori | | | MARCON MARCON | | | | | | | | | | | | genera, prompte | | 10000,0 | | ** | | | | | and the | | 200 | 20 | CBSD Select | | salar | weber 2022 9 | 146 | | 2.8 | 2.8 | - | shedad | | | Miller A Strate (Miller & Street | | | | | | | | | | | | genera, puerspie | | 10000,0 | | ** | | 1,000 | | | and the | | | 40 | | | | | | | | 50 | - | and the second | | | MINISTER CHINA COMM. | | | | | | | | | | | | genera, prompte | 10001 (1000
10001 (1000 | seemen, h | | ** | | - | | | and the | | | 1400 | CHRD CHR | | | | *** | | | | | administrati | | | SHORT T SHE SHOULD SHOW | | | | | | | | | | | | anno aunite | | man, | | | | | | | | | | 613 | CHARLOWS | | | | *** | | | | | about of | | | MARTIN A THE MINE T AND | | | | | | | | | | | | appear purch | | 10007 | | | : | - 1 | | | | | | 1747 | CHICA Review? | | | | - | | and the same of th | | | about of | - 1 | | SERVICE STREET CONTROL OF THE SERVICE STREET | | | | | | | | | | | | sever owner | | 1000 | | | | - 1 | | | 100 | | == | 1747 | CHEC Broken | | | | cons | | | | | about of | - 1 | | SERVICE CONTRACT OR | - 1 | - 7 | | | | | | | | | | genera prompte | MARCH 8 WAR | server or | | | , | | | | 100 | | 200 | | CASO CHP | | | - THE R. P. LEWIS CO., LANSING, MICH. 49, 120, 120, 120, 120, 120, 120, 120, 120 | 100 | | 1013 | 7 | - 2 | shorted | | | MATERIAL SHIP CHIEF IS NOT | | | | | | | | | | | | genera, puerspie | 100000,3,300 | manufact. | | 81 | | | - | | and the | | | 11111 | CHINA Mond | | | | | | | 50 | - | and the second | | | MANAGE AND ADDRESS OF THE PARTY | | - | | | | | | | | | | genera, prompte | | seman, or | | 81 | | | - | | planted, accord | | new | 128 | CBSD Seler | | salar | webr 2021 0 | 144 | | MATA. | 10 | | shortest | | | Market School (1979) (1979) | | - | | | | | | | | | | genera, puerspie | | 100000,10 | | | | - | | | planted, assett | | | 49 | | | | | | | | 20 | - | advantage. | | | Miles (moles), comes, 14, com | | | | | | | | | | | | peut, sump | | manager, an | | ** | * | - | | | and the | | | an . | CHECK Married | | | | | | | | | administrati | - 1 | | CORNER O PERSON AND AND ADDRESS OF THE PARTY. | | | | | | | | | | | | general prompts | | senso in | | | : | | | | | | == | | COST Service | | | | **** | | 40.00 | | | about of | | | PARTY A STREET, STREET, ST., SAN | | | | | | | | | | | | ADVIT OVER | | | | - | | - 1 | | | | | | | CARD COSTS | | | | | | | 400 | side without a combacted MQC | | - 1 | | NAMES A PROPER ASSESSED BY MAN | | | | | | | | | | | | general prompts | | 100000,00 | - 1 | | | - | | | 100 | | | 76168 | CARD COTT | | | | 1000 | | | m/A | color of their a combanied NGC | about of | - 1 | | Printed of States company of these | | | | | | | | | | 4 | | genera prompte | | 10000,00 | | | | | | | 100 | | 200 | 104 | CMID ST | - 1 | terne | Dennel 2023 A | 100% | | MAN A | MACA. | side either a contracted NQC | shedad | | | PRINCIPAL COLUMN | | | | | | | | | | 4 | | genera, puerspie | | 10000,00 | | | | | | | planet, acomp | | After construction | A17- | CHRON Maked | | | | Ave. | | MATE. | | side either a contracted NGC | | | | MARIE PARKET STREET, AT STREET, SATISFACE AND | | | | | | | | | | A | | genera, puerspie | | 100000,00 | | | | | | | and the | | new | 300 | CMID ST | | thornal | thermal 2021 8 | 100% | | MATS. | | side either a combacted NQC | | | | PRING 7 AM CORNER IN LINE | | | | | | | | | | A | | genera, puerspie | | summer, or | | | | | | | and the | | | 950 | 7 MIN 17 | | | | | | | | side either a contracted MQC | | | | PROBLEMS AND ADDRESS OF THE PARTY PAR | | | | | | | | | | A * / | | genera, pounção
parama pounção | | senso, re | | ** | | - | | | and the | | | 141 | CHECK Review? | | | Charact Still B | Manu | | MATE. | M/A | side either a contracted NGC
side either a contracted NGC | advanture! | - 1 | | PRINCIPAL CONTRACT OF SAME | | | | | | | | | | 4 | | gatery pastific | | some of | | | : | 7 | | | | | | 100 1 | CHINA Mount | | | | | | | 60 | coloration a comparing NGC | advanture! | - 1 | | PROPERTY AND ADDRESS OF THE | | 2 | | | | | | | | 4 | | appear purch | | some in | | - | : | - 1 | | | | | | 2111 | CHIEC BOAR | | | | 100 | | | | color withour a communited MCC | | - 1 | | PROPERTY AND LINES AND ADDRESS. | | | | | | 1 | | | | 4 1 1 | | sever owner | | some in | | | | | | | Married andres | | | | COSC II Belley | | | | 1000 | | | | color of their a combanied NGC | | - 1 | - 1 | FRANCE & PROPER AND ACT AND | | | | | | | | | | 4 | | | F10000, 0,00000 | 10000,00 | | | | - | | | planted, seeing | | 200 | 10 | CARD II Bettery | - 1 | hatter | battery 2023 9 | 100% | | MAN A | | deletiber a contracted MQC | | | | PRINCIPAL CONTROL OF THE PARTY | | | | | | | | | | 4 | | genera, puerspie | | 10000,70 | | ** | | | | | planet, acomp | | | 55 | COST II Beller | | | Automotive at | NAME | | MATE. | | side either a contracted NGC | | | | PRINCIPAL CONTROL OF THE | | | | | | | | | | A | | genera, puerspie | | 10000,00 | | ** | | | | | and the | | | 15 | 7 MIN 17 | | | | NAME | | MATE. | | side either a contracted NGC | | | | STREET & STREET STREET ST. NAME | | | | | | | | | | | | genera, puerspie | 1000 L 1000 | manager, pa | | | | | | | and the | | | 1.6 | CARD Reserve | | | | Artis | | MATE. | | side either a contracted MQC | | | | MARKET CONTROL CONTROL CONTROL | | | | | | | | | | A | | perce pumps | | control of | | ** | * | | | | and the | | | 14 | CARD Business | | | | Artic | | | | side either a contracted NGC
side either a contracted NGC | | | | STREET TOWN COMMAND IN COMM | | | | | | | | | | 4 | | | 1000 J 1000 | senso, in | | | : | | | | 100 | | | | CHICA Service 2 | | | | 1000 | | | | coloration a comparing NGC | | - : | - : | PERSONAL PROPERTY AND ADDRESS. | - 1 | - : | | | | | | | | 4 | | ARTER CHICAGO | | sense in | | | | | | | 100 | | 207 | 110 | CBSD Selec | | salar | veter 2021 8 | 278 | | 1013 | | color either a combacted NGC | | - 1 | | PROPERTY AND ADDRESS OF THE PARTY. | | | | | | | | | | 4 | | genera puenda | MARKET A STREET | man, a | - | | | | | | and the | | 100 | 200.2 | CRED Sales | | | | 100 | | | | color of their a combanied NGC | | | | STREET I STREET SECURIT SE SON | | | | | | | | | | 4 | | genera, pounde | | 100000,07 | | | | | | | and the | | 200 | 36 | CBSD Protect | | the real | Owner 2021 A | 100% | | MICA. | | side either a contracted NQC | | | | MERCA PROCESSOR COLORS | | | | | | | | | | A | | | MANUFACTURE . | 10000,00 | | ** | | | | | and the | | | - | CHECK Market | | | | | | | MAGA. | side either a combacted NQC | | | | MARK COMPANIES COMPA | | | | | | | | | | A | | | tunic potes | | | ** | | 1,000 | | | planned, assemp | | 10'S colling to Female Records SS | 40.00 | termine mentions | Attan | | | Ann | | | MATS. | side withor a combasted MSC | manufal at | | | tentir setus tetuloreseus tunaser | | | | | | | | | | 4 | | | Sandquia
Non-Month State | | | - | : | | | | places, some | | Assess Assessed Ministration and Ministr | 200 | CHICA Mines | | | | Ann | | | MAG. | anderest their a
combinated MQC
eth | | | | Transfer your plants through the saling is the | | | | | | | | | | | | | No. of Street | | | | | 100 | | | parent acres | | | | CHIEG Belley | | | | 100 | | | 225 | | | | | No. of Street, Street, Contractions | | | | | | | | | | | | | AND A COURSE | | | | | - | | | parent new | | AT | Atlant | | | - Common | | 1012 | | | | side without a combinational MCC | and the same | - 1 | - : | with the same of t | | | | | | | | | | | | genera, puerspie | samppoor, six, no. | | | | | - | | | planted, seeing | | 200 | | CASO Seler | 1 | salar | veter 2021 9 | 145 | | MAN A | angs. | deletiber a contracted MQC | mining arrests | | | sampane, siche, see | | | | | | | | | | 4 | | general pounds | Station, Secure, Select | | | ** | | - | | | new . | | Name Parameter of the Visit Associate Williams | | CHRO Select | | | | 144 | | * | 28 | | | | | for the box to the factories of the best fitting of the | | | | | | | | | | | | ARREST CHARGE | 200,00 | | | | | - | | | | | Example ETM bettery resource, Ultrium los ball, 50 | | | | | | | | | 10 | | new beatment | - | | THE R. LEWIS CO., LANSING MICH. LANSING MICH. | | | | | | | | | | | | | mm.com | | | | | | | | | | NAME AND ADDRESS OF THE PARTY O | - 20 | CMSO_leasimed | | unkneun | | 916 | | min. | | | AND DESIGNATION OF THE PERSON NAMED IN | | | 1000 C DOM: 100 | | | | | | | | | | | | Season broader | more, comme | | _ | - | | - | - | | - | | - | 81.5 | C880 COTT | | | Annual Still & | Manu | | | 400 | | and the same of | _ | | MANAGE INC. | | | | | | | | | | _ | _ | - . monthly_gwh_mw | | Test: Correct data type for resource | Test: Correct data type for Year | Test: Correct data type for Month | TEST: No blanks in energy and capacity data | TEST: No missing data | Test: Correct data type for max mw | TEST: NQC provided only once | TEST: Working ELCC type | |---|--------------------------------------|----------------------------------|-----------------------------------|---|-----------------------|------------------------------------|------------------------------|-------------------------| | I | 1 | 0 | 0 | 26 | 8 | 8 | 0 | 26 | unique_contracts | Test: Correct data | | TEST: All data provided for
contract | TEST: No fillmes | |--------------------|---|---|------------------| | 0 0 | 0 | 46 | 13 | ## monthly_gwh_mw | notes | max_mw | resource_type | currently_online | elcc_type | |-------|--------|---------------|------------------|-----------| | 3 | 8 | 1 | 6 | 1 | unique_contracts | online_date_for_new_resources | is_incremental | viability_cod_reasonableness | viability_technical_feasibility | viability_resource_sufficiency | viability_financing | |-------------------------------|----------------|------------------------------|---------------------------------|--------------------------------|---------------------| | 13 | 1 | 13 | 13 | 13 | 13 | Sizes that the first included any place decidably region in braining blacks and the second of se With the second | tiem.Reliability.Progress.Tracking Table (NQC.NRW) for month of September by contract status, 46 MMT postfolio | BLCC type | 3000 | 2021 | 2022 | 2023 | 2036 | 2005 | 2004 | 3027 | 2028 | 3029 | | |--|-----------------------------|---------|-------|---------|--------|---------|--------|---------|---------|---------|--------|----| | ante | wind low_cf | - | - | | | | - | - | - | - | - | ⊢ | | aritive | wind_high_cf | ì | _ | | | | ì | ì | | ì | ì | П | | artise . | Bromacc | | 60 | ĺ | į | | | | | | | Ш | | 200 | cagen | - | 30 | ĺ | | | | | | - | | | | 2004
2004 | geothermat | | - | | | | | | | - | - | | | 9009 | Tydro
Sterrod | | 20 | | | | | | | - | | - | | 9009
MM | Demai | | 20 | | | | | | | - | | - | | 900 | GOESHAY
CONTRACT | - | _ | - | - | - | - | - | _ | - | - | - | | 900 | NACHA! | | 22 | - | - | | | | | - | _ | + | | and | 603 | | | | _ | _ | · | _ | _ | | | + | | and | per
unitabas | | _ | | _ | | | | | | = | - | | Auditorial | wind low of | | _ | | | _ | | | | | | +- | | development | word high of | | - | | | | - | | | - | _ | t | | dryfianed | Doomacc | | - | | | | | | | | | 1 | | development | cagen | | - | | | | - | | | | | ┲ | | dryttapment | geomentat | ì | _ | | | | ì | ì | | ì | | П | | Severaposit . | Eyd-to | | - | | | | | | - | | - | ┲ | | Severaposit . | Devinal | , | - | | | | ì | , | , | , | | П | | development | Gallery | , | - | | | | ì | , | , | , | | П | | devisioned | nudikar | | | ĺ | į | | | | | | | Ш | | devisioned | G/Sr | - | _ | ĺ | | | | | | - | | | | development | psh | | - | | | | | | | - | ì | - | | development | unknown | - | 200 | 30 | | - | - | - | | - | | - | | Online
Online | wind low of
wind high of | | - | - | - | | - | - | | - | - | - | | (N/A) | Dromass. | | _ | | _ | _ | | _ | _ | | | - | | (N/A) | CONTRACT | | _ | | _ | | | | | | = | - | | (D)DW | properties | | _ | | | _ | | | | | | +- | | (D)DW | Tyd/0 | | - | | | | - | | | - | _ | t | | COOK COOK | Demo | | 600 | | | | | | | _ | _ | +- | | inche . | Gallery | | _ | | | | | | - | - | _ | t | | Christ | nuclear | | - | | | | | | | | | 1 | | review | e/or | | 28 | | | | - | | | | | ┲ | | Orelow | psh | ì | _ | | | | ì | ì | | ì | | П | | review | unknown | | 50 | ĺ | į | | | | | | | Ш | | planned secting | wind low of | | - | | | | | | | - | _ | - | | planned secting | word high of | | 60 | | | | | | | - | _ | - | | planned existing
planned existed | Dromacs | - | _ | - | - | - | - | - | _ | - | - | - | | planed_secting | geothermal | | - | - | - | | | | | _ | _ | - | | scened working | Tydy) | | _ | _ | _ | _ | | _ | _ | | | - | | CONTRACTOR | Device | _ | | _ | _ | _ | _ | _ | _ | | _ | - | | CONTRACTOR | 500110 | | 225 | - | - | - | - | | | _ | | - | | ponent exclusi | 16093 | | _ | | | | | | | _ | _ | +- | | stanned mixted | 900 | | 22 | - | - | - | - | - | | | | 1 | | planed sectors | 60) | - | _ | - | | - | - | - | | - | | 1 | | planned existing | unknown | | | | - | | - | | | | | т | | planted new | wind low of | | | | | | | | | | | П | | planted new | wind high of | | | | | | - | | - | - | - | | | planted new | biomacs | | _ | | | | | | | | _ | ı | | planted year | cagen | | | | - | | | | | - | - | - | | planted new
stanted new | geothermal
Tydio | - | - | - | | - | | - | _ | | _ | ۰ | | planted new | The road | | | _ | _ | _ | | | | _ | _ | + | | ganed year | Sterood
Satisfy | | _ | - | - | - | | - | | | _ | ۰ | | Sand or | nucry | | _ | | | | | | | | _ | + | | glanted new | 900 | | _ | | | | | | | | | ۰ | | stanced new | 663 | | _ | | | | | | | | _ | +- | | planed yew | unknown | | _ | | | | | | | | | ┰ | | TOTAL supply, NOC NAW | | | 1011 | - 11 | - | - | - | - | | | | 1 | | Load (MW) | | 1,003 | 1,000 | 1,002 | 1,006 | 1,009 | 1,000 | 1,008 | 1,028 | 1,008 | 1,012 | 1 | | Good +SSYL PRM (MW) | | 1,183 | 1,190 | 1,112 | 1,230 | 1,580 | 2,200 | 1,170 | 1,179 | 1,582 | 1,187 | т | | Supply releas had shortfull () or Surplus (+), to MW | | (3.165) | 133.0 | (3.11%) | (1.3%) | (3.380) | 13,200 | (3.170) | (3.376) | (3.582) | 13.387 | - | | data_source
template_list
template_list | resource CAPMAD_1_UNIT 1 PUTE 6_GNESS1 | generator_name
0 | MAXGEN
4.64 | resolve_final_group
0
0 | resource_supertype
physical
physical | note_required
none
none | is_baseline is_in
1
0 | cremental curr | rently_online elcc type 1 unknown | |--|---|--|-----------------------------|---|--
--|-----------------------------|----------------|--| | template_list
template_list
template_list | PIUTE_6_GNBSR1
PRCTV_1_MGBT1
RECTGR_2_TFDBM1 | 0 | 2 | 0 | physical
physical | none | 0 | 1 | 1 unknown
1 unknown | | template_list
template_list | Tularé 2. Tuebas
Guenns 6. Hosems
Guenns 6. Mysrams | Tutare BioMAT Fuel Cell Hanford Digister Genset 3 Hanford Digister Genset 2 | 2.8
1.3
1.1 | 0
CAISO_Biogas
CAISO_Biogas | physical
physical | none
none | 1 | 0 | 1 unknown
1 biomass | | template_list | GUERNS_6_VH28M1
KYCORA_6_KMSBT1 | Kearny Mesa Storage | 1 | CAISO_Biogas
CAISO_Li_Battery | physical
physical | none | 1 | ô | 1 biomass
1 battery | | template_list
ruling_list | KYCORA, 5, KMSBT1 SANLOB, 1, OSFBM1 SPHAND, 1, ANDSN2 WSENGY, 1, UNIT 1 | HZIU Kompogas SLO
SPI Biomass Portfolio
Whitelabriator Shasta | 0.85
58
54.9 | CAISO_Biomass
CAISO Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 unknown
1 biomass | | ruling_list
ruling_list
ruling_list | WAINUT 6 HILLEN PANDOL 6 UNIT | Versitation (International L.A. Co. Sanitation (International L.A. Co. Sanitation (International Control (Internationa) Control (International Control (International Control (Internat | 50
49 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | COGNAT_1_UNIT
MESAS_2_OF
OUNDA_2_ENDFL2 | DTE Stockton
Total Energy Facilities | 45
38.4 | CAISO_Biomass
CAISO Biomass | physical
physical | none | 1 | ö | 1 biomass
1 biomass | | ruling_list | | Brea Expansion Plant
HL Power | 38.4
32.8
32 | CAISO Biomass
CAISO Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | BURNYF 2, UNIT 1
WADHAM, 6, UNIT | Burney Forest Products
Wadham Energy LP | 31
29.07 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | ô | 1 biomass
1 biomass | | ruling_list
ruling_list | PACLUM, 6, UNIT ULTPFR_1_UNIT.1 H.W. HII Landfill Gas Power Plant AKA ROOSEVELT BIOGAS | Eel River Power LLC
Rio Bravo Fresno | 28.8
26.5 | CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | H. W. Hill Landfill Gas Power Plant AKA ROOSEVELT BIOGAS
BIOMAS_1_UNIT 1
MENBIO_6_UNIT | H.W. Hil Landfill Gas Power Plant AKA ROOSEVELT BIOGAS
Woodland Biomass
Covanta Mendota L.P. | 26
25.5
25 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none | 1 1 | 0 | 1 biomass
1 biomass | | ruling_list | ULTRCK 2 UNIT
STNRES 1 UNIT | Rio Bravo Rocklin Stanislaus Resource Recovery Facility | 25
24 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | ULTPCH_1_UNIT 1
THMENG_1_UNIT 1 | Pacific-Ultrapower Chinese Station
Thermal Energy Dev. Corp. | 22
21 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | | | Coyote Canyon
Sunshine Landfill | 20
18.96 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling list
ruling list
ruling list | SUNSHN, 2, LNDPL
FAIRHY, 6, UNIT!
MOORRY, 2, CALABS
ILSWINDL 2, IMITS | Summing Lancess DG Faithwaven Power, LLC Callabasas Gas- to-Energy Wasse Management Reserveduble Frengy | 18.75
13.8
13.2 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | COLPIN 6 COLLINS Orange County Sanitation District (f/k/a 1098) | Collins Pine Orange County Sanitation District (f/k/a 1098) | 12
12 | CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass | | ruling_list
ruling_list | | | 12
10.8 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list | BELIEVE B. BLOCKA
CHIVCHIL 1 BIOMAS
OXMTN 6 LINDFIL
ELNIDP_6_BIOMAS | Chromotorium Communication Com | 10.62
10.5 | CAISO_Biomass | physical
physical | none | 1 | ô | 1 biomass
1 biomass | | ruling list
ruling list
ruling list | PEABOY 2 LNDFL1
CHINO 2. QF
SAUGUS 7 CHIQON | Potrero Hills Landfill L.A. Co. Saritation Dist Spadra Chiquita Camyon | 8 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | WALNUT 7 WCOVST
OAK L 7 EBMUD | MM West Covina LLC, Gen 2 EBMUD WWTP Power Generation Station | 7.1
6.45 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | ö | 1 biomass
1 biomass | | ruling_list
ruling_list | CPSTNO_7_PRMADS
SAUGUS_7_LOPEZ | MM Prima Deshecha
MM Lopez Energy LLC | 6.1
6.1 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | CSTRVL_7_P11X2
MSHGTS_6_MMARLF | Marina Landfill Gas (Monterey Regional Waste Management Dst)
MM San Diego-Miramar (RAM) | 5.08
5 | CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | SNMALF 6_UNITS PLINTS 7_UNLIND CBRILD 6 PLITP1 | Sonoma County Landfill LFGTE Project
Lincoln Landfill - WPWMAA
City of San Diego - Point Loma | 4.98
4.8 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | OAKL_6.TG1 CORRAL_6.SIGAQN | EBMUD WWTP Digesterr Gas Turbine Ameresco San Joaquin LLC | 4.6
4.34 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list | CAYTNO_2_VASCO | Ameresco Vasco Road LLC | 4.34
4.34 | CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | Gas Recovery Sys. (Newby Island 2)
RHONDO_6_PUENTE | Gas Recovery Sys. (Newby Island 2)
L.A. Co. Sanitation Dist CSD 2650 | 4.2
3.9 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | OTAY 7. UNITC1
VALLEY 7. UNITA1
KIRKER 7. KELEYN | Otay Landfill 3
WMRS El Sobrante
Kaller Canyon Landfill (Pæsburg) | 3.8
3.77
3.56 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | WHEATL, 6, INDFIL TRANS JORDAN | Ostrom Road aka G2 Energy Project TRANS IORDAN | 3.55 | | physical
physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list | WHEATL, 6 LINDFIL TRANS JORDAN GRINNY, 7 JULIAND OTAY, 6 LINTE1 | Ameresco Santa Cruz Energy Otay Landfill I | 3.36
3.04
3 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 1 | 0 | 1 biomass
1 biomass
1 biomass | | ruling list
ruling list | GOLETA 6 TAHOS
CHINO 7 MILION
ETIVINO 7 MIDVY | MM Tajiguas Energy LLC
MN Milliken Genco LLC, Unit 1-2 | 2.84
2.6
2.6 | CAISO Biomass
CAISO Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | ETIWIND <u>7</u> , MIDVAY
RICHMIN <u>7</u> , BAYENV
MOORIYK, 7, UNITAL | MN Mid Valley Genco LLC, 1-2
Nove Power Plant
WMES Simi Valley | 2.6
2.5
2.49 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | CHILIS_7_UNITA1 Salt Lake Landfill Gas Recovery | Sycamore Energy 2 LLC Salt Lake Landfil Gas Recovery | 2.49
2.25
2.24 | CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none | 1 1 | 0 | 1 biomass
1 biomass
0 biomass | | ruling_list
ruling_list | ESQUON_6_LNDFIL Southeast Director Gas Cozen Plant | Butte County Neal Road Landfill Southeast Disester Gas Cosen Plant | 2.16
2.1 | CAISO Biomass
CAISO Biomass | physical
physical | none
none
none | 1 | ŏ | 1 biomass
1 biomass | | ruling_list
ruling_list | CSTRVL_7_QFLINTS OLDRIV_6_BIOGAS | Monterey Regional Water
ABEC Bidant-Old River LLC | 2 2 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | PEABOY 2. INDFIL
Gas Recovery Sys. (American Cyn)
SANCOSINDFIL | Hay Road - Silicon Valley Biomacs Gas Recovery Sys. (American Cyn) Toro S.Cl Landfill | 1.6
1.5 | CAISO_Biomass
CAISO Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | | | Toland Road Landfill | 1.5
1.5
1.5 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | CHILLS 1 SYCENG
SAMCOS 6 INDFIL
OTAY 6 INDFIL | San Marcos Energy
Otay Landfill V | 1.5
1.5 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list
ruling_list | OTAY, 6. UNDFL6
Central Valley Ag Power
SSQUC_1_SMARIA | Otay Landfil VI
Central Valley Ag Power | 1.5
1.5
1.42 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | | Santa Maria II | 1.42 | | physical
physical | none | 1 | ô | 1 biomass
1 biomass | | ruling list
ruling
list
ruling list
ruling list | VALLEY . T. BADIND CSTOGA . 6 (ADORL Ortigalita Power Company (Madera Project) | Badlands Landfill (Riverside County San. District) Clover Flat LFG Ortigalian Down Company (Madera Project) | 1.42
1.1
0.85
0.75 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | TUPMAN 1, BIOGAS
Inland Empire Utilities Agency | ABEC Bidart-Stockdale LLC
Inland Empire Utilities Agency | 0.6
0.58 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | City Of Watsonwille
Castelanelli Bross. Biogas
Boyal Farms #2 | City Of Watsonville
Castelanelli Bros. Biogas | 0.55
0.3
0.1 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
ruling_list | Royal Farms #2
Blake's Landing - 80kW Generator
Sierra Pacific Industries (SPI) REC Purchase Amended & Restated | Royal Farms #2 Blaks's Landing, 20kW Generator Sierra Pacific Industries (SPI) REC Purchase Amended & Restated | 0.1
0.08
0 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | ruling_list
template_list
template_list | blended
New Li Rattery | O O | AN/A | blended
CAISO_Battery | physical
special
new_resolve | filme_approximate resource mix, carbon content
filme_name,type,mw | 1 | 0 filme | 1 biomass
unknown | | template_list
template_list | new_c_scores new_generic_battery_storage existing_generic_battery_storage | 0 | #N/A | CAISO_Battery
CAISO_Battery | new_resolve
new_generic | filme_name,type,mw | 0 | 1 | 0 battery
0 battery | | added
template_list
template_list | existing generic battery storage SANTGO 2 LNOPL1 SANTR 6 LNITS | Bowerman Power | #N/A
19.6 | CAISO_Battery
CAISO Biogas | existing generic
physical
physical | none | 0 | 1 0 | 1 battery
1 biomass | | template_list
template_list
template_list | USWND4 2 UNIT2 | LACSD CARSON WATER POLLUTION AGGREGATE Altarment Landfill Gas to Energy MWWTP PGS 1 - ROINIES | 7.4 | CAISO_Biogas
CAISO_Biogas
CAISO_Biogas | physical
physical
physical | none
none
none | 0 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list | OAK C. 1. EBMUD
DAVIS 7. MINIETH
NOVATO, 6. (NOPL | MWWY PAS 1 - ENGINES
MM Yolo Power LLC
Redwood Renewable Energy | 6.9
4
3.9 | CAISO_Biogas
CAISO_Biogas | physical
physical
physical | none
none | 1 1 0 | 0 | 1 biomass
1 biomass | | template_list
template_list | Central CA Fuel Cell 2
Lakeside Biogas LLC
Santa Barbara County Public Works Department | Central CA Fuel Cell 2 Lakeside Bioges LLC Santa Barbara County Public Works Department | 3 | CAISO_Biogas
CAISO_Biogas
CAISO_Biogas | physical
physical | none | 0 | 1 | 1 biomass
1 biomass | | template_list
template_list | Diamond H Dairy Power | Diamond H Dairy Power | 2.274 | | physical
physical | none
none | 0 | 1 1 | 1 biomass
1 biomass | | template_list
template_list
template_list | PSWEET_1_STCRUZ Organic Energy Solutions Verwey-Hanford Daily Digester Genset #2 | Santa Cruz Energy LLC Organic Energy Solutions Verwer-Hanford Dairy Dissester Genset #2 | 1.6
1.6
1.028 | CAISO_Biogas
CAISO_Biogas
CAISO_Biogas | physical
physical
physical | none
none
none | 0 | 0 | 1 biomass
1 biomass | | template_list
template_list | Verwey-harmord bary trigoster Gambar w2 Verwey-harmord Dairy (tggsster III GANSO_1_WSTBM1 | Verwey-Hariford Dairy Digester III Westestar Dairy Biogas | 1.028 | CAISO_Biogas
CAISO_Biogas | physical
physical | none | 0 | 1 | 1 biomass
1 biomass | | template_list
template_list | | Ces Dairy Biogas | 1 1 | CAISO_Biogas
CAISO_Biogas
CAISO_Biogas | physical
physical | none | 0 | 1 1 | 1 biomass
1 biomass | | template_list | OLDRIV 6_LKVBM1 David Tevelde Dairy Digester San Luis Oblepo AD | Lakeview Dairy Biogas
David Tewelde Dairy Digester
San Luis Obiogo AD | 1
0.853 | CAISO_Biogas | physical
physical | none | 0 | 1 | 1 biomass
1 biomass | | template_list
template_list | Open Sky Dairy Digester #2
Van Der Kool Dairy Digester | Open Sky Dairy Digester #2
Van Der Kool Dairy Digester | 0.8 | CAISO_Biogas
CAISO_Biogas | physical
physical | none | 0 | 1 | 1 biomass
0 biomass | | template_list
template_list
template_list | Two Fiets SCHNDR, 1_0528M2 | Two Fiets
Verwey Madera Dairy Digester Genset #2
0 | 0.8
0.8
#N/A | CAISO_Biogas
CAISO_Biogas
CAISO_Biomass | physical
physical
new_resolve | none
none
filme_name,type,mw | 0 | 1 | 1 biomass
1 biomass | | template list | new generic biogas landfilgas
new generic biomass/wood | 0 | #N/A | CAISO_Biomass
CAISO Biomass | new generic | none | 0 | 1 | 0 biomass
0 biomass | | template_list
template_list
template_list
template_list | new generic, biomassi/wood
LASSEN_6_UNITS
SPQUIN_6_SRPCQU | Honey Lake Power
0 | 30
24
22 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | new_generic
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | template_list | SPBURN 2, UNIT 1
LAPAC 6, UNIT
SH U, 2, UNIT 1 | LOUISIANA PACIFIC SAMOA | 22
20
17.2 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none | 1 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list
template_list | STU_Z_OWN I BiomassOnviGE1 SNCLRA_2_HOWLING OLINDA_7_BUSNO | Biomass One LP-GE
0 | 17.2
14.4
13 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | ŏ | 1 biomass
1 biomass | | | OLINDA_7_BLISND
OLINDA_7_LNDFIL | BlackSand Generating Facility OLINDA_7_LNDFIL | 8
5.6 | | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list | OLINDA 7, LNDFIL
OtayLF3
Prima_Plant1
Prima_Plant2 | Otay-OTA3, 22604
Prima Plant-UNT1_22112
Prima Plant-UNT2_22112 | 3.75
3
3 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 1 | 0 | 1 biomass
1 biomass | | template_list
template_list | Blue Mountain Electric Company Hat Creek Bioenergy, LLC | Blue Mountain Electric Company Hat Croek Ringnerey LLC | 3
2.88 | CAISO Biomass
CAISO Biomass | physical
physical | none | 0 | 1 | 1 biomass
1 biomass
0 biomass | | template_list
template_list | Pointioma1
Pointioma2 | Point Loma 1_POINT LOMA WASTEWATER TREATMENT PLANT-1_CABRILLO_Point Loma
Point Loma 2_POINT LOMA WASTEWATER TREATMENT PLANT-1 | 2.29
2.29 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass
1 biomass
1 biomass | | template_list
template_list | North Fork Community Power ClayLE1 MM SD Micramar2 | North Fork Community Power OTAY LANDFILL UNIT 1, 22604 MM Comp. Dispo. Micropart UNIT 2, 22604 | 2
1.88
1.6 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none | 0 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list | DALYCT_1_FCELL
DIXMID_1_LMDB | MM San Diego-Miramar-UNT2_22448
0
0
Zero Wacte Energy | 1.6
1.6
1.6 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass
1 biomass | | template_list
template_list | DoubleADigester1 DoubleADigester2 | Double A Digester-1
Double A Digester-2 | 1.5
1.5 | CAISO_Biomass
CAISO_Biomass | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list | DoubleADipoterS BOLINAPE CASTN. 2, PCELL | Double A Digester-3
MM Tulane | 1.5
1.5 | CAISO_Biomass
CAISO Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | template_list
template_list
template_list | CASTVL_2_FCELL CargilleBilot CargilleBilot | O Cargill 86 Biofactory-1 Cargill 86 Biofactory-2 | 1.4
1.1
1.1 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | template_list
template_list | Napa Recycling Biomass Plant
DAIRLD 1 MD28M1 | Cangill 86 Biofactory-2
Napa Recycling Biomass Plant
0 | 1.1
1
0.8 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical
physical | none | 0 | 1 | 1 biomass
0 biomass
1 biomass | | template_list
template_list | BigSky1
BigSky2
Pocatello_Waste | Big Sky Dairy Digester-GEN1
Big Sky Dairy Digester-GEN2 | 0.75
0.75
0.46 | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
physical | none
none
none | 1 | 0 | 1 biomass
1 biomass | | template_list | Pocatello_Waste
HooleyOigester1 | Pocatello Waste-1
Hooley Digester-IC1 | 0.46
0.2
0.2 | | physical
physical | none | 1 | 0 | 1 biomass
1 biomass | | template_list
added
added | HooleyOigester1 HooleyOigester2 existing_generic_bioges_landf8igas existing_generic_biomass/wood | Hooley Digester-IC2 | 0.2
RN/A
RN/A | CAISO_Biomass
CAISO_Biomass
CAISO_Biomass | physical
existing generic
existing generic | none
none
none | 0 | 1 | 1 biomass
1 biomass
1 biomass | | ruling_list
ruling_list | HIDSRT_2_UNITS DELTA_2_PLXM4 | HIGH DESERT POWER PROJECT AGGREGATE DELTA ENERGY CENTER AGGREGATE | 830
813 | CAISO_CCGT1
CAISO_CCGT1 | physical
physical | none | 1 | 0 | 1 thermal | | ruling_list
ruling_list
ruling_list | LEBECS_2_UNITS
HumBearhCC_Total | Pastoria Energy Facility Huntinaton Beach |
765
644
641 | CAISO_COGT1
CAISO_COGT1
CAISO_COGT1 | physical
physical | none
none
none | 1 | 0 | 1 thermal
0 thermal
1 thermal | | ruling list | COLUSA, 2, PLIX3 AlambooCC-Total | Colusa Generating Station Allamitos OTAY MESA ENERGY CENTER | 641
640
603.6 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical | none | 1 | 0 | 1 thermal
0 thermal | | ruling_list
ruling_list
ruling_list | OTMESA_2_PLIX3
TERMEX_2_PLIX3
METEC_2_PLIX3 | OTAY MESA ENERGY CENTER TDM Metcalf Energy Center | 603.6
596
593.16 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none
none | 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list | SUNRIS_2_PLIX3
GATWAY 2_PLIX3 | Mescall Energy Centar Sunrise Power Project AGGREGATE II GATEWAY GENERATING STATION | 593.16
586.02
585 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none | 1 | 0 | 1 thermal
1 thermal
1 thermal | | | DATE OF THIS PALOMR 2 PLIXS SBERDO 2 PSP3 | Los Medanos Energy Center AGGREGATE | 580 | CAISO_CCGT1
CAISO_CCGT1 | | none | 1 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list | | Palonn ar Energy Center
Mountainview Gen Sta. Unit 3
Mountainview Gen Sta. Lutst 4 | 575
555
555 | CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none
none | 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list | MOSSLD 2, PSP1
MOSSLD 2, PSP2
MRCHWT 2, PLLX3 | MOSS LANDING POWER BLOCK 1
MOSS LANDING POWER BLOCK 2
Desert Star Energy Center | 510
510
419.25 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none | 1 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list
ruling_list | MACHNT 2, PLIXS EURIL 2, PLIXS LOBIC 2, PLIX2 ELSEGN 2, UNIZO21 | ELV HILLS COMPINED CYCLE (AGGREGATE) | 200 | | physical
physical
physical | none | 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list | | E. Golden and Company Content 7/8 La Palama Generating Plant Unit #2 La Palama Generating Plant Unit #2 | 302.58
263.68
260.2 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical | none
none | 1 | 0 | 1 thermal
1 thermal | | ruling list
ruling list
ruling list
ruling list | LAPAMA, 2. UMT 1 | La Palcoma Generating Plant Unit #1 La Palcoma Generating Plant Unit #1 La Palcoma Generating Plant Unit #3 La Palcoma Generating Plant Unit #3 La Palcoma GeneRaTING Plant Unit #3 | 259.8
256.15
253.29 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none
none | 1 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list | LAPEMA Z_UNIT 4
GLROY_1_UNIT
LGHTHP_6_CECEEN | LA PALCOMA GENERATING PLANT, UNIT #4 GILROY COGEN AGGREGATE CARSON COGENERATION | 253.29
120
48 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none
none | 1 1 | 0 | 1 thermal
1 thermal | | ruling_list
ruling_list
ruling_list | CALPIN_1_AGNEW | CARSON COGENERATION Agness Power Plant 0 0 0 | 28.56 | CAISO_CCGT1
CAISO_CCGT1
CAISO_CCGT1 | physical
physical
physical | none | 1 | 0 | 1 thermal
1 thermal
0 thermal | | ruling list | Huntington Beach Puente Power Project | 0 | 640
644
262 | CAISO_CCGT1
CAISO_CCGT1 | physical
physical | none
none | 1 | 0 | 0 thermal
0 thermal | | ruling_list | | | | | | | | | | | ruling_list
ruling_list | TBD (Alamitos) TBD (HuntingtonBeach) | 0 | 640
644 | CAISO_CCGT1 phr
CAISO_CCGT1 phr | sical none sical none | 1 | 0 thermal | |--|--
---|--|--|--|--------------------------------------|---| | template_list
template_list | new_generic_combined_cyde
INLDEM_S_UNIT 1 | 0 | #N/A | CAISO_CCGT1 new_ | reneric none | 0 | 1 0 thermal | | template list | ALAMIT 2 PLIX3 | Inland Empire Energy Center, Unit 1
Alamitos Energy Center Unit 7 | 376.2
680 | CAISO_CCGT1 phr | sical none | 1 | 1 thermal 1 thermal | | template_list
template_list
template_list | HNTGBH 2. PLIX3
MAGNUL G. PASADENA
MAGNUL G. COLTON | Huntington Beach Energy
Magnolia Power Plant - PASADENA | 669
18
10 | CAISO_CCGT1 phy | sical none
sical none | 1 | 0 1 thermal
0 1 thermal | | added | MAGNIA_6_COLTON existing_generic_combined_cycle | Magnolia Power Project | 89474 | | sical none
seneric none | 1 0 | 0 1 thermal
1 thermal | | ruling_list
ruling_list | existing_panaric_combined_cycle
RUSCTY_2_UNETS
BUCKBL_2_PLIX3 | Russell City Energy Center
Blythe Energy Center | 613.22
493.63 | CAISO_CCGT2 phr
CAISO_CCGT2 phr | sical none
sical none | 1
1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | LAROAZ 2. UNITAS
SCHITE : PILXS
LECEF 3. UNITS | 183 | 322 | | sical none sical | 1 | 0 1 thermal | | ruling_list
ruling_list | | Tracy Combined Cycle Power Plant LOS ESTEROS ENERGY FACILITY AGGREGATE EL Segundo Energy Center 5/6 | 314.34
304
263 | CAISO_CCGT2 phr | sical none sical none | 1 | 0 1 thermal | | ruling_list
ruling_list | DUANE 1 PLIX3
VERNON 6 MALBRG | DONALD VON RAESFELD POWER PROJECT | 143.5
134 | CAISO_CCGT2 phr | sical
none | i | 0 1 thermal | | ruling_list | | Malburg Generating Station
HARBOR COGEN COMBINED CYCLE | 100 | | sical none | i | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | AGRICO 7. UNIT
CORONS, 6. CLRWTR | Fresno Cogen
Clearwater Power Plant | 50.6
28
0 | CAISO_CCGT2 phr | sical none
sical none | 1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | LAROA1_2_UNITA1
ARCOGN_2_UNITS | LR1
WATSON COGENERATION | 416.6 | CAISO_CHP phy | sical none sical | 1 1 | 0 1 thermal 0 1 cogen | | ruling_list
ruling_list | CROKETUNIT
CHEVMN_2_UNITS | CROCKETT COGEN CHEVRON U.S.A. UNITS 1 & 2 AGGREGATE | 240
124.87 | CAISO_CHP phy
CAISO_CHP phy | sical none
sical none | 1 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list | BASICE_2_UNITS
TIDWTR_2_UNITS | CALPINE AMERICAN I COGEN. MARTINEZ COGEN LIMITED PARTNERSHIP | 120
114.8 | | sical none
sical none | 1 1 | 0 1 cosen
0 1 cosen
0 1 cosen | | roling list | SYCAMR 2 UNIT 1 | Sycamore Cogeneration Unit 1 | 80
80 | CAISO CHP phy | sical none | 1 1 | 0 1 cogen | | ruling_list
ruling_list
ruling_list | SYCAMR_2_UNIT3
STORS_1_UNITS
KERNRG_1_UNITS | Sycamore Cogeneration Unit 3 Chevron Richmond Refinery South Betridge Cogen Facility | 62.5
55.2 | CAISO_CHP phy
CAISO_CHP phy | sical none sical none sical none | 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list
ruling_list | PERMET 4 HAUTE | KERN FRONT LIMITED YUBA CITY COGEN | 52.4 | CAISO CHB ele | sical none sical | 1 | 0 1 cosen
0 1 cosen | | ruling_list | YUBACT 1 SUNSWT
ESCO 6 GUMQF
UNGCAL 1 UNITS | Goal tine Cogen | 49.97
49.9
49.85 | CAISO_CHP phy | | 1 | 0 1 cogen | | ruling_list
ruling_list
ruling_list | GRNEF2 LINIT
GRNEF2 LINIT
SNCIRA_6_PROCGN | GREENLEAF II (COGEN PROCTER AND GAMBLE OXNARD II | 49.5
49.5 | CAISO_CHP ph
CAISO_CHP ph | sical none | 1 | 0 1 cogen | | ruling_list
ruling_list | DISCOV_1_CHEVRN | | 48.8 | | sical none | 1 | 0 1 cogen
0 1 cogen | | ruting_list | DISCOV. 1. CHEWIN
SINCLIRA. 6. OXIGEN
SGREOY, 6. SANGER | E.F. OXNARD INCORPORATED
DYNAMIS COGEN | 48.5
48.3 | CAISO_CHP phr | sical none
sical none | 1 | 0 1 cozen
0 1 cozen | | ruling_list
ruling_list | HOLGAT 1 BORAX | EXIDN COMPANY USA U.S. Borax, Unit 1 MT.POSO COGENERATION CO. | 48.2
48.2
46.64 | CAISO_CHP phr | sical none
sical none | 1 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list | MTNPOS_1, UNIT
SALIRV_2_UNIT | SALINAS RIVER COGEN CO. | 39 | | sical none
sical none | i
i | 0 1 comen
0 1 comen | | ruling_list
ruling_list | UNVRSY_1_UNIT_1
TENGEN_2_PLIX2 | Berry Cogen 38 - Unit 1
Berry Cogen 42 | 38
37.59 | CAISO_CHP phr
CAISO_CHP phr | sical none
sical none | 1
1 | 0 1 cogen
0 1 cogen
0 1 cogen | | ruling_list
ruling_list | KINGCO_1_KINGBR VEDDER_1_SEKERN | Kingsburg Cogen TEXACO EXPLORATION & PROD ISE KERN RIVER | 34.5
34.47 | CAISO_CHP phr | sical none
sical none | 1 1 | 0 1 cogen | | ruling list
ruling list | ETWWD 2 UNIT1
HINSON 6 CARBGN | New-Indy Ontario, LLC
BP WILMINGTON CALCINER | 33.6
30 | CAISO_CHP phr | sical none sical | 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list | SNCLRA 2_UNIT1
GRZZLY_1_BERKLY | New Indy Oxnard PE - BERKELEY, INC. | 27.8
26.35 | CAISO_CHP phy
CAISO_CHP phy | sical none | 1 | 0 1 cogen
0 1 cogen
0 1 cogen | | roling list | CHINO 6 CIMGEN | O.L.S. ENERGY COMPANY - CHINO KELCO QUALIFYING FACULTY | 26
25 | CAISO CHP phy | sical none | į | 0 1 cogen | | ruling_list
ruling_list | SAMPSN 6 KELCO1
CHEVCY 1 UNIT | CHEVRON USA (CYMRIC) | 24.3 | CAISO_CHP phy | sical none | 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list
ruling_list | PTLDMA_6_NTCOF DEVZEL_1_UNT SEARS_7_ARGUS UNCHEM_1_UNIT | NTC/MCRD COGENERATION Western Power and Steam Cogeneration NORTH AMERICAN ARGUS | 22.3
20
19 | CAISO CHB ele | sical none sical none sical none | 1 1 | 0 1 cogen
0 1 cogen
0 1 cogen | | ruling_list
ruling_list | | CONTRA COSTA CARBON PLANT | 19
19
17 | CAISO_CHP phy | | 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list
ruling_list | TANHIL 6. SOLART
CHEVCO_6_UNIT 1
CHEVCO_6_UNIT | BERRY PETROLEUM COGEN 18 AGGREGATE
CHEVRON USA (COALINGA)
CHEVRON USA (TAFT/CADET) | 17
16.5
11.5 | CAISO_CHP phy
CAISO_CHP phy
CAISO_CHP phy | sical none | 1 | 0 1 cogen | | ruling_list
ruling_list
ruling_list | TXMCXT_6_UNIT | | | CAISO_CHP phy | sical none
sical none | 1 | 0 1 cogen
0 1 cogen | | ruting_list | Tamack 6 lunt
sberdo 2. qf
goleta, 6. ganota | SAN BERJUNO QFS Point Arguello Pipeline Company | 10.6
9.9
8.5 | CAISO_CHP phr | sical none
sical none | 1 | 0 1 cosen
0 1 cogen | | ruling_list
ruling_list | | AERA ENERGY LLC. (COALINGA)
SRI INTERNATIONAL
Fullow Of Aggregate | 8.5
6.9 | CAISO_CHP phy
CAISO_CHP phy | sical none
sical none | 1
1 | 0 1 cogen
0 1 cogen | | ruling_list | SRINTL 6. UNIT
FELLOW 7. QENITS
FRITO_1_UAY | | 6.9
6.2
6 | | sical none
sical none | i
i | 0 1 cosen
0 1 cosen | | ruling list
ruling list | STAUFF 1 UNIT
CLRMTK 1 QF | RHODIA INC. (RHONE-POULENC)
SMALL OF AGGREGATION - OAKLAND | 4.6
1.25 | CAISO_CHP phr
CAISO_CHP phr | sical none | 1
1 | 0 1 cogen
0 1 cogen
0 1 cogen | | ruling_list
ruling_list | MISSIX_1_QF
GRNLF1_1_UNITS | SMALL OF AGGREGATION - OALDAID SMALL OF AGGREGATION - SAB FRABCUSCI GREENLEAF BL COGEN AGGREGATE | 1 0 | CAISO_CHP phr | sical none
sical none | i
i | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list | CENTER 2. OF
COLGAI 6 SHELLW | CENTER QFS COALINGA COGENERATION COMPANY | 0 | CAISO_CHP phr | sical none
sical none | 1 | 0 1 cogen
0 1 cogen
0 1 cogen | | ruling_list
ruling_list | DIVSON 6 NSOF
MIDSET 1 UNIT 1 | DIVISION NAVAL STATION COGEN MIDSET COGEN. CO. | 0 | CAISO_CHP phy | sical none | į | 0 1 cosen
0 1 cosen
0 1 cosen | | | MIRLOM 6 DELGEN | CORDNA ENERGY PARTNERS LTD. NORTH ISLAND OF | 0 | | siral none | 1 | 0 1 cogen | | ruling_list
ruling_list | NIMTG_6_NIQF
PTLOMA_6_NTCCGN
SARGNT 2 UNIT | AEI MCRD STEAM TURBINE | 0 | CAISO_CHP ph | sical none | 1 | 0 1 cogen
0 1 cogen | | ruling_list
ruling_list | SAUGUS 6 PTCHGN | SARGENT CANYON COGEN. COMPANY COUNTY OF LOS ANGELES PITCHLE | 0 | CAISO CHB ele | sical none sical | 1 | 0 1 cogen
0 1 cogen
1 0 cogen | | ruling_list
template_list
template_list | new_generic_cogen
HINSON_6_SERRGN | 0 | #N/A
34 | CAISO_CHP new_
CAISO_CHP phr | peneric none
sical none | 1 | 0 1 cogen | | template_list
template_list
template_list | SNCIRA, Z. UNIT
SNFBD, Z. PLIXZ
PLIXSS, G. HOSER | Channel Islands Power
0 | 27.5
7.5 | CAISO_CHP ph
CAISO_CHP ph
CAISO_CHP ph | sical none
sical none | 1 | 0 1 cogen
0 1 cogen | | | | High Sierra Cogeneration Aggregate
Grossmont Hospital | 4.12 | CAISO_CHP phy | sical none
sical none | 1 1 | 0 1 cogen
0 1 cogen | | template_list
template_list | NINTG & NICCIÓN CUMMNG & SUNCTI VISTA 2, PCELL | NORTH ISLAND COGEN
SunSelect 1 | 4.05 | CAISO_CHP phr
CAISO_CHP phr | sical none
sical none | 1
1 | 0 1 cosen
0 1 cosen | | template_list
template_list | VISTA_2_FCELL
NEWARK_1_QF | CSUSR fuel cell | 4
1.4
1.1 | | sical none
sical none | 1 | 0 1 cogen | | template_list
template_list | MOSSID_1 QF
MIPTAS 7 OF INTS | SMALL QF AGGEGATION - SANTA CRUZ
MUPTAS 7, QFUNTS | 1 1 | CAISO_CHP phr | sical none
sical none | 1 1 | 0 1 comm | | template_list
template_list | PSWEET 7 QFUNTS
CENTER 2 TECNG1 | PSWEET 7 OFUNTS
TECHNICAST | 1
0.99 | CAISO_CHP phr | sical none
sical none | 1 | 0 1 cogen
0 1 cogen
0 1 cogen | | | IGNACO_1_QF
LAGBEL 6 OF | SMALL OF AGGREGATION - VALLEIO/DINSMORE
LAGUNA BELL OFS | 0.5
0.35 | CAISO_CHP phr | sical none sical | 1 | 0 1 cogen | | template_list
template_list
added | LAWRNC_7_SUNYVL | City of Sunnyvale Unit 1 and 2 | 0.3
#N/A | CAISO_CHP phr | sical none | i | 0 1 cogen | | template_list
added | existing generic_cogen
new_generic_coal | 0 | #N/A | CAISO_Coal new_ | generic none | 0 | 1 1 cosen
1 0 thermal | | template_list
added | existing generic coal
new generic dr | 0 | RN/A
RN/A | CAISO DR new | generic none generic none | 0 | 1 1 thermal
1 0 unknown | | template_list | existing_generic_dr
Greater_Imperial_Geothermal | 0 | #N/A | CAISO_DR existing
CAISO_Geothermal new_ | generic none
esolve filme_name,type,mw | 0 | 1 1 unknown
1 0 geothermal | | template_list
template_list | Inyokern_North_Kramer_Geothermal
Northern_California_Ex_Geothermal | 0 | an/A
an/A | CAISO Goothermal new | esolve filme_name,type,mw
esolve filme_name,type,mw | 0 | 1 0 geothermal
1 0 geothermal | | template_list
template_list | Pacific, Northwest, Geothermal
Riverside_Palm_Springs_Geothermal | 0 | #N/A | CAISO_Geothermal new_
CAISO_Geothermal new_ | esolve filme_name,type,mw
esolve filme_name,type,mw | 0 | 1 0 geothermal
1 0 geothermal | | template_list
template_list
template_list | Solano_Geothermal
Southern_Nevada_Geothermal | 0 | AN/A
AN/A | CAISO_Geothermal new_
CAISO_Geothermal new_
CAISO_Geothermal new_ | esolve filme_name,type,mw
esolve filme_name,type,mw | 0 | 1 0 geothermal
1 0 geothermal | | template list | new_generic_geothermal
GEYS13.7_UNIT13 | 0
GEYSERS UNIT 13 (HEALDSBURG) | 95
92.1 | CAISO_Geothermal new_ | peneric none sical none sical none | 1 | 0 geothermal
0 1 geothermal | | template_list
template_list | SANTE 7. UNITS
NAVYII 2. UNITS | GFYSEIS CALISTOGA AGGREGATE COSO POWER DEVELOPER (NAVY II) AGGREGATE | 92.1
90
85 | CAISO_Geothermal ptr | sical none | 1 1 | 0 1 geothermal
0 1 geothermal | | template_list
template_list
template_list | GEYSIG
7_UNITIS
GYS7AB 7_UNITS
GEYSII 7_UNITII | GEYSERS UNIT 16 (HEALDSBURG)
GEYSERS UNITS 7 & 8 AGGREGATE
GEYSERS UNIT 11 (HEALDSBURG) | 82 | CAISO_Geothermal phr | sical none
sical none | 1 1 | 0 1 geothermal
0 1 geothermal | | template_list | | | 74.4
72 | | sical none sical none | 1 1 | 0 1 geothermal
0 1 geothermal | | template_list
template_list | GEYS14 7. UNIT14
GEYS20 7. UNIT20 | GEYSERS UNIT 14 (HEALDSBURG)
GEYSERS UNIT 20 (HEALDSBURG) | 70
62 | CAISO_Geothermal phr
CAISO_Geothermal phr | sical none
sical none | 1
1 | 0 1 geothermal
0 1 geothermal | | template list | GEYS17_7_UNIT17
GEYS12_7_UNIT12 | GEYSERS UNIT 17 (HEALDSBURG) GEYSERS UNIT 12 (HEALDSBURG) | 60
57 | CAISO_Geothermal phy
CAISO_Geothermal phy | sical none sical | 1
1 | 0 1 geothermal
0 1 geothermal | | template_list
template_list
template_list | SMUDGO_7_UNIT 1
NCPA_7_GP2UN4 | SONOMA POWER PLANT
NCPA GEO PLANT 2 UNIT 4 | 53
52.73 | CAISO_Geothermal phy
CAISO_Geothermal phy | sical none
sical none | 1 1 | 0 1 geothermal
0 1 geothermal | | template_list
template_list | CerroPrieto1-1
CerroPrieto1-2 | Cerro Prieto I-1
Cerro Prieto I-2 | 35.7
35.7 | | sical none
sical none | 1 | 0 1 geothermal | | template list | CerroPrieto1-3
CerroPrieto1-4 | Cerro Prieto I-3 Cerro Prieto I-4 | 35.7 | CAISO Geothermal phy | sical none | 1 1 | 0 1 geothermal | | template_list
template_list
template_list | NCPA_7_GP1UN2
MXI_GEO-U1-1 | NCPA GEO PLANT 1 UNIT 2 Assume Geo unit | 35.7
34
30 | CAISO_Geothermal phy
CAISO_Geothermal phy | sical none sical none sical none | 1 | 0 1 geothermal | | tomolyto list | Thermoto1-2
Neahtotspring2
Neahtotspring3 | Thermo No 1-2 | 14 | CAISO_Geothermal phy | sical none sical | 1 | 0 1 geothermal | | template_list
template_list
template_list | NealHotSprings3
GEYS17 2 BOTRCK | Neal Hot Springs Geothermal Project-NHS2
Neal Hot Springs Geothermal Project-NHS3
Bottle Rock Geothermal | 11
11
10.01 | CAISO_Geothermal phy | sical none
sical none | i
i | 0 1 geothermal | | template_list
template_list
added | GEYS17_2_BOTRCX
WAINUT_7_WCOVCT
existing_sprenic_goothermal | 0 | 0
an/A | CAISO_Geothermal phy | sical none | 1 0 | 0 1 geothermal | | template list
ruling list | Now Mahrid | 0
BIG CREEK HYDRO PROJF/T PSP | #N/A
773.6 | | esolve filme_name,type,mw
sical none | 0 | 0 unknown | | ruling_list | BGCRC 2 EXESWD
HYTTHM 2 UNITS
COUML 7 PLIS2 | BIG CREEK HYDRO PROJECT PSP
HYAIT-THERMALITO PUMP-GEN (AGGREGATE)
COLUENVILLE HYDRO UNIT & 2 AGGREGATE | 459.42
246.86 | CAISO_Hydro phr | sical none | 1
1 | 0 1 hydro
0 1 hydro | | ruling list
ruling list | INTKEP 2 UNITS
COLGAT 7 UNIT 1 | CCSF Hetch, Hetchy Hydro Aggregate Colgate Powerhouse Unit 1 | 239
176.72 | | sical none | 1
1 | 0 1 hydro | | ruling_list
ruling_list | | College Powerhouse Unit 2 | 175.67
153.9 | | sical none | i
i | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | KERCH2 7 UNIT 1
HAASH 7 7 MINZ
CARBOU 7 PAINS | KERKHOFF PH 2 UNIT WI HAAS PH UNIT II & 2 AGGREGATE CARROU PH 2 UNIT 4 & 5 AGGREGATE | 144
120 | CAISO_Hydro phy
CAISO_Hydro phy | sical none
sical none | i
i | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | BELDEN, 7, PUNC
BELDEN, 7, PLIX2 | BELDEN HYDRO PIT PH 4 UNITS 1 & 2 AGGREGATE | 119 | CAISO_Hydro phr | sical none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | WI4_7_PCLX2
EXCHEC_7_UNIT 1
ELECTR_7_PLIX3 | PIT PH 4 UNITS 1 & 2 AGGREGATE EXCHEQUER HYDRO FIFCTBA DH UNIT 1 & 2 AGGREGATE | 95
94.5
93 | CAISO_Hydro phr | sical none
sical none
sical none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | STANIS_7_UNIT 1 | STANISAUS HYDDO
JAMES B. BLACK 1 | 91
85 | CAISO_Hydro phy | sical none | i | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | JAMES B. BLACK 2 | 84.1
82 | CAISO_Hydro phy
CAISO_Hydro phy | sical none
sical none | 1 | 0 1 hydro | | ruling list | BLACK_7_UNIT 1
BLACK_7_UNIT 2
BTS_2_01_Y2 | DIT DIL S HANTS 1 & 2 AGGREGATE | | | | | 1 nyaro | | | BLACX_7_UNIT 2
PITS_7_PLIX2
PITS_7 IN YX4 | PIT PH 5 UNITS 1 & 2 AGGREGATE PIT PH 5 UNITS 3 & 4 AGGREGATE DEVI CANYON HYDRO 1 UNITS 1.4 AGGREGATE | 82 | CAISO_Hydro phr | sical none | 1 | 0 1 hydro | | ruling_list
ruling_list | BLACX_7_UNIT 2
PITS_7_PLIX2
PITS_7 IN YX4 | PIT PH 5 UNITS 3 & 4 AGGREGATE DEVIL CANYON HYDRO UNITS 1-4 AGGREGATE Donnalls Hydro | 82
80 | CAISO_Hydro phr | sical none sical none sical none | 1 1 | 0 1 hvdro
0 1 hydro | | ruling_list
ruling_list | BLACK, Z. UNIT 2 PITS J. PL322 PITS J. PL324 DISCEN 1. UNITS DOWNS J. UNIT PUTS J. PLYN | PIT PH 5 UNITS 3 & 4 AGGREGATE DEVIL CANTON HYDRO UNITS 1-4 AGGREGATE Donnist Hydro PIT PH 3 UNITS 1, 2 & 3 AGGREGATE CREST ABLINITY 8 3 AGGREGATE CREST ABLINITY 8 3 AGGREGATE | 82
80
72
70.6
70.4 | CAISO_Hydro phy CAISO_Hydro phy CAISO_Hydro phy CAISO_Hydro phy CAISO_Hydro phy CAISO_Hydro phy | sical none sical none sical none sical none sical none | 1
1
1 | | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | BLACE, 2, WHT 2 PHS 2, PALS2 PHS 3, PALS4 DOWNS 1, JUNIS DOWNS 2, JUNIS PH 2, PALS2 CHEST, 2, PALS2 CHEST, 2, PALS2 CHEST, 2, PALS2 DOWNS 2, PALS2 CHEST, 2, PALS2 DOWNS | PRT PPS S MATS S & A GAGGEGATE DEVL CANNER PRIVED DUTHS TA-AGRIGATE DOMINASI PAGE DOMINS J. 28 3 AGGEGGATE CHES DOMINS J. 28 3 AGGEGGATE CHES DOMINS J. 28 3 AGGEGGATE CHES DOMINS J. 28 3 AGGEGGATE POST PPSD UNIT J. POST PPSD UNIT J. POST PPSD UNIT J. | 82
80
72
70.6
70.4
69
68.5 | CAISO_Hydro phr | sical nome
sical nome
sical nome
sical nome
sical nome
sical nome
sical nome | 1
1
1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | BLACE, 2, WHT 2 PHS 2, PALS2 PHS 3, PALS4 DOWNS 1, JUNIS DOWNS 2, JUNIS PH 2, PALS2 CHEST, 2, PALS2 CHEST, 2, PALS2 CHEST, 2, PALS2 DOWNS 2, PALS2 CHEST, 2, PALS2 DOWNS | PIT PH S UNITS 1.8 4 AGGREGATE DOWNLOWN THE PART AGGREGATE DOWNLOW THE PART AGGREGATE DOWNLOW THE PART AGGREGATE CHESTA PH UNIT 1.8 2 AGGREGATE PAGE THEOLOGY OF THE PART AGGREGATE PAGE THEOLOGY OF THE PART AGGREGATE THE PART AGGREGATE THEOLOGY OF THE PART AGGREGATE THE PART AGGREGATE THEOLOGY OF THE PART AGGREGATE THESE CHEST PARTON AGGREGATE THE PART A | 82
80
72
70.6
70.4
69
68.5
63.3 | CAISO_Hydro phr | sicial none | 1
1
1
1
1
1
1 | 0 1 hvdro 0 1 hydro | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | BLACC, JUNT 2 HIS, JUND HI | PIT PH S DIRTS & A 4 AGGREGATE DONG ACCOUNTS DE LONGE LOUISTS A A AGGREGATE PIT PH S DIRTS 2, 2 & A AGGREGATE CHISTAP HOURT 1, 2 A AGGREGATE CHISTAP HOURT 1, 2 A AGGREGATE PICE HOURT 1, 2 AGGREGATE PICE HOURT AND AGGREGATE THE PICE A PICH AGGREGATE THE PICE A PICH AGGREGATE THE PICE A PICH AGGREGATE SECOND AGGR | 82
80
72
70.4
69
68.5
63.3
62
60
57.35 | CAISO, Hydro ph
CAISO, ph | sical none | 1
1
1
1
1
1
1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | BLACC, 2 MFT 2 FIRST, 5 LAM DOCKN, 1, MFT DOCKN, 2, MFT GESTA, 7 FLEE MFT BOOKS, 7 MFT | PIT PH 5 UNITS 2 & 4 AGGREGATE DEVICE ADMINISTRATION UNITS 2 A REGISTRATE PIT PH 3 UNITS 2 & 3 AGGREGATE CRESS PH VICE PIT 2 AGGREGATE FOR PIT S UNITS 2 & 3 AGGREGATE FOR PIT S AGGREGATE FOR PIT S AGGREGATE FOR S AGGREGATE FOR S AGGREGATE FOR S AGGREGATE FOR S AGGREGATE WOODLAW PIT S AGGREGATE BACK S CREEK AGGREGATE BACK S AGGR | 82
80
72
70.5
70.4
69
68.5
63.3
62
60
57.25
55.7
54.6 | CARSO, Hydro ph | sical none | 1
1
1
1
1
1
1
1 | 0 1 Protect 1 hydro 0 | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | BLACC, JUNT 2 HIS, JUND HIS JUND DOWNEY, JUNT OOWNEY, JUNT HIS, JUND OORNEY, JUNT HIS, JUND OORNEY, JUNT HIS, H | PIT PH S UNITS & A 4 AGGREGATE DONG ACCOUNTS DE UNITS & A AGGREGATE PIT PH S UNITS & 2 AG AGGREGATE CHISTAP VIOLENT & 3 AGGREGATE CHISTAP VIOLENT & 3 AGGREGATE PICE PITTO AGGREGATE PICE PITTO AGGREGATE THE BUSIC GERERA AGGREGATE FIT PITTO TURTE T BAGG. 2 PINTO 3 | 82
80
72
70.6
70.4
69
68.5
63.3
62
60
57.25
55.7
54.6
54.6
52.5 | CARSO, Hydro ph | None | 1
1
1
1
1
1
1
1 | 0 1 Protect 1 hydro 0 | | ruling_list | BLACC, JUNT 2 HES, JUNCO HES, JUNCO DOMES, JUNT HES, JUNT HES, JUNT HES, JUNT HES, JUNT HOUSE, HES, J | PIT PH S UNITS & A 4-06/EACH INTERPRETATION UNITS A 4-06/EACH INTERPRETATION UNITS A 5-06/EACH INTERPRETATION UNITS A 5-06/EACH INTERPRETATION INTO A 6-06/EACH INTERPRETATION INTERPRETATION INTO A 6-06/EACH INTERPRETATION INTERPRET | 82
80
72
70.6
70.4
69
68.5
63.3
62
60
57.25
55.7
54.6
54.6
52.5 | CHISC). Pytefor should be compared to the comp | | | 0 1 hydro | | ruling_list | BLACC, 2 MFT 2 FIRST, 5 LAMA DOCUME, 1, MFTS DOCUME, 1, MFTS DOCUME, 1, MFTS DOCUME, 2 MFTS DOCUME, 2 MFTS DOCUME, 2 MFTS WORLD, 2 MFTS WORLD, 2 MFTS BLOCK, MF | PIT PH S UNITS & A 4 AGGREGATE DEVICE ADMINISTRATION UNITS A 4 AGGREGATE PIT PH S UNITS 2. R A AGGREGATE CRISTAN PURIT S. A AGGREGATE CRISTAN PURIT S. A AGGREGATE PICE WHITE A AGGREGATE PICE WHITE A AGGREGATE THE PICE WHITE AGGREGATE THE PICE WHITE AGGREGATE WHITE CALL PURITS AGGREGATE WHITE CALL PURITS AGGREGATE WHITE AGGREGATE WHITE AGGREGATE WHITE AGGREGATE THE PICE WHITE AGGREGATE THE PICE WHITE AGGREGATE THE PICE WHITE AGGREGATE THE PICE WHITE
AGGREGATE AGGREGATE | 82
80
72
70.6
6.0
68.1
6.1
6.1
6.2
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3 | CASIGO. Priedro de la | | | 0 1 Person | | ruling_list | BLACC, JUNT 2 HIS, JUNCO HIS, JUNCO DOKEN, S, JUNT HIS, JUNT HIS, JUNT HIS, JUNT HIS, JUNT HOUSE, | PIT PIN S IMPS 3 & 4 AGGIEGATE EVEN CONTROL PRIOR INDIS 3 - AGGIEGATE PIT PIN S IMPS 3 & 2 AGGIEGATE CHISTAP PIN S IMPS 3 & 2 AGGIEGATE CHISTAP PIN S IMPS 3 & AGGIEGATE PIN S IMPS 1 AGGIEGATE PIN S IMPS 1 AGGIEGATE THE S IMPS AGGIEGATE THE S IMPS AGGIEGATE THE S IMPS AGGIEGATE THE S IMPS AGGIEGATE BAGGI 2 PIN S IMPS 3 THE S IMPS 3 AGGIEGATE CARGOO THE S IMPS 3 AGGIEGATE CARGOO THE S IMPS 3 AGGIEGATE CARGOO THE S IMPS 3 AGGIEGATE CHISTAP C | 82
80
70,7
70,4
69
68,5
61,3
62
55,73
54,6
54,6
54,6
52,5
50
49
49
40
39,5 | CHIGO. Prederio glate | Carl | | 0 1 Person | | ruling_list | BLACE, 2, DAT 2 WES, 2, DAT 3 WES, 2, DAT 4 DOKEN, 1, DAT 5 DOKEN, 2, DAT 7 8 DO | PIT PH S UNITS & A 4 AGENCATE POR ACCOUNTS DE MODIFICATION UNITS A 4 AGENCATE PIT PH S UNITS \$ 2. RA AGENCATE CHESTAP PURE \$ 1. RA AGENCATE PIT PH S UNITS \$ 2. RA AGENCATE PIT PAR S AGENCATE PIT PAR S AGENCATE TO THE PIT AGENCATE AGENCATE THE PIT OWN TO AGENCATE AGENCATE THE PIT OWN TO AGENCATE AGENCAT | 82
80
72
70.64
80
66.5
61.3
62
60
57.75.5
53.4
64
64
64
65
65
66
65
66
61
62
60
60
61
62
60
60
60
60
60
60
60
60
60
60
60
60
60 | GAGO, pytelos | Good | | 0 1 Person | | ruling_list | BLACE, 2, DAT 2 WES, 2, DAT 3 WES, 2, DAT 4 DOKEN, 1, DAT 5 DOKEN, 2, DAT 7 8 DO | PIT PH S 1087S à 8 4 AGENERATE EXPLANCEMENT MEMORIA UNIS 3 - AGENERATE PIT PH 3 UNIS 3 : 28 AGENERATE CHISTA PHONE 1 S AGENERATE CHISTA PHONE 1 S AGENERATE PIOL PHONE AGENERATE PIOL PHONE AGENERATE HISTA CONTROL AGENERATE BAGGE 3 PH UNIT 3 FIT PA 1 UNIT 3 AGENERATE CARROLL PHE UNIT 3 FIT PA 1 UNIT 3 AGENERATE AGENERATE CARROLL PHE UNIT 3 FIT PA 1 UNIT 3 AGENERATE AGENERATE CARROLL PHE UNIT 3 FIT PA 1 UNIT 3 AGENERATE AGENERATE CARROLL PHE UNIT 3 AGENERATE AGENERATE CARROLL PHE UNIT 3 AGENERATE AGENERATE AGENERATE AGENERATE AGENERATE AGENERATE AGENERATE AGENERATE AGENERATE HISTA CONTROL PHE HIS | 82
87
77 704
69
685
633
60
97 725
546
546
546
44
40
80
90
91
91
91
91
91
91
91
91
91
91
91
91
91 | GAGO, pytelos | Good | | 0 1 Nephro | | ruing, lot
ruing, lot | BLACC, 2 (MT 2
WE), 2 (MT 2
WE), 2 (MT 2
DONES, 2
DO | PIT PH S 108TS & 8 4 AGGIGANTE EXPLANCEMENT MANDE UNITS 2 AGGIGANTE PIT PH 3 UNITS 2 RE 3 AGGIGANTE CRISTA PHONE T 8 AGGIGANTE CRISTA PHONE T 8 AGGIGANTE PIOL PHONE AGGIGANTE PIOL PHONE AGGIGANTE THE TAX THORN AGGIGANTE BACATO 2 PHONE T 3 THE TAX THORN AGGIGANTE CARROLL PHONE T 3 THE TAX THORN AGGIGANTE CARROLL PHONE T 3 THE TAX THORN AGGIGANTE CARROLL PHONE T 3 AGGIGANTE THE TAX THORN BACATOR THE MONE TAX BACATOR THE TAX TH | 82 82 72 706 6 66 704 6 66 704 6 66 70 705 705 705 705 705 705 705 705 705 | GAGO, Sprides | Carlot | | 1 Neston | | ruing, lost | BLACC, 2 (MT 2
WE), 2 (MT 2
WE), 2 (MT 2
DONES, 2
DO | PIT PH S UNITS & A 4 AGGIGANTE DEVICE ADMINISTRATION UNITS A 4 AGGIGANTE PIT PH S UNITS 2, 2 & A AGGIGANTE CHISTAP WINT 1. & AGGIGANTE CHISTAP WINT 1. & AGGIGANTE PIT PA S UNITS 2, 2 & AGGIGANTE PIT PA S UNITS 3, 2 & AGGIGANTE PIT PA S UNITS 3, 2 & AGGIGANTE TORIC CHEEF WINDO AGGIGANTE TORIC CHEEF WINDO AGGIGANTE BUCKS CHEEF AGGIGEANTE PIT PIT D'UNITS BACAS 2 PIT UNITS CHARACTER S UNITS AGGIGANTE CHICAGO AGGIGANTE CHICAGO AGGIGANTE CHICAGO AGGIGANTE CHICAGO AGGIGANTE CHICAGO AGGIGANTE PIT PIT GUINTS WANNE MENDO AGGIGANTE PIT PIT GUINTS TORIC CHICAGO AGGICANTE | 82 82 72 706 4 90 91 92 706 94 90 94 94 94 94 94 94 94 94 94 94 94 94 94 | GAGO, Sprides | Carl | | 1 Note 1 Note 2 Note 2 Note 3 Note 3 Note 4 Note 3 Note 4 Note 5 Note 6 | | ruing, lost | BLACC, 2, WHT 2 WHS_2, NEW WHS_2, NEW DOKENS, 1, WHIS DOMES, 2, WHIS COMES, 2, WHIS COMES, 2, WHIS COMES, 2, WHIS POWER, 2, WHIS POWER, 2, WHIS WHISE, WHISE | PIT PIN S IMPTS 2 & 4 AGGIGENTE EVEN CANNON FROM INDITS 2 AGGIGENTE EVEN S AGGIGENTE EVEN S AGGIGENTE CHISTA PIN S AGGIGENTE CHISTA PIN S AGGIGENTE POCI HYRIO QUIET 2 PARE PARE PINTEND AGGIGENTE THE CHISTA PINTEND AGGIGENTE BACATO 2 PIN S AGGIGENTE AGGIGENTE DIMAN PIN 2 QUIET 2 DIMAN PIN 2 QUIET 2 DIMAN PIN 2 QUIET 2 CARROUGHT HUY 2 S AGGIGENTE AGGIGENTE AGGIGENTE CHISTA PINTEND AGGIGENTE AGGIGNA AGGIGENTE AGGIGENTE AGGIGENTE AGGIGENTE AGGIGENTE AGGIGENTE A | 82 82 77 706 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | GAGO, pripies | Carlot C | | 1 Neston | | ruine, lost | BLACC, 2, WAT 2 WIS_2, NATO WIS_2, NATO WIS_2, NATO DOMES_2, LOWIT COMES_2, LOWIT COMES_2, LOWIT COMES_2, LOWIT PORT_2 CONTS TORCE_2 TOR | PRI PRI SIMETS & A AGGIGACTE PRI PRI SIMETS & A AGGIGACTE PRI PRI SIMETS & AGGIGACTE PRI PRI SIMETS & AGGIGACTE CHISTAP PRIVATE & AGGIGACTE POST PRIPA CONTROL & AGGIGACTE POST PRIPA CONTROL & AGGIGACTE PRIPA CALL'ANTORNO AGGIGACTE TRIBLE CONTROL AGGIGACTE TRIBLE CONTROL AGGIGACTE BACCO & PRIVATORNO PRIVATO | 8 00 77 706 6 645 645 645 645 645 645 645 645 645 | GAGO, pripole | Good | | 1 min 1 min 2 min 3 min 4 min 5 min 6 min 7 mi | | ruine, lost ruine, lost ruine, lost ruine, lost ruine, lost ruine, lost lost lost lost lost lost lost lost | BLACC, 2, WAT 2 WIS_2, NATO WIS_2, NATO WIS_2, NATO DOMES_2, LOWIT COMES_2, LOWIT COMES_2, LOWIT COMES_2, LOWIT PORT_2 CONTS TORCE_2 TOR | PIT PH S UNITS & A 4 AGRICANTE DEVICE ADMINISTRATE AND AGRICANTE PIT PH S UNITS & 2.8 AGRICANTE CHESTAP PURE IT & A AGRICANTE CHESTAP PURE IT & A AGRICANTE PIT PURE IT & PURE IT & AGRICANTE PIT PURE IT & PURE IT & AGRICANTE BUSIC CHESTA AGRICANTE ATT PURE IT & AGRICANTE ATT PURE IT & AGRICANTE ATT PURE IT & AGRICANTE AND AGRICANTE AND AGRICANTE AND AGRICANTE AND AGRICANTE AGRICANTE AGRICANTE AGRICANTE AGRICANTE AGRICANTE AGRICANTE CHESTAP AGRICANTE AGR | 8 00 77 706 6 645 645 645 645 645 645 645 645 645 | GAGO, pripole | Good | | 1 Note | | ruine, lost lost lost lost lost lost lost lost | BLACC, 2, WHT 2 WHS, 2, WHT WHS, 2, WHT DOWNS, 2, LOWIN CORNES, 2, LOWIN THICKES, CORNES, 2, LOWIN CORNES, 2, LOWIN THICKES, | PIT PIN SIMPS & 8 4 AGGIGANTE EXPLANCEMENT MANDEL UNITS 2 AGGIGANTE PIT PIN SIMPS 2 AGGIGANTE CHISTA POPULATI S AGGIGANTE CHISTA POPULATI S AGGIGANTE PIN SIMPS AND PIN SIMPS AGGIGANTE PIN SIMPS AND PIN SIMPS AGGIGANTE HINTO CONTROL ON THE SIMPS AGGIGANTE HINTO CONTROL ON THE SIMPS AGGIGANTE HINTO CONTROL ON THE SIMPS AGGIGANTE BACAGO 2 PIN LIMIT 3 FIT PIN SIMPS AGGIGANTE CHISTO CONTROL ON THE SIMPS AGGIGANTE FIT PIN SIMPS AGGIGANTE CHISTO CONTROL ON THE SIMPS AGGIGANTE CHISTO CONTROL ON THE SIMPS AGGIGANTE CHISTO CONTROL ON THE SIMPS AGGIGANTE FIT PIN | 8 07 77 77 77 77 77 77 77 77 77 77 77 77 | GAGO, pripole | Carlot | | 1 Note | | ruine, list ruine, list ruine, list ruine, list ruine, list list list list list list list list | BLACC, 2, WHT 2 WHS_2, NEW WHS_2, NEW DOWNS_1, LIMIT DOWNS_2, LIMIT COMMS_2, LIMIT COMMS_2, LIMIT COMMS_2, LIMIT COMMS_2, LIMIT FORCE, 2, LIMIT FORCE, 2, LIMIT FORCE, 2, LIMIT WIGGE, 2, LIMIT WIGGE, 2, LIMIT WIGGE, 2, LIMIT WIGGE, 2, LIMIT BLACCS, BLAC | PRI PRI SURTS & A FAGREGATE PRI PRI SURTS & A FAGREGATE PRI PRI SURTS & REGISTRATE PRI PRI SURTS & REGISTRATE PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI PRI PRI SURTS & REGISTRATE PRI PRI SURTS & REGISTRATE CORRIGOR PRI SURTS & REGISTRATE CORRIGOR PRI SURTS & REGISTRATE PRI PR | 8 00 77 77 77 78 78 78 78 78 78 78 78 78 78 | GAGO, pripole | Good | | 1 Note | | ruine, lost lost lost lost lost lost lost lost | BLACC, 2, WHT 2 WHS, 2, WHT WHS, 2, WHT DOWNS, 2, LOWIN CORNES, 2, LOWIN THICKES, CORNES, 2, LOWIN CORNES, 2, LOWIN THICKES, | PIT PH S UNITS & A 4 AGGREGATE POR ACCOUNTS DESIGNED UNITS 2 AGGREGATE PIT PH 3 UNITS 2. R. AGGREGATE CRESTAP HOUR S. R. AGGREGATE CRESTAP HOUR S. R. AGGREGATE POR HAT PHORA AGGREGATE THE HAT PHORA AGGREGATE THE HAT PHORA AGGREGATE THE HAT PHORA AGGREGATE WIT PHORA AGGREGATE WIT PHORA AGGREGATE WIT PHORA OF THE HAT AGGREGATE WIT PHORA AGGREGATE AND AGGREGATE AGGREGATE AGGREGATE AGGREGATE AGGREGATE AGGREGATE AGGREGATE COMMON DAY HOUR S. FOR HOUR S. AGGREGATE AGGREGATE COMMON DAY HOUR S. DAY HOUR DAY COMMON DAY HOUR DAY COMMON COMON DAY COMMON DAY COMMON DAY COMMON DAY COMMON DAY COMMON DA | 8 00 00 77 706 6 645 1616 1616 1616 1616 1616 1616 16 | GAGO, Myelos GA | Good | | 1 Note | | ruling_list | SOUTH_2_UNIT | SOUTH HYDRO | 7.1 | CAISO_Hydro | physical | none | 1 | 0 1 hydro | |---|--|---|----------------------|--|--|----------------------|--------|--| | ruling_list
ruling_list | VALLEY, S. REDMTN
KEKAWK, G. UNIT | MWD Red Mountain Hydroelectric Recovery
STS HYDROPOWER LTD. (KEKAWAKA) | 5.9
5.5 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | KEKAWK_6_UNIT
VILDK_6_RWUDYOR
GRSOKK_6_BOXWW | Yorba Linda Hydroelectric Recovery Plant
BIG CREEK WATER WORKS - CEDAR FLAT | 5.1 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | MIDION 7
MINIONA | Lake Mathews Hydroelectric Recovery Plan
PLACER UNIT (ROCK CREEK) | 5 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list | PLACVL_1 RXCENE
VILLPK_2_VALLYV | MWD Valley View Hydroelectric Recovery P | 4.1 | CAISO_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | GIFLD 7. GFWTS
HILAND 2. YOLOWD
DMOVLY_LUNTS | Nacimiento hydroelectric Plant
CLEAR LAKE LINIT 1
DIAMOND VALLEY LAKE PUMP GEN PLANT | 3.8
3.75
3.3 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none
none | 1 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | DMDVLY_1_UNITS
OLINDA 2 COYCRK | | 3.13 | CAISO Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | OLINDA, Z. COYCEK
HOVAY, Z. UNITS
SPEUR, Z. SKOWMIT | Indian Valley Hydro
SPBURN_7_SNOWMT | 3.01
3 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 1 | 0 1 hydro
0 1 hydro | | | MIRLOM 2 TENERS | | 2.85 | CAISO Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling list
ruling list | MINLOW Z TEMESL
MCCALL 3, OF
WRGHTP_7_AMENGY | MWD Temescal Hydroelectric Recovery Plan
SMALL OF AGGREGATION - FRESNO
SMALL OF AGGREGATION - LOS BANOS | 2.85
2.5
2.5 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hvdro | | ruling_list
ruling_list
ruling_list | WRIGHTP_7_AMENISY
SAUGUS_6_QF
DEADCK_1_UNIT | SAUGUS OFS | 2.5
2.19 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | | TESLA_1_QF | DEADCK 1. UNIT SMALL OF AGGREGATION - STOCKTON | 2 2 | CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | PADUA_2_ONTARO
CENTER_2_RHONDO | ONTARIO/SIERRA HYDRO PSP
MWD Rio Hondo Hydroelectric Recovery Pla | 1.92
1.91 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | | STOREY_7_MORCHW PADUA_6_OF | Madera Canal Site 980 PADIA OFS | 1.84 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | HATLOS 6 LSCRK | Lost Creek 1 & 2 Hydro Conversion | 1.7 | CAISO_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro
1 hydro | | | RIOOSO_1_QF
TBLMTN_6_QF | SMALL QF AGGREGATION - GRASS VALLEY
SMALL QF AGGREGATION - PARADISE | 1.7
1.7 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | FTSWRD_6_TRFORK FTSWRD 7 OPUNTS | Three Forks Water Power Project
FTSWRD_7_QFUNTS | 1.63
1.6 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | HIGGINS 1 COMMUNE | Combin South | 1.5 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list | LOWGAP 7 OF UNTS
VOLTA 7 OF UNTS | LOWGAP, 7. OF UNITS
VOLTA_7. QFUNTS | 1.35
1.3
1.25 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | BIGOIX, 7. MANRES
HUMBSB_1, QF
POTTER_7_VEONO | SMALL QF AGGREGATION - TRINITY | 1.25
1.25
1.25 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical | none
none
none | 1 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | POTTER_7_VECINO
PITS_7_OFUNTS | Vecino Vineyards LLC
PIT S HYDRO QF UNITS | 1.25 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | PITS 7 QRUNTS
PADUA 7 SDMAS
BANGOR (5 HYDRO | San Dimas Wash Hydro
Virginia Ranch Dam Powerplant | 1.1
1.05
1 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 1 | 0 1 hydro
0 1 hydro | | | | SMALL QF AGGREGATION - ZENIA | 1 | | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling list
ruling list | GARNET Z. HYDRO
MESAP 1. QF
SNCIAR 2. SPRHYD | Whitewater Hydro
SMALL QF AGGREGATION - SAN LUIS OBISPO | 1 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | SACLING_SWINTT VOLTA_6_BAILCK | Springville Hydroelectric Generator
Water Wheel Ranch | 0.98 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro | | ruling list | | 0
FMEADO_6_HELLHL | 0.63 | CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | ALIGNY 6 HYDRO1
HIGGNS 7 QFUNTS | Salmon Creek Hydroelectric Project
HIGGNS_7_QFUNTS | 0.52 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | roling list | | High Line Canal Hydro
OLINDA OFS | 0.5
0.4 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hvdro | | ruling_list
ruling_list
ruling_list | OLINDA_2_QF
BIGCRK_7_DAM7
BOWMAN_6_UNIT | 0
BOWMAN | 0.3 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
template_list | n/a (Hoover share) | Hoover (CAISO Share) | 0 | CAISO Hydro | physical | none | 1 | 0 0 hydro | | | n/a (Hoover share) new_generic_instate_instal_hydro new_generic_instate_inspe_hydro | 0 | #N/A | CAISO_Hydro
CAISO_Hydro | new_generic
new_generic | none | 0 | 1 0 hydro
1 0 hydro | | template_list
template_list
template_list | new_generic_nw_hydro
MDFRNL_2_PNOICT
RCXCRX_7_UNRT1 | 0
MIDDLE FORK AND RAISTON PSP | #N/A
210 | CAISO_Hydro
CAISO_Hydro | new_generic
physical | none
none | 0 | 1 0 hvdro
0 1 hydro | | | RCKCRC_7_UNIT 1
NAROW2_2_UNIT | MIDDLE FORK AND RALSTON PSP
BLOCK CREEK PYORO UNIT 1
NATIONS Powerflowed Unit 2 | 210
57
55 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | NAROW2_2_UNIT
ENGRY_7_UNIT 1
TULICK_7_UNITS | KINGS RIVER HYDRO UNIT 1 | 51.2
25.9 | CAISO_Hydro
CAISO_Hydro | physical | none | 1 | 0 1 hydro | | wmplate_list
template_list | WISHON 6 UNITS | Tullock Hydro Wishon/San Joaquin #1-A AGGREGATE | 18.4 | CAISO Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | WISHON 6. LINITS
ROLLIN 6. LINIT
SLYCIN, 1. LINIT 1 | ROLLINS HYDRO
SLY CREEK HYDRO | 13.5
13 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hvdro
0 1 hvdro | | template_list
template_list
template_list | | KERKHOFF PH 1 UNIT #3 Black Carryon-3 SPAULDING HYDRO PH 1 & 2 AGGREGATE | 12.8 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | BlackCarryon3
SPAULD 6 UNIT12
ELDORD 7 UNIT 2 | SPAULDING HYDRO PH 1 & 2 AGGREGATE
El Dorado Unit 2 | 12.5
11.4
11 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | POTTER_6_UNITS | Potter Valley
MC SWAIN HYDRO | 10.1 | CAISO_Hydro
CAISO_Hydro | physical | none | 1 | 0 1 hydro | | template_list | MCSWAN_6_UNITS
CAMCHE_1_PLIX3 | | 10
9.99 | CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | template_list
template_list | Ryanz_upgrd
SAUGUS_6_MWDFTH | Ryan (post-upgrade)-RYA2 Foothill Hydroelectric Recovery Plant | 9.2
9.1 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1
1 | 0 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list | HATCR2_7_UNIT
LowerNo12 | | 8.5
8 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hvdro | | template_list
template_list | UpperPar4 | Lower No 1-2 Upper Power Plant-4 Turnbull Hydro-2 | 8
7.7 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list | WOODWR 1 HYDRO | Quinten Luallen Tieton Darm Hydro Electric Project-UNIT2 | 7.3
6.9 | CAISO Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | | COVERD_2_HCKHY1 | HATCHET CREEK | 6.89 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 0 | 1 hydro | | template_list
template_list
template_list | RECTOR, 2, KAWEAH
Rush, Creek_2 | KAWEAH PH 2 & 3 PSP AGGREGATE
Rush Creek 2, 24783
SPICEH HYDRO UNITS 1-3 AGGREGATE | 6.55
6.37 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hvdro
0 1 hvdro | | | Rush_Croek_2
SPICER_I_UNITS
OVEROW 6_DBIIM | | 6
5.8 | CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | OXBOW_6_DRUM
BorelS
Turnbull1 | Borel-3
Turnbull Hydro-1 | 5.5 | CAISO_Hydro
CAISO_Hydro | physical | none | 1 | 0 1 hydro | | template_list | | Frankenheimer Power Plant | 5.3 | CAISO Hydro | physical
physical | none | 1 | | | template_list
template_list
template_list | Clark Caryon
FalisRiver_ID1 | Clark Carryon Dam-1
Falls River Hydro-1 | 5.3
4.7
4.55 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hvdro
0 1 hydro | | | FallsRiver_ID2
NHOGAN 6 UNITS | Falls River Hydro-2
NEW HOGAN PH AGGREGATE | 4.55 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | FROGTN 1 UTICAM WISE 1 UNIT 2 | Murphys Powerhouse
WISE HYDRO UNIT 2 | 3.6
3.2 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none
none | 0 | 1 1 hvdro 0 1 hvdro | | template_list
template_list | Hauser_HAU6 | Hauser-HAU6 | 3 | CAISO Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list | LowerNo21
VLYHOM_7_SSIID | Lower No 2-1
Woodward Power Plant | 3 | CAISO_Hydro
CAISO_Hydro | physical
physical |
none | 1 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | CRESSY_1_PARKER Hauser_HAU1 | PARKER POWERHOUSE
Hauser-HAU1 | 2.83 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list | Hauser HAU2
Hauser HAU3 | Hauser-HAU3 | 2.8
2.8 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hvdro | | template_list | Hauser_HAU4 | Hauser-HAU4 | 2.8 | CAISO_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | Hauser_HAU5
COVERD_2_MCKHY1 | Hauser-HAUS
Montgomery Creek Hydro
Bishop Creek 3-3 | 2.8
2.8 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 0 | 0 1 hydro
1 1 hydro
0 1 hydro | | | BishopCreek3-3
Revel2 | Borel-2 | 2.79
2.75 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 1 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list
template_list | Felthydro1
Felthydro2
BishopCreek2-2 | Felt Hydroelectric Plant-GEN1
Felt Hydroelectric Plant-GEN2 | 2.7 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | BishopCrek2-2
BishopCrek5-2 | Bishop Creek 2-2
Bishop Creek 5-2 | 2.7
2.65
2.65 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | BishopCreek2-3
BishopCreek2-3 | Birch Creek-1 | 2.65
2.6
2.43 | CAISO_Hydro
CAISO_Hydro | physical | none
none | 1 | 0 1 hydro | | template_list
template_list | BishopCreek2-3
BishopCreek3-2 | Bishop Creek 2-3
Bishop Creek 3-2 | 2.37 | CAISO Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list
template_list | BishopCreek3-2
Madson_MAD1
Madson_MAD2 | Madison-MAD1
Madison-MAD2 | 2.2 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 1 | 0 1 hydro
0 1 hydro | | | | Madison-MAD3
Madison-MAD4 | 2.2 | CAISO Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | Madison_MAD4
BishopCreek5-1 | Bishop Creek 5-1 | 2.2
2.12 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hvdro | | template_list
template_list
template_list | Elk_Creek
FlintCreek | El Dorado Hydro Elit Creek-GEN1
Fiint Creek Hydroelectric-1
ROARING CREEK | 2 2 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
1 1 hydro | | template_list | COVERD_2 RCKHY1
HATLOS 6 BWDHY1 | Bidwell Ditch | 2 2 | CAISO_Hydro | physical
physical | none | 0 | 1 1 hydro
1 1 hydro | | template_list
template_list | BishopCreek4-3
BishopCreek4-4 | Bishop Creek 4-3
Bishop Creek 4-4 | 1.96
1.96 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 1 1 hydro 0 1 hydro 1 hydro 1 hydro | | template_list
template_list | BishopCreek4-5
BishopCreek6-1 | Bishop Creek 4-5
Bishop Creek 6-1 | 1.96
1.69 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | template_list | Lundy2 | Lundy 2_LUNDY HYDRO PLANT (AGGREGATE)-1_24784 | 1.5 | CAISO_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list | Mile28Water1
Mile28Water2 | Mile 28 Water Power Project-1
Mile 28 Water Power Project-2 | 1.5
1.5 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | FROGTN_1_UTICAA PointLomaHY | Angels Powerhouse POINT LOMA WASTEWATER PERP HYDRO, POINT LOMA WASTEWATER TREATMENT PLANT-1 | 1.5
1.4
1.35 | CAISO_Hydro
CAISO_Hydro | physical
physical
physical | none
none | 0 | 0 1 hydro
1 1 hydro
0 1 hydro | | tomoloto list | FargoDrop
Sullivan 10 | Enrop Prop Hudeo 1 Enrop Prop GEN1 | 1.27 | CAISO_Hydro | physical
physical | none
none
none | 1 | | | template_list
template_list
template_list | Sullivan_11
Sullivan_12 | Sullvan-12 | 12
12 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 | | | template_list
template_list
template_list | Sullivan_13 | Sullivan-12
Sullivan-13
Sullivan-2 | 1.2
1.2
1.2 | CAISO_Hydro | physical | none
none | i | 0 1 hydro | | wmplate_list
template_list | Sullivan_2
Sullivan_3 | | 1.2 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | Sullvan_5 | Sulivan-4
Sulivan-5 | 1.2
1.2
1.2 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | template_list
template_list
template_list | Sulfivan_6
Sulfivan_7 | Sulivan-6
Sulivan-7
Sulivan-8 | 12
12
12 | CAISO_Hydro
CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | | Sullivan_8
FeltHydro3 | | 1.1 | CAISO_Hydro | physical
physical | none | 1 | | | template_list
template_list | BishopCreek4-1
BishopCreek4-2 | Bishop Creek 4-1
Bishop Creek 4-2 | 1.03
1.03 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 1 | 0 1 hydro | | template_list
template_list | Sullivan_9
APCHIL_1_SLABCX | Sultivan-9
SIAB CREEK HYDRO | 1 1 | CAISO_Hydro
CAISO Hydro | physical
physical | none | 1 1 | 0 1 hydro
0 1 hydro
1 hydro | | template_list | SAUGUS_6_CREST | SLAB CREEK HTONO 0 0 Notch Buttle Hvdro-HVD1 a.k.a. Geo Bon #2 | 1 | CAISO_Hydro | physical | none | 0 | 1 hydro
1 hydro | | template_list
template_list | NotchButteGeoBon2
CURTIS_1_FARFLD | Fairfield Powerhouse | 0.93 | CAISO_Hydro
CAISO_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
1 1 hydro | | template_list
template_list | RNDMTN 2 SLSPHY1
Bend3 | Silver Springs
Bend-3 | 0.6
0.56 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 0 | 0 1 hydro | | template_list
template_list | Schoffeng 1 | Schaffner-1
Strawberry Creek-1 | 0.53 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | | StrawberryCreek1
StrawberryCreek2
StrawberryCreek2 | Strawburry Creek-2
Strawburry Creek-3 | 0.5 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | template_list
template_list
template_list | StrawberryCreek3
ArenaDrop | Strawberry Creek-3
Arena Drop-1
Bend-2 | 0.5
0.45
0.35 | CAISO Hydro | physical | none
none | 1 | 0 1 hydro
0 1 hydro | | | Bend2 | Reynolds Irrigation-1 | 0.26 | CAISO_Hydro | physical
physical | none | i | 0 1 hydro
0 1 hydro
0 1 hydro | | template_list
template_list | Shingle (rook_1
Rim_View_1 | Stringle Creek-1
Rim View-1 | 0.22 | CAISO_Hydro
CAISO_Hydro | physical
physical | none | 1 | 0 1 hydro | | template_list
added | BlackCaryon3MV existing generic instate small hydro existing generic instate large hydro | Black Canyon #3-1 | 0.14 | CAISO_Hydro
CAISO Hydro | physical
existing generic | none
none | 1 0 | 0 1 hydro
1 hydro | | added
added | | | RN/A
RN/A
RN/A | CAISO_Hydro | existing_generic
existing_generic
existing_generic | none | 0 | 1 1 hydro | | added
template_list
template_list | existing_generic_me_hydro
DCI_Miles_City
VSTAES_6_VESBT1 | Miles City DC Intertie (Fictional Resource)-1 | #N/A
#N/A
40 | CAISO_Hydro
CAISO_Imports
CAISO_Li_Battery | physical | none
none | 1 | 1 1 hydro 1 1 hydro 0 1 unknown 1 battery | | | | 0
Pomona Foaray Storage | 20 | | physical
physical | none | 1 | | | template_list
template_list | ESCNDO_6_EB18T1
ESCNDO_6_EB2BT2 | Escondido BESS 1 Escondido BESS 2 | 10
10 | CAISO Li Battery
CAISO Li Battery | physical
physical | none | 0 | 1 1 battery
1 battery | | template_list
template_list | | Escondido BESS 3
Mira Loma BESS A | 10 | CAISO_Li_Battery
CAISO Li Battery | physical
physical | none | 0 | 1 1 battery 1 1 battery 1 1 battery 1 battery | | template_list | MIRLOM 2 MLBSTA
MIRLOM 2 MLBSTB | Mira Loma BESS B | 10 | CAISO_Li_Battery | physical | none | 0 | 1 Dattery
1 battery | | template_list
template_list | MONLTH_6_BATTRY
ELCAIN_6_EB1BT1 | 0
Eastern BESS 1 | 7.99
7.5 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 0 | 0 1 battery
1 1 battery
0 1 battery | | template_list
template_list | SWIFT_1.NAS
FLCAIN 6. DRGFN1 | 0 | 4.8 | CAISO Li Battery
CAISO Li Battery | physical
physical | none | 1 | | | template_list
template_list | SANTGO 2 MARBET1
VACADX_1_NAS | Milikan Avenue BESS
VACA-DIXION BATTERY | 2
1.85 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template list | | 0
Base battery PGE Valley dur 4 | 1 | CAISO_Li_Battery | physical
physical | none | i | | | template_list
template_list
template_list | Base battery PGE Valley dur. 4 unit 1
Base battery PGE Valley dur. 4 unit 2
Base battery PGE Valley dur. 4 unit 3 | Base_battery_PGE_Valley_dur_4 Base_battery_PGE_Valley_dur_4 Base_battery_PGE_Valley_dur_4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery
CAISO_Li_Battery | physical | none
none | 1 | 0 1 battery
0 1 battery | | | Base_battery_PGE_Valley_dur_4_unit_3
Base_battery_PGE_Valley_dur_4_unit_4 | | 0 | | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery PGE Valley dur. 4 unit. 4 Base battery PGE Valley dur. 4 unit. 5 Base battery PGE Valley dur. 4 unit. 5 Base battery PGE Valley dur. 4 unit. 6 | Base battery PGE Valley_dur_4 Base_battery_PGE_Valley_dur_4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 1 | 0 1 battery
0 1 battery
0 1 battery
0 1 battery | |
template_list
template_list
template_list | Base battery PGE Valley dur 4 unit 7 | | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | | | template_list
template_list
template_list | Base battery, PGE Valley, dur. 4. unit. 7 Base battery, PGE Valley, dur. 4. unit. 8 Base battery, PGE Valley, dur. 4. unit. 9 Base battery, PGE Valley, dur. 4. unit. 10 | Base battery PGE Valley, dur 4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery
CAISO_Li_Battery | physical
physical
physical | none
none
none | i | 0 1 battery
0 1 battery | | template_list
template_list
template_list | Base_battery_PGE_Valley_dur_4_unit_10
Base_battery_SCE_dur_4_unit_1
Base_battery_SCE_dur_4_unit_2 | Base_battery_RCE_Valley_dur_4 Base_battery_SCE_dur_4 Base_battery_SCE_dur_4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery
CAISO_Li_Battery | physical | none
none | 1 | 0 1 battery
0 1 battery | | template_list | | Base battery SCE dur 4 | 0 | | physical
physical | none | 1 | 0 1 battery | | template_list
template_list | Base_battery_SCE_dur_4_unit_4
Base_battery_SCE_dur_4_unit_5 | Base_battery_SCE_dur_4 Base_battery_SCE_dur_4 | 0 | CAISO Li Battery
CAISO Li Battery | physical
physical | none | 1 1 | 0 1 battery
0 1 battery
0 1 battery
0 1 battery | | template_list | Base_battery_SCE_dur_4_unit_6 | Base_battery_SCE_dur_4 | ō | CAISO_Li_Battery | physical | none | 1 | 0 1 battery | | | | | | | | | | | | template_list | | | | | | | | | |--|--|--
---|---|---
---|---|--| | | Base battery SCE dur 4 unit 7 | Base_battery_SCE_dur_4 | 0 | CAISO_Li_Battery | physical | none | 1 | 0 1 battery | | template_list
template_list | Base battery SCE dur 4 unit 7 Base battery SCE dur 4 unit 8 Base battery SCE dur 4 unit 8 | Base battery SCE dur 4 Base battery SCE dur 4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical | none | 1 | 0 1 battery | | template_list
template_list | Base_battery_SCE_dur_4_unit_9 Base_battery_SCE_dur_4_unit_10 | Base_battery_SCE_dur_4 Base_battery_SCE_dur_4 | 0 | CAISO_Li_Battery CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | | Base_battery_SDGE_dur_4 | 0 | CAISO_Li_Battery | physical
physical | | 1 | 0 1 battery | | template_list | Base Dattery SDGE dur 4 unit 2 Base Dattery SDGE dur 4 unit 2 Base Dattery SDGE dur 4 unit 3 Base Dattery SDGE dur 4 unit 4 | Base_battery_SDGE_dur_4
Base_battery_SDGE_dur_4 | o o | CAISO_Li_Battery
CAISO_Li_Battery | physical | none
none | i | 0 1 battery | | template_list
template_list | Base battery SDGE dur 4 unit 5 | | 0 | CAISO Li Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base_battery_SDGE_dur_4_unit_5
Base_battery_SDG_dur_4_unit_6
Base_battery_SDG_dur_4_unit_7 | Base_battery_SDGE_dur_4
Base_battery_SDGE_dur_4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template list | Base battery_SDGE_dur_4_unit_8 | | 0 | | physical | none | i | 0 1 battery | | template_list
template_list | Base battery_SDGE_dur_4_unit_9 Base_battery_SDGE_dur_4_unit_10 | Base battery SDGE dur 4 Base battery SDGE dur 4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Seed, Section 2, Month of March 1997. Base Salestry, SOCI, dar 4, service 3 Base Salestry, SOCI, Bary, dar 2, cand 2 Base Salestry, SOCI, Bary, dar 2, cand 3 Base Salestry, SOCI, Bary, dar 2, cand 3 Base Salestry, SOCI, Bary, dar 2, cand 5 Base Salestry, SOCI, Bary, dar 2, cand 6 Base Salestry, SOCI, Bary, dar 2, cand 6 Base Salestry, SOCI, Bary, dar 2, cand 5 Base Salestry, SOCI, Bary, dar 2, cand 3 Base Salestry, SOCI, Mary, dar 2, cand 3 Base Salestry, SOCI, Valley, 7 Base Salestry, SOCI, Valley, dar 2, cand 7 Base Salestry, SOCI, Valley, dar 2, cand 7 Base Salestry, SOCI, Valley, dar 2, cand 3 30 3, cand 30 Base Salestry, S | | 0 | | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery PGE Bay dur 2 unit 3 | Base battery PGE Bay dur 2
Base battery PGE Bay dur 2
Base battery PGE Bay dur 2 | 0 | CAISO Li Battery
CAISO Li Battery
CAISO Li Battery | physical
physical | none
none | 1 | 0 1 battery
0 1 battery | | template_list | Base_battery_PGE_Bay_dur_2_unit_5 | Base battery PGE Bay dur 2 Base battery PGE Bay dur 2 Base battery PGE Bay dur 2 | 0 | CAISO Li Battery | physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base_battery_PGE_Bay_dur_2_unit_6
Base_battery_PGE_Bay_dur_2_unit_7 | Base_battery_PGE_Bay_dur_2
Base_battery_PGE_Bay_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery | | template_list | Base_battery_PGE_Bay_dur_2_unit_8 | Base battery PGE Bay dur 2 | 0 | CAISO_Li_Battery | physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base battery PGE Bay dur 2 unit 9 Base battery PGE Bay dur 2 unit 10 | Base_battery_PGE_Bay_dur_2
Base_battery_PGE_Bay_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | | | template_list
template_list | Base_battery_PGE_Valley_dur_2_unit_1 Race_battery_PGE_Valley_dur_2_unit_2 | Base_battery_PGE_Valley_dur_2
Base_battery_PGE_Valley_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery PGE Valley dur 2 unit 3 | Base battery PGE Valley dur 2 Base hattery PGF Valley dur 2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical | none | 1 | 0 1 battery | | template_list | Base_battery_PGE_Valley_dur_2_unit_5 | Base_battery_PGE_Valley_dur_2 | 0 | CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base_battery_PGE_Valley_dur_2_unit_6 Base_battery_PGE_Valley_dur_2_unit_7 | Base_battery_PGE_Valley_dur_2
Base_battery_PGE_Valley_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 1 | 0 1 battery | | template_list
template_list | Base_battery_PGE_Valley_dur_2_unit_8
Race_battery_PGE_Valley_dur_2_unit_9 | Base battery_PGE_Valley_dur_2 Base_battery_PGE_Valley_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical
physical | none
none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template list | Base battery PGE Valley dur 2 unit 10 | | 0 | CAISO Li Battery | physical | none | 1 | 0 1 battery | | template_list
template_list | hose, Johnny, Poll, Valley, And J., John S.,
hase Johnny, P.G., White, And J. and S.D.
hase Johnny, E.G., Sun, J. and S.D.
hase Johnny, E.G., Sun, J. and S.
hase S.
J. hase Johnny, E.G., Sun, J. and S.
J. hase Johnny, E.G., Sun, J. and S.
J. hase Johnny, E.G., Sun, J. and S.J.
J. J. J. and J. and J. and J. J.
J. J. J. J. and J. J. and J. J. and J. | Base battery SCE dur 2
Base battery SCE dur 2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base battery SCE dur 2 unit 3
Rose battery SCE dur 2 unit 4 | Base_battery_SCE_dur_2
Base_battery_SCE_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base_battery_SCE_dur_2_unit_5 | Base battery SCE dur 2 Base battery SCE dur 2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery | | template_list | Base battery SCE dur 2 unit 7 | Base_battery_SCE_dur_2 | 0 | CAISO Li Battery
CAISO Li Battery | physical | none | i | 0 1 battery
0 1 battery | | template_list
template_list | Base_battery_SCE_dur_2_unit_9 | Base_battery_SCE_dur_2
Base_battery_SCE_dur_2 | 0 | CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery SDE dur 2 unit 10 Base battery SDEE dur 2 unit 1 | Base battery SCE dur 2
Base battery SDGE dur 2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery SDGE dur 2 unit 2
Base battery SDGE dur 2 unit 3
Base battery SDGE dur 2 unit 4
Base battery SDGE dur 2 unit 5 | Base_battery_SDGE_dur_2
Base_battery_SDGE_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list | Base battery SDGE dur 2 unit 4 | Base_battery_SDGE_dur_2 | 0 | CAISO_Li_Battery | physical | none | 1 | 0 1 battery | | template_list
template_list | Base_battery_SDGE_dur_2_unit_6 | Base_battery_SDGE_dur_2
Base_battery_SDGE_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base_battery_SDGE_dur_2_unit_6
Base_battery_SDGE_dur_2_unit_7
Base_battery_SDGE_dur_2_unit_8 | Base, battery SDGE, dur_2 Base, battery SDGE, dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 1 | | | template_list
template_list | Size, Johnsy (SOC), (av. 2, avin. 9
Bize, Johnsy (SOC), (av. 2, avin. 9
Bize, Johnsy (SOC), (av. 2, avin. 1)
Bize, Johnsy (SOC), (av. 2, avin. 1)
Bize, Johnsy (SOC), (av. 2, avin. 2)
Bize, Johnsy (SOC), (av. 2, avin. 3)
Bize, Johnsy (SOC), (av. 2, avin. 3) | Base_battery_SDGE_dur_2
Base_battery_SDGE_dur_2 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery
0 1 battery | | template_list
template_list | Base_battery_PGE_Bay_dur_4_unit_1 | Base_battery_PGE_Bay_dur_4 | 0 | CAISO_Li_Battery | | none | i | 0 1 battery | | template_list | Base_battery_PGE_Bay_dur_4_unit_2 | Base_battery_PGE_Bay_dur_4 Base_battery_PGE_Bay_dur_4 Base_battery_PGE_Bay_dur_4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list | Base_battery_PGE_Bay_dur_4_unit_4
Base_battery_PGE_Bay_dur_4_unit_5 | | 0 | | physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | Base battery PGE Bay dur. 4 unit. 5
Base battery PGE Bay dur. 4 unit. 6
Base battery PGE Bay dur. 4 unit. 7 | Base battery, PGE Bay dur 4
Base battery, PGE Bay dur 4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template list | Base_Dattery_PGE_Bay_dur_4_unit_8 Base_Dattery_PGE_Bay_dur_4_unit_9 Base_Dattery_PGE_Bay_dur_4_unit_10 | | 0 | CAISO Li Battery | physical | none | i | 0 1 battery | | template_list
template_list | Base_battery_PGE_Bay_dur_4_unit_10 | Base, battery, PGE, Bay, dur. 4
Base, battery, PGE, Bay, dur. 4 | 0 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery
0 1 battery | | template_list
template_list | new_btm_resource
new_btm_de
new_btm_dr | 0 | an/A | CAISO_Loadmod
CAISO_Loadmod
CAISO_Loadmod | new_loadmod
new_loadmod
new_loadmod | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 unknown
1 0 unknown | | template_list | new_btm_dr
new_dg | 0 | an/A
an/A | CAISO_Loadmod | | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 unknown | | template_list
template_list | new_ev | 0 | #N/A
#N/A | CAISO_Loadmod
CAISO_Loadmod | new_loadmod
new_loadmod | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 unknown | | ruling_list | new_tou
DIABLO_7_UNIT 1 | 0
Diablo Canyon Unit 1
Diablo Canyon Unit 2 | #N/A
1150
1150 | CAISO_Loadmod
CAISO_Nuclear
CAISO_Nuclear | physical | filme_name,type,mw
none
none | 1 | 0 1 nuclear | | ruling_list
ruling_list | DIABLO 7, UNIT 2
n/a (Palo Verde) | Palo_Verde_1 (CAISO Share) | 0 | CAISO_Nuclear | physical
physical | none | 1 | 0 1 nuclear
0 1 nuclear
0 nuclear | | template_list
added | naw generic nuckar
existing generic nuckar
CANSI 2. CANCTI | 0 | AN/A | CAISO_Nuclear
CAISO_Nuclear | new_generic
existing_generic | none | 0 | 1 0 nuclear
1 1 nuclear | | ruling_list
ruling_list | CARLS1_2_CARCT1
PNCHEG_2_PLIX4 | Encina Gas Peaker PANOCHE ENERGY CENTER (Aggregated) | 500
400.1 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | TBD (Puente) SUNSET_2_UNITS | Puente Power Project MIDWAY SUNSET COGENERATION PLANT | 262
248 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 0 thermal
0 1 thermal
0 1 thermal | | ruling_list
ruling_list | COCORP 2 CTG4 | Marsh Landing 4 Marsh Landing 1 | 204.29
204.2 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruling_list | COCOPP 2 CTG1
COCOPP 2 CTG2
KESQ 2 UMTS | Marsh Landing 2 | 202.7 | CAISO_Peaker1
CAISO_Peaker1 | physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list
ruling_list | COCOPP_2_CTG3 | Mariposa Energy
Marsh Landing 3 | 194.59
190.4 | | physical
physical | none | 1 | 0 1 thermal | | | СОСОЙР 2, СТВЗ
РИЗИС 2, СТВЗ
РИЗИС 2, СТВЗ | Pio Pico Unit 3 | 112.7
112 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal
0 1 thermal
0 1 thermal | | ruling_list
ruling_list | PIOPC 2 CTG1
SENTIN. 2 CTG5
SENTIN. 2 CTG1 | | 111.3
103.81 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none
none | 1 1 | 0 1 thermal | | ruling_list
ruling_list | SENTNL 2 CTG1
SENTNL 2 CTG4 | Sentimed Unit 5 Sentimed Unit 1 Sentimed Unit 1 Sentimed Unit 4 | 103.76
102.47 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruling_list | SENTINL 2 CTG8 SENTINL 2 CTG6 | Sentinel Unit 8
Sentinel Unit 6 | 101.8 | CAISO_Peaker1
CAISO_Peaker1 | physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | | Stanton Peaker Facility | 100.99
98 | | physical
physical | none | 1 | 0 1 thermal
0 thermal
0 1 thermal
0 1 thermal | | ruling_list
ruling_list | SENTNL 2 CTG7
WALCRK 2 CTG2 | Sentinel Unit 7 Walnut Creek Energy Park Unit 2 | 97.06
96.91 | CAISO Peaker1
CAISO Peaker1 | physical
physical | none
none | 1 1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | SENTINL_2_CTG3
WALCRK_2_CTG3 | Sentinel Unit 3 Walnut Creek Energy Park Unit 3 | 96.85
96.65 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruling_list | WALCRK_2_CTG5 | Walnut Creek Energy Park Unit 5 | 96.65 | CAISO_Peaker1 | physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | WALCRK_2_CTG4
WALCRK_2_CTG1 | Walnut Creek Energy Park Unit 4
Walnut Creek Energy Park Unit 1 | 96.49
96.43 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none
none | 1 | 0 1 thermal
0 1 thermal
0 1 thermal | | ruling_list
ruling_list | MALAGA, 1, PL1X2
SENTNL 2, CTG2 | Malaga Power Aggregate
Sentinel Unit 2 | 96
95.34 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | | 1 1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list | OMAR 2 UNIT 4
OMAR_2 UNIT 3 | KERN RIVER COGENERATION CO. UNIT 4 KERN RIVER COGENERATION CO. UNIT 3 | 81.44
81.41 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal
0 1 thermal
0 1 thermal | | | | Sycamore Cogeneration Unit 2 Sycamore Cogeneration Unit 4 | 80 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | SYCAMR 2. UNIT 4
OMAR 2. UNIT 2
OMAR 2. UNIT 1 | KERN RIVER COGENERATION CO. LINIT 2 | 78.11 | CAISO_Peaker1
CAISO_Peaker1 | physical | none | 1 | 0 1 thermal | | | | KERN RIVER COGENERATION CO. UNIT 1
CANYON POWER PLANT UNIT 1 | 78
49.4 | | physical
physical | none | 1 1 | 0 1 thermal
0 1 thermal | | ruling_list
ruling_list
ruling_list | ANAHM, 2, CANNO
ANAHM, 2, CANNO | CANYON POWER PLANT UNIT 2
CANYON POWER PLANT UNIT 3 | 49.4
49.4 |
CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | ANAHM 2 CANYON
RVSIDE 2 RERCUS
RVSIDE 2 RERCUS | | 49.4 | CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal | | ruting_list | RVSIDE_2_RERCU4 | Riverside Energy Rec. Ctr Unit 3
Riverside Energy Rec. Ctr Unit 4
Wellhead Power Delano | 49
49 | CAISO_Peaker1 | physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | VESTAL 2, WELLHO
RVSIDE 6, RERCU1
BDGRCK_1_UNITS | Wellheide Provet Delaino
Riverside Energy Ros. Ctr Unit 1
BADGER CREEK LIMITED | 49
48.35 | CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1 | physical
physical | none | 1 | 0 1 thermal 0 1 thermal | | ruling_list
ruling_list | | | 48.08
47.98 | | physical
physical | none | 1 | 0 1 thermal | | ruling_list | BOGUE 1 UNITA1
ETIWND 6 GRPUND | Feather River Energy Center, Unit #1
Grapeland Peaker | 47.6
47.39 | CAISO Peaker1 | | | | | | ruling_list
ruling_list | | | | CAISO Bookers | physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | | McGrath Beach Peaker | 47.2 | CAISO Peaker1
CAISO Peaker1
CAISO Peaker1 | physical
physical | none | 1 1 1 1 | 0 1 thermal
0 1 thermal
0 1 thermal | | ruling_list
ruling_list | BARRE 6 PEAKER | McGrath Beach Peaker
Center Peaker
Barre Peaker | 47.2
47.11
47 | CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1 | physical
physical
physical
physical | none
none
none | 1
1
1
1 | 0 1 thermal | | | CENTER 6 PEAKER BARRE 5 FEAKER LARKSP 6 UNIT 1 SMPRP 1 SMPSON | McGrath Beach Peaker Center Peaker Barre Peaker Barre Peaker LARSSUM PEAKER UNIT 1 Répon Cogeneration Unit 1 | 47.2 | CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1 | physical
physical
physical | none
none | 1 | 0 1 thermal 0 1 thermal 1 thermal 0 1 thermal 1 thermal 1 thermal 1 thermal 1 thermal | | ruling_list | LARKSP 6, UNIT 1 SMOREP, 1, SMOSON MIRCOM, 6, PEACER FICAN, 6, UNITA1 | McGrath Beach Publier Conter Publier Barrie Publier 1ARSOFUR PEARER UNIT 1 Ripon Cognition alone Unit 1 Grant Cognition and Cogn | 47.2
47.11
47
46.1
46.05
46
45.42 | CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1
CAISO_Peaker1 | physical
physical
physical
physical
physical
physical
physical
physical
physical | none
none
none
none
none
none
none | 1
1
1
1
1
1
1
1 | 1 thermal | | ruling_list | LARKSP 6, UNIT 1 SMOREP, 1, SMOSON MIRCOM, 6, PEACER FICAN, 6, UNITA1 | McGrath Beach Publier Conter Publier Barrie Publier 1ARSOFUR PEARER UNIT 1 Ripon Cognition alone Unit 1 Grant Cognition and Cogn | 47.2
47.11
47
46.1
46.05
46
45.42
45 | CAISO Peaker1 | physical
physical
physical
physical
physical
physical
physical
physical
physical | none
none
none
none
none
none
none | 1 | 1 thermal | | ruling list
ruling list
ruling list
ruling list | LANSES & LOWITS SAMME J. SAMMON MIRLOM & PALEER ELCOM & LOWITS MICHIEL SAMMON MIC | McGraft Boath Parker Center Parker LANSCHIK PARKER LOW 1 RIPORT CONTROL TO 1 RIPOR CENTER TO 1 More Loom to Variate Currence Parker Longer Plant Microsoft Longer Plant Microsoft Longer Plant Microsoft Longer Parker Longer Microsoft Longe | 47.2
47.11
47
46.1
46.05
46
45.42
45
44.83
44 | CAISO_Peaker1 | physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical | none none none none none none none none | 1 | 1 thermal | | ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list
ruling_list | LANSES & LOWITS SAMME J. SAMMON MIRLOM & PALEER ELCOM & LOWITS MICHIEL SAMMON MIC | Microsh beach Publish Gente Noble Gente Noble LANSCHUR FASSER MED 1 Ripon Ception provide to 1 More Lansch Noble Med Lansch Noble Med Lansch Noble Med Lansch Noble Gente Lansch Lansch Med Lansch Noble Gente Lansch Med Lansch Lansch Med | 47.2
47.11
47
46.1
46.05
46
45.42
45
44.83
44
42.42
41.4 | CAISO, Peaker1 | physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical | none none none none none none none none | 1 | 1 thermal 3 thermal 1 thermal 1 thermal 1 thermal 3 thermal 1 thermal | | ruling list
ruling list
ruling list
ruling list
ruling list
ruling list
ruling list
ruling list
ruling list | DARCH S, UNITS SAME D, SANCER SCAN, S, UNITS SCAN, S, UNITS MATE SAME CANADA J, UNITS MATE SAME CANADA J, UNITS | MUGG-sith Nash Paular Casilin Paular Casilin Paular Casilin Paular LAMSCHUR PAGER URD 1 Ripon Capitar patie to the 1 Capitar Capitar Paular Capitar Nash Karepy Rest Memora Capitar Paular Memora Capitar Paular Memora Capitar Paular Casilin And Memora Service Casilin Andrea Cas | 47.2
47.11
47
46.1
46.05
46
45.42
45
44.83
44
42.42 | CAISO, Peaker1 | physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
phy |
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma | | 1 1 1 1 1 1 1 1 1 1 | | ruing list
ruing list | LARGE S, UNIT IN SAME S, UNIT IN SAME S, UNIT IN ELCAN S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN ELCAN S, UNIT IN MOST S, UNIT IN ELCAN | Microrth banch Paular taken Paular taken Paular taken Paular LAMSCHIR FRAGEL URFT 1 Microrth Paular Microrth Paular Compensor Paula Emergination GALAN Model ST Microrth Paular GALAN MODEL ST Microrth Paular GALAN MODEL ST GALAN MODEL ST GALAN MODEL ST GROWN MODEL ST GROWN MODEL ST GALAN GALAN ST | 47.2
47.11
47
46.1
46.05
46
45.42
45
44.83
44
42.42
41.4
36
36
7 | CAISO, Peaker1 | Ohysical | misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma
misma | | 1 1 1 1 1 1 1 1 1 1 | | ruing list
ruing list | LARGE S, UNIT IN SAME S, UNIT IN SAME S, UNIT IN ELCAN S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN MOST S, UNIT IN ELCAN S, UNIT IN MOST S, UNIT IN ELCAN | MUGG-sith Nash Paular Casilin Paular Casilin Paular Casilin Paular LAMSCHUR PAGER URD 1 Ripon Capitar patie to the 1 Capitar Capitar Paular Capitar Nash Karepy Rest Memora Capitar Paular Memora Capitar Paular Memora Capitar Paular Casilin And Memora Service Casilin Andrea Cas | 47.2
47.11
47
46.1
46.05
45.42
44.83
44.83
56
7
7 5.75 | CAISO, Positori Positor | physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physic | Finding | | 1 1 1 1 1 1 1 1 1 1 | | ruling list | LARGE S. GRET ON MINOME FRANKE HEART S. GRETAL MODEL SAMMARE GENERAL G | Microsh
beach Pusiter Center Positer Center Positer LANSIVER FASTER MET 1 Ripon Center position 11 More Lansi Pusiter Meta Lansi Lansi Meta Lansi Lansi Lansi Lansi Meta Lansi Lansi Lansi Meta Met | 47.2
47.11
47
46.1
46.05
45.42
44.83
44.83
56
7
7 5.75 | CAISO, Positori Positor | physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physical
physic | Annual An | | 1 | | ruting, list | LABOR S. CORT ON MINIOLOGY S. FAMER FLOATE, G. UNIVERS MINIOLOGY S. LABORE CORTAL T. COMMA CONTROL SOURCE MINIOLOGY MINIOLOGY S. CORTAL T. COMMA CONTROL SOURCE MINIOLOGY MINIOLOGY S. CORTAL T. COMMA CONTROL SOURCE MINIOLOGY | Microsh beach Pusiter Center Positer Center Positer LANSIVER FASTER MET 1 Ripon Center position 11 More Lansi Pusiter Meta Lansi Lansi Meta Lansi Lansi Lansi Lansi Meta Lansi Lansi Lansi Meta Met | 47.2
47.11
46.1
46.05
46.4
45.42
45.44.83
44.42.42
41.4
36
36
37
37
37
38
38
38
38
38
38
38
38
38
38
38
38
38 | CAISO, Positori Positor | physical phy | Andere de la constante c | | 1 | | reling, list ruling, suling, list suling, list suling, list sumplate, list bemplate list bemplate list bemplate list | LABORATE CONT ON MARCON STATES AND | MicGrath banch Pusiter Garmy Pusiter Landy Hard Hard Hard T Report Companies to that 1 Report Companies to that 1 Commands Paul Energy Facility Manual Energy Facility Manual Energy Facility Gard Control Hard Hard Hard Hard Hard Hard Hard Hard | 47.2
47.31
46.11
46.15
46.15
45.42
44.83
44.83
44.83
56
7
5.77
5.73
5.93
5.93
5.93
5.93
5.93
5.93
5.93
5.9 | CASS, Polater L
CASS, | physical phy | Anderson Anterson Ant | | 1 Dennis 0 | | reling, list ruling, suling, list suling, list suling, list sumplate, list bemplate list bemplate list bemplate list | LABOR S. CONT ON MINIOUS F. FAGER HICKAR, S. UNIVAL MODIT, S. MANAGE MODIT, S. MANAGE MODIT, S. MANAGE MODIT, S. MIPZ GAMMA 7. UNIVAL CENTRE, S. LEM DEWIS, S. F. ELE GEOGRAPH MODIT, S. P. LEM GEOGRAPH MODIT, S. MIPZ GEOGRAPH MODIT, S. MIPZ GEOGRAPH MODIT, S. MIPZ GEOGRAPH MODIT, S. MIPZ GEOGRAPH GEOGRA | Microsh bash Paular Camin Paular Camin Paular Camin Paular LAMSCHUR PAULAR UT 1 Ripon Capitar paula to 11 Ripon Capitar paula to 11 Caminata Paula Europy Paula Morana Europy Paula Morana Europy Paula Galla Anda Maril 1 Galla San Galla San San San San San San San San San Sa | 47.21
47.21
46.1
46.05
46.05
46.02
48.2
44.83
44.2
41.4
36
36
37
5.75
5.75
5.00
80
80
80
80
80
80
80
80
80
80
80
80
8 | CASS, Positor II | physical shipsical shipsic | Annual and | | 1 2 menus 1 2 menus 2 1 2 menus 2 1 2 menus 3 1 2 menus 3 1 2 menus 4 1 2 menus 4 1 2 menus 5 1 2 menus 6 menu | | ruling, list rulin | LABORATE CONTROL MINIOLOGY S-FACER FECANA, S. UNIVERS UNIVE | Microsh bash halar Garney Near Garney Near Lassoyua FAARSI war 1 Report General war to 1 Report General war to 1 Covernance Pred Energy Pred I Marson to Energy Facility Marson to Energy Facility Marson to Energy Facility Garney Garney Ga | 472.1
461.1
46.5
46.6
46.4
44.8
44.8
44.2
42.4
44.4
5.5
5.75
5.75
5.00
88
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.0 | GASG, Paularia
GASG, | physical of physical | Anderson Anterson Ant | | 1 menus menu | | ruling, list | ALADAS CONT ON A CONTROL OF THE ACT A | Microsh bash Paular Carlos Paular Carlos Paular Carlos Paular LANGURI FAREE MET 1 Riphon Cognizarianto Inti 1 Corumnia Paula Energy Paular Carlos Bash Langui Paula Marina Energy Paular Carlos Bash Langui Paula Carlos Bash Langui Paula Carlos Carlos Langui Paula Carlos Carlos Langui Paula Carlos Carlos Langui Paula Carlos Carlos Langui Paula Santia Carlos Carlos Carlos Santia Carlos Carlos Carlos Santia Carlos Carlos In Common Santia S | 47.2
46.1
46.05
46.05
46.42
46.42
44.4
44.4
44.4
44.4
44.4
44 | GAMO, Poslateria | physical or physical | Control of | | 1 1 menus me | | ruling, list | MANNEY S. SMIT ON MINISTRA S. FARAR ILLOWA, G. SPETAL ILLOWAND, IL | Microrth bank hauter taken Prober Prob | 472
461
465,66
46,42
46,42
46,42
47,42
41,43
58,55
57,7
5,57,500
500
500
500
500
500
500
500
500
500 | GASG, Paularia
GASG, | physical or physical | Control of | | 1 | | ruling, list | LABORATE CONTROL MINIOLOGY S-FACER LECAN, S. (SWELZ) (SW | Microsh bash Paular Garrier Water Garrier Water LANGURE FAREE URT 1 Report Centeration to the 1 Consense Paula Energy Facility Manual Energy Facility Manual Energy Facility Manual Energy
Facility Garrier General Paula Control of Co | 472
461
465,66
46,42
46,42
46,42
47,42
41,43
58,55
57,7
5,57,500
500
500
500
500
500
500
500
500
500 | GAMO, Poslateria | physical physic | Control of | | 1 | | ruling, list | LABORATE CONTROL MINIOLOGY S-FACER LECAN, S. (SWELZ) (SW | Microrth bank hauter taken Prober Prob | 47.2
46.1
46.2
46.4
46.4
47.2
44.3
44.3
44.3
45.5
55.7
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77
5.77 | GMG/ Palabert GM | physical physic | Control of | | 1 | | roting, list value, value | LAMBOR CONTROL MINIOLOGY S-TAKER LECAN, S. (1987AL (1987 | Microrib banch Paular Garden Paular Garden Paular Garden Paular Lander Hander Hart Marchard Hander Hart Marchard Hart Commission Paula Energy Paular Garden Marchard Hart Garden Hander Hart Garden G | 472
461
464
464
464
464
464
444
444
444
445
464
464 | GAMD, Posibility CAMD, | physical physic | Control of | | 1 | | roting, list rading, radin | LAMBOR CONTROL MINIOLOGY S-TAKER LECAN, S. (1987AL (1987 | Microrib banch Paular Garden Paular Garden Paular Garden Paular Lander Hander Hart Marchard Hander Hart Marchard Hart Commission Paula Energy Paular Garden Marchard Hart Garden Hander Hart Garden G | 47.21 46.1 46.1 46.4 46.4 46.4 47.1 44.1 46.5 56.7 5.77 5.77 5.77 5.77 5.77 5.77 5 | GAMO, Postlanti CAMO, Postlant | physical physic | Control of | | 1 | | roting, list conting, con | MANNEY S. SMIT ON MINISTRA S. FARAR ILLOWA, G. UPETAL U | Microrth bank hauter taken Nober Nob | 47.21 46.1 46.1 46.4 46.4 46.4 47.4 48.1 44.1 46.6 56.7 57.7 5.77 5.77 5.77 5.77 5.77 5 | GAMO, Postlanti CAMO, Postlant | physical ophysical physical ph | Control of | | 1 | | roting, list conting, con | MANNEY S. SMIT ON MINISTRA S. FARAR ILLOWA, G. UPETAL U | Microsh bash halar Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Manual Energy Facility General General Accordance General General Manual Energy | 47.2 1.1 46.1 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 | GAMO, Postlanti CAMO, Postlant | physical ophysical ophysic | Control of | | 1 | | roting, list conting, con | MANNEY S. SMIT ON MINISTER S. TARREST LLCANS, Q. SMETAS | Microsh bach hashe taken Neiser taken Neiser taken Neiser LAMSCHIR FRAGRIL MET 1 Metaban hashe Commission Plant Energy Plant Gall Man Metaban M | 47.31 46.11 46.14 46.4 46.4 46.4 46.4 47 48.1 44.1 46.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48 | GAMO, Posibility CASSO, Posibi | physical ophysical ophysic | Control of | | | | rating, list conting, con | MARKE S. SMIT ON MINISTER S. SMIT ON MINISTER S. FARER I LLOW, S. SMIT ON MINISTER | Microsh bach hashe Games Nazer | 6721 661 662 663 664 664 664 664 664 665 665 665 666 666 | GAMD, Posibility CASSD, Posibi | physical shrines of the physic | Control | | 1 | | roling, list variety, list of the product pr | MANNES SANTON MINIOLOGY STAGES LLCANG, QUEETA LLCANG, QUEETA GAMBAT, QUEETA AMOLT SANTON AMO | Microsh bash halar Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Carrier Nazer Manual Energy Facility General General Nazer Manual Energy | 47.2
46.1
46.2
46.4
46.4
46.4
44.4
44.4
44.5
55.75
50.0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0
80,0 | GAMO, Postlanti CASSO, | physical ophysical ophysic | Control of | | 1 | | rating, list conting, con | Monte, 5, SMIT ON MINISTER STATES AND | Microsoft based Pasalar data Probater Probat | 47.31 46.1 46.4 46.4 46.4 48.3 48.4 48.3 48.4 48.3 48.4 48.3 59.7 5.75 50.3 80.0 80.0 80.0 80.0 80.0 80.0 80.0 8 | GMG/ Pallaris P | physical ophysical ophysic | Control of | | 1 | | reding, Est conting, contin | Monte, 5, SMIT ON MINISTER STATES AND | Microsoft based Pasalar data Probater Probat | 47.31 46.1 46.4 46.4 46.4 48.3 48.4 48.3 48.4 48.3 48.4 48.3 59.7 5.75 50.3 80.0 80.0 80.0 80.0 80.0 80.0 80.0 8 | GMG/ Pallaris P | physical ophysical ophysic | Control of | | 1 | | coding, list of o | Monte, 5, SMIT ON MINISTER STATES AND | Microsoft basis Passar Gardina Maria Gardi | 47.11 46.11 46.1 46.4 46.4 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48 | GMG/ Pollateri GAGS / P | physical ophysical ophysic | Control of | | | | reduce, list a control, control li | MARKE, S. SMITON MINIOLOGY, S. FAREN ELLON, S. UPETAL ELL | Microsh bach hasher than Whater Whate | 6721 661 662 663 664 664 664 664 665 665 6666 6666 6 | GAMD, Posibility | shricial shr | Control | | 1 | | coding, list codin | LAMBOR S. CONTON MINIOLOGY S. FARER LLCAM, S. GWELLE LLCA | Microsh bash hasher class where the hash passes AMSOVER PARKET WITT 1 Report Company and the state of sta | 672
672
684
684
684
684
684
684
684
685
685
685
686
686
686
686
686 | GMG/ Pollaberi P | physical
ophysical ophysic | Control of | | 1 | | coding, list of o | MARINE S. SMIT ON MINIOUS F. FASER **LECAN, Q. (MPCHA** **LECAN, Q. (MPCHA** **COMMAND J. MPCHA** **AMORT S. MPCHA** **AMORT S. MPCHA** **AMORT S. MPCHA** **COMMAND J. M | Microsoft basis hashes taken Palace | 67.11 67.11 67.11 67.11 67.11 68.10 | GMG/ Pollateri GAGS / P | physical ophysical physical ph | Control of | | 1 | | coding, list of o | MARINE S. SMIT ON MINIOUS F. FASER **LECAN, Q. (MPCHA** **LECAN, Q. (MPCHA** **COMMAND J. MPCHA** **AMORT S. MPCHA** **AMORT S. MPCHA** **AMORT S. MPCHA** **COMMAND J. M | Microsh bash hashe Gashel Nader Nad | 6721 661 662 663 664 664 664 664 664 664 665 6666 6666 | GAMD, Posibility | physical ophysical physical ph | Control of | | 1 | | coding, list codin | JAMES SAFETY MINIOUS FARSH ELCORA & GOPTAF ELCORA & GOPTAF ELCORA & GOPTAF GAMMAN CANADA CANADA GAMMAN CANADA CANADA GAMMAN CANADA GAMMAN CANADA GAMMAN CANADA CANADA CANADA CANADA CANADA CANADA CANADA GAMMAN GA | Microsh bash hasher class where the Name of State Stat | 673
673
661
664
664
664
664
664
664
664 | GMG/ Pollaberi P | physical ophysical ophysic | Control of | | 1 | | coning, list of o | JAMES SAFETY MINIOUS FARSH ELCORA & GOPTAF ELCORA & GOPTAF ELCORA & GOPTAF GAMMAN CANADA CANADA GAMMAN CANADA CANADA GAMMAN CANADA GAMMAN CANADA GAMMAN CANADA CANADA CANADA CANADA CANADA CANADA CANADA GAMMAN GA | Microsh bash hasher than Nazer Naze | 673
673
661
664
664
664
664
664
664
664 | GALD, Paularia | shricial shr | Control | | 1 | | coding, list of o | MARINE, S. SMIT ON MINIOUS, F. FASAR ILCOME, Q. SMIT ON MINIOUS, F. FASAR ILCOME, Q. SMIT ON MARINE, SM | Microsh bach Paular Caster Nazer Na | 6721 661 662 663 664 664 664 664 664 664 665 6666 6666 | GAMO, Postbart | physical ophysical ophysic | Control of | | 1 | | coding, list of o | MARINE, S. SMIT ON MINISTERS STATES AND STAT | Microsoft based Paular Caster Paular Caster Paular Lasson Response Lasson Response Companies Paula Emerge Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies | 67.11 67.11 67.11 67.11 67.11 68.0 68.0 68.0 68.0 68.0 68.0 68.0 68.0 | GMG/ Pollateri GAGS / P | physical ophysical ophysic | Control Con | | 1 | | coding, list of o | MARINE, S. SMIT ON MINISTERS STATES AND STAT | Microsh bach hasher than Nazer th | 6731 6612 6616 66 66 66 66 67 67 67 67 67 67 67 67 67 67 67 67 67 6 | GAMD, Posibility | physical ophysical ophysic | Control | | 1 1 1 1 1 1 1 1 1 1 | | coding, list of o | LOWING SAME IN COMMISSION OF PARTIES AND COM | Microsoft based Paular Carter Paular Carter Paular Lasson Response Lasson Response Companies Paula Emerge Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies P | 67.11 67.11 67.11 67.11 67.11 68.6 68.6 68.6 68.6 68.6 68.6 68.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | GAMO, Postbart | physical phy | Common | | 1 | | coding, list of o | LOWING SAME IN COMMISSION OF PARTIES AND COM | Microsh bash hasher taken Nazer Naze | 6711 671 671 672 673 674 674 675 675 675 675 675 675 675 675 675 675 | GAMO, Postbart | shricial shr | Control | | 1 | | roding, Box ording, ording | MARINE S. SMITON MINIOUS S. FAREN ILLOW, S. UNITAL | Microsh bash hasher than Water th | 6711 671 671 671 672 673 674 674 675 677 677 677 677 677 677 677 677 677 | GMG/ Palebril GM | physical ophysical ophysic | Control | | 1 | | coding, list of o | LAMBOR S. SMIT ON MINIOUS F. FRASH LECAN, Q. (SMITH LECAN, Q. (SMITH COMMAND, JUST J. MOST S. MIST MOS | Microsoft based Paular Carter Paular Carter Paular Carter Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies Paula Emerge Paular Companies | 67.11 67.11 67.11 67.11 68.16 68.6 68.6 68.6 68.6 68.6 68.7 7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 | GMG/ Pallari GMG/ Pallari GAGG | physical phy | Common | | | | ruling_list
ruling_list | GLNARM_7_UNIT 1
ELCAIN_7_GT1 | GLEN ARM UNIT 1
EL CAJON | 22.07 CAISO_Peaker2 physical
0 CAISO_Peaker2 physical | none | 1 | 0 1 thermal
0 1 thermal | |---|--|--|---|--|-----|--| | ruling_list
ruling_list | REARW_7_KY3
MRGT_7_UNITS | KEARNY GT3 AGGREGATE MIRAMAR COMBUSTION TURBINE AGGREGATE | 0 CAISO_Peaker2 physical 0 CAISO_Peaker2 physical | none | 1 | 0 1 thermal | | | | SHELL OIL REFINERY AGGREGATE | 100 CAISO_Peaker2 physical
14.5 CAISO_Peaker2 physical | none | 1 | 0 1 thermal | | template_list
template_list
ruling_list | ENCINA, 7, GT1 PALALT_7_COBUG HELMPG_7_UNIT 1 | Cooperatively Owned Back Up Generator
HELMS PUMP-GEN UNIT 1 | 4.5 CAISO Peaker2 physical
407 CAISO_Pumped_Hydro physical | none
none | 1 | 0 1 thermal | | culian fire | HELMPG_7_UNIT 2
HELMPG_7_UNIT 3
EASTWD_7_UNIT | | 407 CAISO Pumped Hydro physical | none | 1 | 0 1 psh
0 1 psh
0 1 psh
0 1 psh
0 1 psh
0 1 psh | | ruling_list
ruling_list | EASTWD_7_UNIT | HELMS PUMP-GEN UNIT 3 EASTWOOD PUMP-GEN SAN LUS (GIANELLI) PUMP-GEN (AGGREGATE) | 404 CAISO Purpod Pydro physical 200 CAISO Purpod Pydro physical 200 CAISO Purpod Pydro physical 53 CAISO Purpod Pydro physical | none | 1 | 0 1 psh
0 1 psh | | ruling_list
ruling_list
ruling_list | SLUISP, 2. UNITS
LAKHDG, 6. UNIT 1
LAKHDG, 6. UNIT 2 | SAN LUIS (GENERLLE) PUNNY-GERE (PUODECCH LE) Lake Hodges Pumped Storage-Unit2 Lake Hodges Pumped Storage-Unit2 | 20 CAISO_Pumped_Hydro physical 20 CAISO_Pumped_Hydro physical | none
none | 1 | | | template_list
template_list | new_ganeric_oumped_storage_hydro
CDWR07_2_GEN
EDMONS_2_NSPIN | | #N/A CAISO Pumped Hydro new generic | none | 0 | 0 1 psh
1 0 psh
0 1 psh | | template_list
template_list | EDMONS 2. NSPIN
BANNP 2. NSPIN | WNDGPP_2, NSPIN
EDMONS, 2, NSPIN
BAAKKPP_2, NSPIN | 456 CAISO, Pumpadi, Hydro physical
840 CAISO, Pumpadi, Hydro physical
270 CAISO, Pumpadi, Hydro physical | none
none
none | 1 | | | template_list
template_list | DOSMGO 2 NSPIN PEARBL 2 NSPIN | DOSMOG_2_NSPIN PEARBL_2_NSPIN | 159 CAISO_Pumped_Hydro physical
151.2 CAISO_Pumped_Hydro physical | none | 1 | 0 1 psh
0 1 psh
0 1 psh | | template_list
added | | OSO_6_NSPIN | | none | 1 0 | 0 1 psh
1 1 psh
0 1 thermal | | ruling_list
ruling_list | existing_generic_pumped_storage_hydro
HUMBP9_6_UNITS
HUMBP9_1_UNITS3 | Humboldt Bay Generating Station 1
Humboldt Bay Generating Station 3 | BN/A CAISO Periped lydro existing generic
97.52 CAISO, Reciprocating, Engine physical
65.08 CAISO, Reciprocating, Engine physical | none | 1 | 0 1 thermal | | ruling_list
ruling_list | CHWCHL 1 UNIT
REDBLF 6 UNIT | CHOW 2 PEAKER PLANT RED BLUFF PEAKER PLANT | 48.6 CAISO_Reciprocating_Engine physical | none | 1 | 0 1 thermal | | ruling_list
template_list | | Oroville Cogeneration, LP | 7.5 CAISO_Reciprocating_Engine physical | none | 1 0 | 0 1 thermal | | added
template_list | new generic joe
existing generic joe
Grasshopper Flat | Grasshopper Flat | BN/A CAISO_Reciprocating_Engine existing_generic 1.1 CAISO_Small_Hydro physical | none | 0 | 1 1 thermal
1 1 hydro | | template_list
template_list | Carriso Solar Central Valley North Los Banos Solar Distributed Solar | 0 | #N/A CAISO Solar new resolve | fillme_name.type.mw | 0 | 1 O solar
1
O solar | | template_list
template_list | Distributed Solar | 0 | #N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw
filme_name,type,mw | 0 | | | template_list
template_list | Greater Imperial Solar
Inyokern North Kramer Solar
Kern Greater Carrizo, Solar | 0 | #N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw | 0 | 0 solar
0 solar | | template_list
template_list | Kramer Inyokem Ex Solar | 0 | #N/A CAISO Solar new resolve | | 0 | 1 0 solar
1 0 solar | | template_list
template_list | Kramer (nyokem Ex Solar
North-Victor Solar
Northern California Ez Solar
Riverside Palm Springs, Solar | 0 | RN/A CAISO_Solar new_resolve
RN/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar | | template_list
template_list | Sacramento, River Solar
Southern_CA_Desert_Southern_NV_Solar | 0 | #N/A CAISO Solar new resolve
#N/A CAISO Solar new resolve | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar
1 0 solar | | template_list
template_list | | 0 | #N/A CAISO_Solar new_resolve | | 0 | 1 0 solar
1 0 solar
1 0 solar | | template_list
template_list | Solano subzone Solar
Graster Kramer Solar
Southern California Desert Ex Solar | 0 | #N/A CAISO_Solar new_resolve
#N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar | | template_list
template_list | Southern Neveda Solar
Tehachapi Solar | 0 | #N/A CAISO_Solar new_resolve
#N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar
1 0 solar | | template list
template list | Tehachapi Ex Solar
Westlands Ex Solar | 0 | | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar
1 0 solar | | template list
template list | Westlands, Solar
Ittah, Solar | 0 | BN/A CAISO_Solar new_resolve
BN/A CAISO_Solar new_resolve
BN/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw | 0 | | | template_list
template_list | Arizona, Solar
New Mexico Solar
Baja, California, Solar | 0 | #N/A CAISO_Solar new_resolve
#N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar
1 0 solar | | template_list
template_list | Baja, California, Solar
SCADSNV, Solar | 0 | #N/A CAISO_Solar new_resolve
#N/A CAISO_Solar new_resolve | filme_name,type,mw
filme_name,type,mw | 0 | 1 0 solar
1 0 solar | | template_list
template_list | SCADSNV Solar
new generic solar_laxis
new_generic_solar_laxis | 0 | RN/A CAISO Solar new generic
RN/A CAISO Solar new generic | none | 0 | 0 solar
1 0 solar
1 0 solar | | template_list
template_list | new_generic_solar_fixed
new_generic_solar_thermal
SLRMSS_2_SRMSR1 | 0 | BN/A CAISO_Solar new_generic
BN/A CAISO_Solar new_generic
250 CAISO_Solar physical | none
none | 0 | 1 0 solar
1 0 solar
1 1 solar
0 1 solar | | template_list
template_list | SLRMS3_2_SRMSR1
TRNQLT_2_SQLAR | SILVER RIDGE MOUNT SIGNAL 3 Tranquility | 200 CAISO Solar physical | none | 0 | 1 1 solar
0 1 solar | | template_list
template_list | TRNQLT 2 SOLAR
RATSKE 2 NROSR1
RE Slate 1-2 | North Rosamond Solar, LLC
RE Slate 1-2 | 160 CAISO_Solar physical
150 CAISO_Solar physical | none
none | 1 0 | | | template_list
template_list | | 0
Seven Sisters Solar | 150 CAISO_Solar physical | none | 1 0 | 1 0 solar 1 0 solar 1 solar 1 solar 1 solar 0 1 solar 0 1 solar 0 1 solar 0 1 solar | | template_list | SevenSisters
Amercian Fala Solar II
Clark Solar 1 | 0 | 140 CAISO_Solar physical | none
none | 1 1 | 0 1 solar
0 1 solar | | template list
template list | Clark Solar 2
Clark Solar 3 | 0 | 140 CAISO Solar physical
140 CAISO Solar physical | none | 1 1 | 0 1 solar
0 1 solar | | template_list
template_list | Clark Solar 4
Orchard Ranch Solar | 0 | 140 CAISO_Solar physical
140 CAISO_Solar physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | template list
template list | Pocatello Solar 1
Simco Solar | 0 | 140 CAISO Solar physical
140 CAISO Solar physical | none | 1 1 | 0 1 solar
0 1 solar | | template_list
template_list | PNCHVS_2_SOLAR
CALFTN_2_SOLAR | PNCHVS_2_SOLARB California Flats North | 140 CAISO_Solar physical
130 CAISO_Solar physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | template_list
template_list | BigBeau Solar
Beacon Solar B | BigBeau Solar Rearnn Solar & Rearnn Solar RCON19G | 128 CAISO_Solar physical
125 CAISO_Solar physical | none | 0 | | | template_list
template_list | Maverick Solar, LLC
BGSKYN 2. AS25R1 | Marverick Solar, LLC
0 | 125 CAISO Solar physical
105 CAISO Solar physical | none | 0 | 0 1 solar
1 0 solar
0 1 solar | | template_list
template_list | MSOLAR 2. SOLAR2
TRNQLB_2_ROUSR1
DSF.WR, 2_WSISR1 | Mesquite Solar 2
Tranquillity 8 Rojo | 100.81 CAISO_Solar physical
100 CAISO_Solar physical
100 CAISO_Solar physical | none
none | 0 | 1 1 solar
0 1 solar | | template_list
template_list | DSFLWR_2_WS2SR1
WISTRA_2_WRSSR1 | 0
Wistaria Ranch Solar | | none | 0 | | | template_list
template_list | WISTRA 2 WRSSR1
RE Slate (Stanford)
TRNQLB_2_VERSR1 | RE Slate (Stanford)
Tranquility 8 Verde | 63 CAISO Solar physical
60 CAISO Solar physical | none | 0 | 1 1 solar
1 0 solar
0 1 solar
0 1 solar | | template_list
template_list | CAMLOT 2 SOLAR1
CUYANS 6 CUYSH1
CerroPhiatoP
KRAMER 1 KISSRS | Camelot
0 | 45 CAISO_Solar physical
40 CAISO_Solar physical
35 CAISO_Solar physical | none
none | 1 1 | 0 1 solar | | template_list
template_list | CerroPrietoPV
KRAMER_1_KISSRS | Planta Fotovoltaica Cerro Prieto-1
Kramer Junction 5 | 30 CAISO_Solar physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | template list
template list | VICTOR 1 CREST
RE Gaskell West 3
RE Gaskell West 4 | 0
RE Gaskell West 3 | 24.49 CAISO Solar physical
20 CAISO Solar physical | none | 1 0 | 0 1 solar
1 0 solar | | template_list
template_list | RE Gaskell West 5 | RE Gaskell West 4 RE Gaskell West 5 | 20 CAISO_Solar physical 20 CAISO_Solar physical 20 CAISO_Solar physical | none | 0 | 1 0 solar
1 0 solar
1 0 solar
1 0 solar
0 1 solar | | template_list
template_list | 97WI8ME LLC (Midway Solar Farm III)
ORNI33, LLC | 97WIBME LLC (Midway Solar Farm III) ORNI33, LLC | 20 CAISO_Solar physical | none
none
none | 1 0 | 0 1 solar
1 1 solar | | template_list
template_list | BIGSKY Z BSNSN6
BIGSKY 2 BSNSN7 | Big Sky Solar 6
Big Sky Solar 7 | 20 CAISO_Solar physical
20 CAISO_Solar physical | none | 0 | 1 1 solar
1 1 solar
1 1 solar | | template list
template list | | Big Sky Solar 8
Big Sky Summer | 20 CAISO Solar physical
20 CAISO Solar physical | none | 0 | 1 1 solar
0 1 solar
0 1 solar | | template list
template list | BIGSKY_2_SOLAR3
TRNQLS_2_AAASR1
TRNQLS_2_AZUSR1 | Tranquility 8 Amarillo
Tranquility 8 Azul | 20 CAISO Solar physical
20 CAISO Solar physical | none
none
none | 1 | | | template_list
template_list | FRNTBW_6_SOLAR1
GASKW1_2_GW15R1 | Frontier Solar
Gaskell West 1 | 20 CAISO_Solar physical
20 CAISO_Solar physical | none | 0 | 1 1 solar
1 1 solar
1 1 solar | | template_list
template_list | | Burford Giffen
Jacumba Solar Farm | 20 CAISO_Solar physical | none | 0 | 1 1 solar | | template_list
template_list | JACMSR 1 JACSB1
LAMONT_1 SOLAR2
SEGS_1_SR2SL2 | Redwood Solar Farm 4
Sunray 2 | 20 CAISO_Solar physical
20 CAISO_Solar physical | none
none | 0 | 1 1 solar
1 1 solar | | tomolyto list | WHITHY 6 SOLAR
SUMWHT 6 SWSR1
VALENTR 22870_DG | Whitney Point Solar
0 | 20 CAISO Solar physical | none | 1 0 | 1 1 solar
0 1 solar
1 solar
1 1 solar
0 1 solar
0 1 solar | | template_list
template_list
template_list | VALONTR 22870_DG
VEAVST 1 SOLAR | VALCNTR
Community Solar | 14.5 CAISO_Solar physical | none
none
none | 1 | 0 1 solar
0 1 solar | | template_list
template_list | VEAVST_1_SOLIAR
BECTOR_2_CREST
SPROVI_2_CREST
GALE_1_SR33R3 | 0 | 14 CAISO Solar physical
14 CAISO Solar physical | none | 1 | 0 1 solar
0 1 solar | | template_list
template_list | GALE_1_SR3SR3
QASS_6_CREST | Sunray 3
0 | 13.8 CAISO_Solar physical
13.5 CAISO_Solar physical | none | 0 | 1 1 solar
0 1 solar | | template list
template list | OASIS 6 CREST
BLCKWL 6 SOLAR1
DESUR 6 CREST | 0
DELSUR 6. CREST1 | 12 CAISO_Solar physical
10 CAISO_Solar physical | none
none
none | 1 | | | template_list
template_list | GIFFEN 6 SOLARI
RICHMN 1 CHVSR2 | Aspiration Solar G
Chevron 8.5 | 9 CAISO Solar physical
8.5 CAISO Solar physical | none | 0 | 0 1 solar
1 1 solar
1 1 solar | | template_list
template_list | RDWAY_1_CREST
LNCSTR 6_CREST | 0 | 6.5 CAISO_Solar physical
5.5 CAISO_Solar physical | none | 1 | 0 1 solar
0 1 solar
1 1 solar | | template_list
template_list | MAGUND_1_BISSR2
VESTAL 2_UNIT1 | Bakersfield Solar 1
0 | 5.25 CAISO Solar physical
5 CAISO Solar physical | none | 0 | 1 1 solar | | template_list
template_list | Energetics_PV CRELINN 6 RAMSR3 | Energetics Solar-PV(22,000)
Ramona Solar Energy | 4.8 CAISO_Solar physical 4.32 CAISO_Solar physical | none | 1 0 | 0 1 solar
0 1 solar
1 solar | | template_list
template_list | CRELMN, 6, RAMSR3
SHUTLE, 6, CREST
REDMAN, 2, SOLAR | 0
Lancaster East Avenue F | 4 CAISO_Solar physical
3.75 CAISO_Solar physical | none | 1 | 0 1 solar
0 1 solar | | template_list
template_list | REDMAN 2 SOLAR
DEISUR 6 BSOLAR
LITIRK 6 GECSRI | Central Antelope Dry Ranch B
Green Beamworks C | 3 CAISO Solar physical
3 CAISO Solar physical | none | 0 |
0 1 solar
1 1 solar
1 1 solar | | template_list
template_list | MIRLOM, 2. LNDF.
OASIS, 6. (BRDSR4
OASIS, 6. SOLAR3 | Miliken Landfill Solar
Green Bearworks D | 3 CAISO_Solar physical
3 CAISO_Solar physical
3 CAISO_Solar physical | none
none | 0 | 1 1 solar | | template_list
template_list | ORTGA 6 ME1SL1 | Soccer Center | | none | 1 0 | 0 1 solar
1 solar
1 solar
1 solar
1 solar
1 solar | | template_list
template_list | REDMAN_6_AVSSR1
Eagle Solar | Antelope Valley Solar
Eagle Solar | 3 CAISO_Solar physical
3 CAISO_Solar physical | none | 0 | 1 1 solar
1 1 solar | | template_list
template_list | NEENACH SOLAR | NEENACH SOLAR
CalCity Solar I, LLC | 3 CAISO Solar physical 3 CAISO Solar physical | none
none | 0 | 1 1 solar
1 1 solar | | template_list
template_list | Sheep Creek Road Solar Generation Facility Project
VACADX_1_SOLAR | Sheep Creek Road Solar Generation Facility Project
0 | 3 CAISO_Solar physical 2.5 CAISO_Solar physical | none | 1 | 1 1 solar
1 1 solar
0 1 solar
0 1 solar
1 solar
1 1 solar
1 solar
1 solar | | template_list
template_list | VLONTR_6_VCSLR1
Cameron
HENKTA_6_SCHAR2 | Valley Center 1
Cameron | 2.5 CAISO_Solar physical
2.4 CAISO_Solar physical | none | 0 | 1 solar
1 0 solar | | template_list
template_list | HENRTA, 6, SOLAR?
LITURK, 6, SOLAR3
RICHIMN, 1, SOLAR | Westside Solar Power PV1
One Ten Partners | 2 CAISO_Solar physical 2 CAISO_Solar physical | none
none | 0 | 1 solar | | template_list
template_list
template_list | RICHMN, 1. SOLAR
BellevueSolariNV1
DARRID_1_MIDSSL1 | Chevron 2
Bellevue Solar Project-INV-1
Madera 1 | 2 CAISO_Solar physical
1.6 CAISO_Solar physical
1.5 CAISO_Solar physical | none
none
none | 1 | 1 solar
1 solar | | template_list
template_list
template_list | DARID_1_MDISL1 DELSUR 6_SOLAR4 DELSUR 6_SOLARS | Madera 1
0 | 1.5 CAISO_Solar physical 1.5 CAISO_Solar physical 1.5 CAISO_Solar physical | none
none
none | 0 | 0 1 solar
1 1 solar
1 1 solar | | template_list | DEISUR 6 SOLARS
MCARTH_6_FRIVRB
ORIND_6_SOLARL | 0 Fall River Mills Project B Secretary Colleges 3 | 1.5 CAISO_Solar physical | none
none | 1 | 1 1 solar
0 1 solar
0 1 solar
0 1 solar | | template_list
template_list
template_list | PIT1 6 FRIVRA | Enerparc California 2
Fall River Mills Project A
Winter What Foliar Farm | 1.5 CAISO_Solar physical 1.5 CAISO_Solar physical 1.5 CAISO_Solar ohysical | none
none | 1 0 | 0 1 solar
0 1 solar | | template_list
template_list
template_list | STROUD_6_WWHSR1 CHINO_2_SOLIAR2 VALLEY S_SOLIAR1 | Winter Wheat Solar Farm
Kona Solar - Terra Francesca
Kona Solar - Meridian #1 | 1.5 CAISO_SOlar physical
1.49 CAISO_Solar physical
1.49 CAISO_Solar physical | none
none | 1 | 1 1 solar
0 1 solar
0 1 solar | | template_list
template_list
template_list | DEVERS 2 DASSES | Donast Heat Content 2 | 1.4 CAISO Solve abusical | none
none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | template_list
template_list | ETIVIND 2 SOLAH
MAGUND 1, BKISR1
MANTEC 1, MLISR1 | Dedesian Christian Dedesian Christian Bakerfield Industrial 1 Mannera Land 1 | 1 CAISO_Solar physical 1 CAISO_Solar physical 1 CAISO_Solar physical 1 CAISO_Solar physical | none | 0 | 1 solar
1 1 solar | | template_list | SMYRNA_1_DLISR1
DEVERS_2_CS2SR4 | Delano Land 1
Caliente Solar 2 | 1 CAISO_Solar physical | none | 0 | 1 1 solar | | template_list
template_list
template_list | DEVENS_Z_CSASM
WROTSR_Z_WSFSR1
IVSIRZ_Z_SMZSR1
BGSKYN_Z_ASPSR2 | | 200 CAISO Solar physical | none
none
none | 1 0 | 1 1 508r 1 1 1508r 1 1 1508r 1 1 1508r 1 1 1508r 0 1 1508r 0 1 1508r 0 1 1508r 1 | | template_list
template_list
template_list | | Silver Ridge Mount Signal 2 Antelope Solar 2 San Pablo Valentine Solar | 100 CAISO_Solar physical
100 CAISO_Solar physical | none
none | 1 1 | 0 1 solar | | template_list
template_list | SUNSEL 1 SSYSEL
BGSKYN 2 BS3SR3 | Sunknine Valley Solar 1 Big Sky Solar 3 | 100 CAISO_Solar physical 20 CAISO_Solar physical | none | 1 0 | 0 1 solar | | template_list
template_list
template_list | | Big Sky Solar 3
Windhub Solar A
Eaglib Creek | | none | 1 | 0 1 solar
0 1 solar | | template_list
template_list
added | TN-ELK 6 ECKSR2 RNDSBG 1 H7ASR1 existing nemeric solar laxis | Eagle Creek
Hazel A | 3 CAISO Solar physical
3 CAISO Solar physical
8N/A CAISO Solar existing generic | none
none
none | 1 0 | 0 1 solar | | added
added | existing generic solar laxis existing generic solar laxis existing generic solar fixed | | #N/A CAISO_Solar existing_generic
#N/A CAISO_Solar existing_generic | none | 0 | 1 1 solar
1 1 solar
1 1 solar | | added | existing generic, solar, tooki
existing generic, solar, thermal
ARLVAL, 5, SOLAR | Arlington Valley Solar Energy II - AVS II | #N/A CAISO_Solar existing_generic
#N/A CAISO_Specified_Imports specified_imports | none | 0 | 1 1 Solar
1 1 Solar
0 1 unknown
0 1 unknown | | ruling_list
ruling_list
ruling_list | ALHMBR_1_ALHSLR
ARKANG 1_ARKSLR | Artington Valley Solar Emirgy II - AVS II SG2 Imperial Valley SG2 Imperial Valley | #N/A CAISO_Specified_imports specified_imports #N/A CAISO_Specified_imports specified_imports #N/A CAISO_Specified_imports specified_imports | none
none
none | 1 | 0 1 unknown
0 1 unknown
0 1 unknown | | ruling_list
ruling_list
ruling_list | ARKANG 1. ARISSER
SNORA 2. SNISSER
CALPSS 6. SOLAR1 | SG2 Imperial Valley
SG2 Imperial Valley
705M1 8MF, LLC (Gestamp Calipatria) | #N/A CAISO_Specified_Imports specified_imports #N/A CAISO_Specified_Imports specified_imports #N/A CAISO_Specified_imports specified_imports | none
none | 1 1 | 0 1 unknown | | | | Tallbear Seville | #N/A CAISO Specified Imports specified imports | none | 1 | 0 1 unknown | | template_list
template_list
template_list | ARUNT 5 SCEDYN COLGNS 2 CNSSR1 GRADYW 5 GDYWD1 | 0 | aN/A CAISO_Specified_Imports specified_imports
BN/A CAISO_Specified_Imports specified_imports
aN/A CAISO_Specified_Imports specified_imports | none
none | 0 | 1 1 unknown | | template_list
template_list | GREFI 2 LSPOYN MAGNLA, G, ANAHEIM MAGNLA, G, CERRITOS | 0 | #N/A CAISO Specified Imports specified imports | none | 0 | 1 1 unknown | | template_list
template_list | MAGNIA, 6 CERRITOS
MRCHNT 2 MR DVN | 0 | aN/A CAISO_Specified_Imports specified_imports aN/A CAISO_Specified_imports specified_imports aN/A CAISO_Specified_imports specified_imports aN/A CAISO_Specified_imports specified_imports | none
none
none | 0 | 1 1 unknown | | template_list
template_list
template_list | MRCHNT_2 MEDYN
MSQUIT_5 SERDYN
NGIAR_5_SDDDYN | 0 | AN/A CAISO_Specified_imports specified_imports AN/A CAISO_Specified_imports specified_imports | none
none | 0 | 1 1 unknown | | template_list
template_list | | 0 | | none | 0 | 1 1 unknown
1 1 unknown | | template_list
template_list | SPOINT 2 MEADDYN SPOINT 2 PARKERDYN SUNSTR 5 SSISCEDYN | 0 | aN/A CAISO Specified Imports specified imports
aN/A CAISO Specified Imports specified imports
aN/A CAISO Specified Imports specified imports | none
none
none | 0 | 1 1 unknown | | template_list
template_list | SUITER 2_WASHDYN | 0 | #N/A CAISO_Specified_imports specified_imports
#N/A CAISO_Specified_imports specified_imports
#N/A CAISO_Specified_imports specified_imports | none | 0 0 | 1 1 unknown
1 1 unknown | | template_list | PVERDE 5 SCEDYN | PVERDE_5_SCEDYN | #N/A CAISO_Specified_Imports specified_imports | none | o o | 1 1 unknown | | | | | | | | | | template_list
template_list | BCTSYS_S_PWXDYN
RAMON_2_SCEDYN | BCTSYS, 5, PWXDYN
RAMON, 2, SCEDYN | #N/A CAISO_Specified_Imports specified_imports none 0 1 #N/A CAISO_Specified_imports specified_imports none 0 1 | 1 unknown | |---|---|---
--|---------------------------------| | template_list
template_list
template_list | ELCABO_5_ECON
SCEHOV_2_HOOVER | El Cabo Wind | #N/A CAISO Specified Imports specified imports none 0 1 | 1 unknown | | template_list | MALIN 5 BPADYN | SCEHOV_2_HOOVER
MALIN_5_BPADYN | #N/A CAISO_Specified_Imports specified_imports none 0 1 #N/A CAISO_Specified_Imports specified_imports none 0 1 | 1 unknown | | template_list
template_list
template_list | INTMNT 3. ANAHEIM
BEINLS, 5. BV2SCEDYN
INTMNT 3., RIVERSIDE | Intermountain Power Project
Broadview 2 | #N/A CASO_Specified_imports specified_imports none 0 1 #N/A CASO_Specified_imports specified_imports none 0 1 #N/A CASO_Specified_imports specified_imports none 0 1 #N/A CASO_Specified_imports none 0 1 | 1 unknown
1 unknown | | template_list
template_list | | IPPDYN
Broadview 1 | #N/A CAISO Specified Imports specified imports none 0 1 | 1 unknown
1 unknown | | template_list
template_list
template_list | MALIN, 5. GCPDDYN
INTMNT, 3. PASADENA | Grant County Hydro Facilities
Intermountain Power Project | #N/A CAISO_Specified_imports specified_imports none 0 1 #N/A CAISO_Specified_imports specified_imports none 0 1 | 1 unknown | | | | Iberdrola Centrold Sytem Resource | #N/A CAISO Specified Imports specified imports none 0 1 | 1 unknown | | template_list
template_list
template_list | MALIN 5 WHEED MALIN 5 WHEED MALIN 5 WHERG MIDWYS 2 MIDS1 | BIGLOW CANYON
Midway Solar Farm | #W/A CASS_Specified imports specified imports none 0 1 ## AND | 1 unknown | | template_list
template_list | AGCANA X HOOVER
MIDWY3 2 MDSSR1 | Hoover Power Plant
Midway South Solar Farm | #N/A CASO_Specified_imports specified_imports none 0 1 #N/A CASO_Specified_imports specified_imports none 0 1 | 1 unknown | | template list | MILFRD_7_PASADENA | Milford I | | 1 unknown | | template_list
template_list | WSNR, 2, CVPDYN
WSNR, 2, TESLADYN | Central Valley 1
Central Valley Tesla | #N/A CASO Specified Imports specified imports none 0 1 #N/A CASO Specified Imports specified imports none 0 1 | 1 unknown | | template_list
ruling_list
ruling_list | WSNR_5_TRCYDYN
DINUBA_6_UNIT | Central Valley Tracy DINUBA GENERATION PROJECT | #N/A CAISO_Specified_imports specified_imports none 0 1 12 CAISO_ST physical none 1 0 | 1 thermal | | | ETIWND_7_UNIT 3
ETIWND_7_UNIT 4 | ETIWANDA GENSTA. UNIT 3
ETIWANDA GENSTA. UNIT 4 | 0 CAISO_ST physical none 1 0 CAISO_ST physical none 1 0 | 1 thermal
1 thermal | | template_list
template_list | ORMOND_7_UNIT 2
ORMOND_7_UNIT 1 | ORMOND BEACH GEN STA. UNIT 2
ORMOND BEACH GEN STA. UNIT 1 | 750 CAISO_ST physical none 1 0 741.27 CAISO_ST physical none 1 0 | 1 thermal
1 thermal | | template_list
template_list
template_list | REDOND 7, UNIT 7
ALAMIT 7_UNIT 5
REDOND 7_UNIT 8 | REDONDO GENSTA. UNIT 7 ALAMITOS GENSTA. UNIT 5 | 505.96 CAISO_ST physical none 1 0 | 1 thermal
1 thermal | | template_list
template_list | REDOND_7_UNIT 8
ALAMIT_7_UNIT 6 | REDONDO GEN STA. UNIT 8
ALAMITOS GEN STA. UNIT 6 | 497.97 CAISO_ST physical none 1 0
495.9 CAISO_ST physical none 1 0
495 CAISO_ST physical none 1 0 | 1 thermal
1 thermal | | template_list
template_list | ALAMIT_7_UNIT 4
ALAMIT_7_UNIT 3 | ALAMITOS GEN STA. UNIT 4
ALAMITOS GEN STA. UNIT 3 | 335.67 CAISO_ST physical none 1 0
332.18 CAISO_ST physical none 1 0 | 1 thermal | | template_list
template_list | ALAMIT 7 UNITS BNONA 7, EAS BNONA 7, EAA | 0 | 330 CASO_ST physical none 1 0 | 1 thermal | | template_list
template_list
template_list | HNTGBH_7_UNT 2
HNTGBH_7_UNT 1 | HUNTINGTON BEACH GEN STA. UNIT 2
HUNTINGTON BEACH GEN STA. UNIT 1 | 225.8 CAISO_ST physical none 1 0 225.75 CAISO_ST physical none 1 0 | 1 thermal | | | | REDONDO GEN STA. UNIT 5
ALAMITOS GEN STA. UNIT 2 | | 1 thermal | | template_list
template_list | ALAMIT 7 UNIT 2
REDOND 7, UNIT 6
ALAMIT 7 UNIT 1 | REDONDO GEN STA. UNIT 6 | 175 CAISO_ST physical none 1 0 | 1 thermal | | template_list
template_list
template_list | ALAMIT Z UNIT 1
ENGNA, 7, EA3
ENGNA, 7, EA2 | ALAMITOS GEN STA. UNIT 1
0 | 174.56 CASO_ST physical none 1 0 110 CASO_ST physical none 1 0 144 CASO_ST physical none 1 0 | 1 thermal | | | | 0 | RN/A CAISO Steam new generic none 0 1 | 1 thermal
0 thermal | | template_list
template_list | ALAMIT 7 STG1S
HNTGBH, 7 STG1S | ALAMIT_7_STG1S
HNTG8H_7_STG1S | 241.5 CAISO_Seam physical none 1 0 241.5 CAISO_Seam physical none 1 0 | 1 thermal | | template_list
template_list
template_list | ALAMIT_7_CTG1A
HNTG8H_7_CTG18 | ALAMIT_7_CTG1A
HNTG8H 7 CTG1B | 234.5 CASO_Searm physical none 1 0 234.5 CASO_Searm physical none 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 thermal
1 thermal | | template_list
template_list | HNTGBH 7 CTG1A
ALAMIT 7 CTG1B | HNTGBH_7_CTG1A
ALAMIT_7_CTG1B | 234.5 CASO Salam physical none 1 0 234.5 CASO Salam physical none 1 0 | 1 thermal | | added
template_list | existing generic steam
new generic unknown
SONOMA, 1 PMSSN1 | | #N/A CAISO_Swam existing_generic none 0 1 #N/A CAISO_Unknown new_generic none 0 1 | 1 thermal | | template_list
added | SONOMA_1_PNSSR1 | 0 | | 1 unknown | | template_list
template_list | existing_generic_unknown
Carrioo_Wind
Central_Valley_North_Los_Banos_Wind | 0 | #N/A CASO_Unknown existing_generic none 0 1 #N/A CASO_Wind new_risobne fillme_mank.type_mrw 0 1 #N/A CASO_Wind new_risobne fillme_mank.type_mrw 0 1 | 0 wind low of | | tomoloto list | Central Valley, North, Los, Bainos, Wind Distributed, Wind Greater_Kramer_Wind Greater_Kramer_Wind | 0 | #N/A CAISO Wind new resolve filline name.type.mw 0 1 | 0 wind low of | | template_list
template_list | Greater_Kramer_Wind | 0 | BN/A CAISO Wind new resolve filme name, type, mw 0 1 | 0 wind low of | | template_list
template_list
template_list | Numpoldt Wind
Kern_Greater_Carrizo_Wind | 0 | #N/A CAISO_Wind new_resolve fillme_name, type, mw 0 1 | 0 wind low of | | | tunibolist, Wind Kern Greater, Carriaco, Wind Kerner, London, E., Wind Kerner, California, E., Wind Northern, California, E., Wind Diablo, Canyon, Offshore, Wind, Ext., Tx. W. K., E., Tx., Wind | 0 | #N/A CAISO Wind new resolve fillme name, type, mw 0 1 | wind low of
wind low of | | template_list
template_list | Diaboo_Carryon_Offshore_Wind_Ext_Tx
NW_Ext_Tx_Wind | 0 | #N/A CASO_Wind new_resolve fillme_name_type_mw 0 1 #N/A CASO_Wind new_resolve fillme_name_type_mw 0 1 | p wind high of
0 wind low of | | template_list
template_list
template_list | Sacramento, Twier_Wind Southern, CA, Desert, Southern, NV_Wind Solano, Subzone, Wind | 0
0 | #N/A CAISO_Wind new_resolve fillme_name,type,mw 0 1 #N/A CAISO_Wind new_resolve fillme_name,type,mw 0 1 | 0 wind low of
0 wind low of | | | | 0
0 | | 0 wind low of
0 wind low of | | template_list
template_list | Southern, California, Desert, Ex, Wind
Southern, Nevada, Wind
SW, Ext, Tx, Wind
Tehachapi, Wind | 0 | #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 | 0 wind low of
0 wind low of | | | SW_Ext_Tx_Wind
Tehachapi Wind | 0
0 | | 0 wind low of
0 wind low of | | template_list
template_list
template_list | Westlands Ex Wind | 0 | #N/A CASO_Wind new_resolve filme_name,type,mw 0 1 #N/A CASO_Wind new_resolve filme_name,type,mw 0 1 | 0 wind low of
0 wind high of | | template_list
template_list | Cape Mendocino Offshore Wind Del Norte Offshore Wind Dishlo Compa Offshore Wind | 0 | #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 | 0 wind high of | | template list | Diablo, Caryon, Offshore Wind
Humboldt, Bay, Offshore, Wind | 0 | #N/A CAISO Wind new resolve fillme name, type, mw 0 1 | 0 wind high of | | template_list
template_list | Morro Bay, Offshore Wind
Baja California
Wind
Paolis, Northwest, Wind | 0 | #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 | 0 wind low of | | template_list
template_list | Idaho Wind | 0 | #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 #N/A CAISO_Wind new_resolve fillme_name_type_mw 0 1 | 0 wind low cf | | template_list
template_list | Utah_Wind
Wyoming_Wind | 0 | #N/A CASO_Wind new_resolve fillme_name_type_mw 0 1 #N/A CASO_Wind new_resolve fillme_name_type_mw 0 1 | 0 wind low of
0 wind high of | | template_list
template_list
template_list | Arizona_Wind
New_Messico_Wind
SCADSM_Wind | 0 | #V/A CASO_Wind new_resolve fillnee_name_type_mrw 0 1 #V/A CASO_Wind new_resolve fillnee_name_type_mrw 0 1 #V/A CASO_Wind new_resolve fillnee_name_type_mrw 0 1 | 0 wind low of
0 wind high of | | | SCADSNV_Wind
new_generic_wind | 0 | #N/A CAISO Wind new generic none 0 1 | 0 wind low cf
0 wind low cf | | template_list
template_list | new "generic wbd
COYAGR, Z YACWD2
LSWNDR, 2 SMUD2 | 0
Solano Wind Project Phase 3 | 128.7 CAISO_Wind physical none 0 1 127.8 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | template_list
template_list | TULEWD_1_TULWD1 Musselshell Wind Twn | Tule Wind
0 | 127.6 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | template_list | Energia Sierra Juarez 2 US LLC
WestButteWind | Energia Sierra Juarez 2 US LLC
West Butte Wind Power Project-WB-1 | | 0 wind low of
1 wind low of | | template_list
template_list | USWNDR. 2. SMUD
Three Mile Carryon | SOLANO WIND FARM
0 | 102:18 CISO Wind physical none 1 0 100 CAISO Wind physical none 1 0 | 1 wind low of
1 wind low of | | | WHTWTR_1_WINDA1
USWND2_1_WIND3 | Whitewater Hill Wind Project
Golden Hills C | 61.5 CASO_Wind physical none 1 0 46 CASO_Wind physical none 1 0 | 1 wind low of | | template_list
template_list
template_list | VOYAGR 2_VOYWD3
CABZON 1_WINDA1 | 0
Cabazon Wind Project | 43.2 CAISO_Wind physical none 1 0 | 1 wind low of | | template_list | TRANWID 25637_0F
MORWD_6_QF | TRANWND_25637 | 40 CAISO_Wind physical none 1 0 | 1 wind low of | | template_list
template_list | | 0 | 38.16 CASQ_Wind physical none 1 0 31 CASQ_Wind physical none 1 0 27.87 CASQ_Wind physical none 1 | 1 wind low of | | template_list
template_list | QAKWD_6_QF
FLOWD_2_RT2WD2 | Ridgetop 2 | 27.39 CAISC_Wind physical none 1 0 | 1 wind low of | | template_list
template_list | GARNET_1_WINDS
MTWIND_1_UNIT 2 | Garnet Winds Aggregation
Mountain View Power Project II | 22.5 CAISO_Wind physical none 1 0 22.2 CAISO_Wind physical none 1 0 | 1 wind low cf | | template_list
template_list | VOYAGR <u>2.</u> VOYWD4
TEHAPI_2_WIND2 | 0
Wind Wall Monolith 2 | 21.6 CAISO_Wind physical none 0 1 21.24 CAISO_Wind physical none 1 0 | 1 wind low cf
1 wind low cf | | template_list
template_list
template_list | VENWD_1_WIND3 Separate Separate Mond2 | Painted Hills Windpark
Spanish Fork Wind Park 2 LLC-1 | 19.04 CAISO_Wind physical none 1 0 19 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | | BUCKWD_1_QF
VENWD_1_WIND2 | 0
Windpark Unlimited 2 | 16.05 CAISO Wind physical none 1 0 | 1 wind low of
1 wind low of | | template_list
template_list | VENWD 1 WND2
TERAPI 2 WND1
GARRET 2 WND3 | Wind Wall Monolith 1
San Gorgonio East | 14.89 CAISO_Wind physical none 1 0 12.6 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | template_list
template_list
template_list | GARNET_2_WIND2 Fairfield_Wind | Karen Avenue Wind Faren
Fairfield Wind-1
Parque Eolico Rumerosa-1 | 11.7 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | | ParqueEolico
RENWD_1_QF | Parque Eolico Rumorosa-1
0 | | 1 wind low of
1 wind low of | | template_list
template_list | Graycliff Wind Prime
VENWD_1_WIND1 | 0
Windpark Unlimited 1 | 9.7 CJSO Wind physical none 1 0 9.43 CJSO Wind physical none 1 0 | 1 wind low of
1 wind low of | | | GARNET_2_DIFWD1
DTCHWD_2_BT4WND | Difwind
Brookfield Tehachapi 4 | 7.88 CAISO_Wind physical none 0 1 6.52 CAISO_Wind physical none 1 0 | 1 wind low of
1 wind low of | | template_list
template_list
template_list | NZWIND 2 WDSTRS
GARNET 2 WPMWD6 | Windstream 6111
WINTEC PALM | 6.31 CAISO_Wind physical none 1 0 5.93 CAISO_Wind physical none 0 1 | 1 wind low of | | template_list
template_list | MONITS_2_MONWD6
MONITS_2_MONWD7 | Monolith 6
Monolith 7 | \$.25 CAISO_Wind physical none 0 1
4.76 CAISO_Wind physical none 0 1 | 1 wind low of | | template list | MONUTS 2 MONWD4 | Monolith 4
Brookfield Tehachapi 3 | 4.75 CAISO Wind physical none 0 1 | 1 wind low of
1 wind low of | | template_list
template_list
template_list | DTCHWD_2_BT3WND MONETS_2_MONWDS NZWIMD_6_WDSTR | Monolith 5
Windstream 39 | 4.5 CASO_Wind physical none 1 0 4.04 CASO_Wind physical none 0 1 3.35 CASO_Wind physical none 1 0 | 1 wind low of | | tomoloto list | WSTVND 2, WD3IR
WSTVND 2, M89WD1
USWNDR 2_LABWD1 | windstream 39
Mojave 89
LaBrisa Wind Project | 88.5 CAISO Wind physical none 0 1 | 1 wind low of | | template_list
added
ruling_list | | Garrier 2010 50/250/425 MW | #N/A CAISO_Wind existing_generic none 0 1 1 250 CAISO_Geothermal physical none 1 0 0 | 1 wind low of
1 geothermal | | ruling_list
ruling_list
ruling_list | ADUN 1 UNITS
GYSS6 7 UNITS
CALGEN 1 UNITS | Geysers Power Company, LLC (f/k/a 3107) Coso Clean Power, LLC (f/k/a 3008,3029,3030) | 225 CAISO_Geothermal physical none 1 0 204 CAISO_Geothermal physical none 1 0 | 1 geothermal | | ruling_list
ruling_list
ruling_list | | | 175 CAISO Geothermal physical none 1 0 | 1 geothermal | | | BLM 2 UNITS MIRAGE 2 COCHIA CONTRI 1 OXBOW | Coto Energy Developers (BLM) Coto Energy Developers (BLM) Ormess Geothermal I, II, GEM Terra-Gen Dicke Valley, LLC ((F/s) 3011) | 63 CAISO_Geothermal physical none 1 0 60 CAISO_Geothermal physical none 1 0 | 1 geothermal
1 geothermal | | ruling_list
ruling_list | Heber Geothermal Company
Geysers Power Company, LLC | Heber Geothermal Company
Geysers Power Company, LLC | S2 | 1 geothermal | | | | Salton Sea Unit S | 49.9 CAISO_Geothermal physical none 1 g | 1 geothermal
1 geothermal | | ruling_list
ruling_list
ruling_list | NCPA, 7, GP2UN3
NCPA, 7, GP1UN1
ORNI 18, LLC | Geothermal 2
Geothermal 1
ORNI 18, LLC | 38.85 CAISC Geothermal physical none 1 0 33.178 CAISC Geothermal physical none 1 0 | 1 geothermal | | ruling_list
ruling_list | Thermo No.1 BE-01
CONTRL 1_CASAD3 | Thermo No.1 BE-01
Mammoth G3 - RAM 1 | 15 CAISO_Geothermal physical none 1 0 14 CAISO_Geothermal physical none 1 0 | 1 geothermal
1 geothermal | | | CONTRL_1_QF Calcine Geysers | Mammoth Pacific L P II (MP2) Calpine Geysers | 13.4 CAISO Geothermal physical none 1 0 | 1 seothermal | | ruling_list
ruling_list
ruling_list | CONTRL 1 CASAD1 Wendel Energy Operations 1.LLC | Mammoth G1 - RAM 2
Wendel Energy Operations 1, LLC | 15 CASO_Geothermal physical none 1 0 CAISO_Geothermal physical none 1 0 0.7 CAISO_Geothermal physical none 1 0 | 1 geothermal | | ruling_list
ruling_list
template_list | Wendel Energy Operations 1, LLC
WINAMD 6, LINIT 1
V3 GEN | Weineal Energy Operations 1, LLC Amedee Geothermal Venture 1 PURPA SMALL GEN UNKKOWN | 0.7 CASO_Geothermal physical none 1 0 0.69 CASO_Geothermal physical none 1 0 3.1 IID_Solar physical none 0 1 | 1 geothermal | | template_list | Grayson CT88C
Milford Wind 3 | Grayson 8BC | 68 LDWP-Peaker physical none 0 1 | 0 thermal | | template_list
template_list
template_list | Miflord Wind 3
Miflord Wind 4
Miflord Wind 5 | Milford Wind Corridor Project III 1
Milford Wind 4
Milford Wind 5 | 100.5 LDWP_Wind physical none 0 1 | 0 wind low of | | ruling_list | Vistra Moss Landing Energy Storage | | | O battery | | ruling_list
ruling_list
ruling_list | Moss Landing Energy Storage AES Alamitos ES Strata Sationy LLC | Moss Landing Energy Storage AES Alamitos ES | 182.5 CASQ U Statery physical none 1 0 CASQ U Statery physical none 1 physi | 0 battery | | ruling_list
ruling_list
ruling_list | SGIB.SCF | Strata Saticoy, LLC SGIP-SCE Strate Source (SGES ACTION) | 96 CAISO Li Battery physical none 1 g | 1 battery | | | Soam Energy DRES - 402040
Hummingbird Energy Storage | Stem Energy DRES - 402040
Hummingbird Energy Storage | 75 CAISO_Li_Battery physical none 1 0 | 0 battery | | ruling_list
ruling_list | Diablo Energy Storage SGIP-PG&E | Diablo Energy Storage
SGIP-PG&E | 50 CAISO_Li_Battary physical none 1 0 43.318 CAISO_Li_Battary physical none 1 0 | 1 battery | | ruling_list
ruling_list
ruling_list | AltaGas Power Holding (U.S.) Inc. Lake Hodges Contract expedited energy storage - distribution | AltaGas Power Holdings (U.S.) Inc.
Lake Hodges Contract | 40 CAISO_Li_Battery physical none 1 0 40 CAISO_Li_Battery physical none 1 0 | O battery
O battery | | | SGIPSGIP-SDGE | expedited energy storage - distribution
SGIPSGIP-SDGE | 30 CAISO_Li_Battery physical none 1 0 | 0 battery
1 battery | | ruling_list
ruling_list | Miramar BESS
HEBT WLA1 DRES | Miramar BESS
HEBT WLA1 DRES | 30 CAISO_Li_Battery physical none 1 0 25 CAISO_Li_Battery physical none 1 0 | 0 battery
1 battery | | | Cascade Energy Storage AltaGas Pomona Energy Inc Pomona battery storage 1 - ES004 Tesla - Mira Loma | Cascade Energy Storage AltaGas Pomona Energy Inc Pomona battery storage 1 - ES004 | 25 CAISO_II_Battery physical none 1 0 20 CAISO_II_Battery physical none 1 0 | O battery
O battery | | ruling_list
ruling_list
ruling_list | | Tesla - Mira Loma
Convergent OCES 1 | 20 CAISO LI Battery physical none 1 0 20 CAISO Li Battery physical none 1 0 | O battery
O battery | | ruling_list
ruling_list
ruling_list | Llagas Energy Storage HEBT WLA2 DRES | Liagus Energy Storage HEBT WLAZ DRES | 20 CAUSO_Li Battery physical none 1 0 15 CAUSO_Li Battery
physical none 1 0 | 0 battery
1 battery | | ruling_list | Swell Energy VPR Front 2019-LLLC | Swell Energy VPP Fund 2019-I LLC
Silverstrand Grid, LLC | 14 CASO Li Battery physical none 1 0 | 0 battery
0 battery | | ruling_list
ruling_list | Silverstrand Grid, LLC
2014 SQIRS-SCE
Powin SBI, LLC | 2014 SGIP-SCE Powin SBI, LLC | 110.8 CASO_L_Battery physical none 1 0 10.8 CASO_L_Battery physical none 1 0 20 CASO_L_Battery physical none 1 0 | 1 battery
0 hattery | | ruling_list
ruling_list
ruling_list | HEIF1
SCF FGT - Graneland | HE IE1 | 10 CAISO Li Battery physical none 1 0 | 1 battery | | ruling_list | SCE EGT - Center | SCE EGT - Grapeland SCE EGT - Center Painter Energy Storage, LLC | 10 CAISO_Li Battery physical none 1 0 | O battery | | ruling_list
ruling_list
ruling_list | Painter Energy Storage, LLC
Enel Bells Energy Storage, LLC
Orni 34 LLC | Painter Energy Storage, LLC
Enel Bella Energy Storage, LLC
Orni 34 LLC | 20 CASO LEathery physical none 1 0 20 CASO LEathery physical none 1 0 20 CASO LEathery physical none 1 0 | O battery
O hattery | | | | Henrietta D Energy Storage | 10 CAISO_Li_Battery physical none 1 0 | O battery
O battery | | ruling_list
ruling_list
ruling_list | mNOC AERS Energy Storage Convergent OCES 2 Fallbrook BESS | mNOC AERS Energy Storage
Convergent OCES 2
Failtrook BESS | 10 CAISO_Li_Battery physical none 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | O battery | | ruling_list
ruling_list
ruling_list | Fallbrook BESS
Tehachapi Storage Project (TSP)
Sam Energy DRES - 42039 | Fallbrook BESS Tehachapi Storage Project (TSP) Stem Energy DRES - 402039 | 8 CAISO_Li_Battery physical none 1 0 | O battery
O hamon | | ruling_list
ruling_list | Stem Energy DRES - 402039
Don Lee BSS | Stem Energy DRES - 402039
Don Lee BSS | 7 CAISO_Li_Battery physical none 1 0 6.5 CAISO_Li_Battery physical none 1 0 | O battery | | | | | | | | ruling_list | 2012 GRC Energy storage - distribution | 2012 GRC Energy storage - distribution | 6.15 | CAISO_Li_Battery | physical | none | 1 | 0 0 battery | |---|--|---|-----------------------|---|----------------------------------|--|-----|-------------------------------------| | roling list | Convergent OCES 3 HEBT Irvino1 DRES | Convergent OCES 3 HEBT Invine1 DRES | 6
5 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery
0 0 battery | | ruling_list
ruling_list
ruling_list | HEBT Irvine2 DRES
Swell Energy Fund 1 | HEBT Irvine2 DRES
Swell Energy Fund 1 | 5 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery
0 0 battery | | ruling_list
ruling_list | | HEIP2 Yerba Buena Battery Energy Storage System | 5 | CAISO_Li_Battery | physical
physical | none | 1 | 0 1 battery | | | Yerba Buena Battery Energy Storage System
Capristrano Energy Storage | Capristrano Energy Storage | 4 | CAISO_Li_Battery | physical | none | 1 | 0 battery
0 battery | | ruling_list
ruling_list
ruling_list | Pomerado energy storage
Mercury 4 | Pomerado energy storage
Mercury 4
Distribution Energy Storage Integration ("DESI") 1 | 3
2.8
2.4 | CAISO_Li_Battery
CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 battery
0 battery | | ruling_list
ruling_list
ruling_list | | Distribution Energy Storage Integration ("DESI") 1 Powin Energy - Milligan ESS 1 - ES001 | 2.4 | CAISO Li Battery | physical
physical | none | 1 | 0 0 battery
0 0 battery | | ruting_list | Powin Energy - Milligan ESS 1 - ESO01
Irvine Smart Grid - Containerized Energy Storage
Vaca-Oxon Battery Fergy Storage System
Los Bear PLS - 421058 | Powin Energy - Milligan ESS 1 - ESD01
Invine Smart Grid-Cortinentical Energy Storage
Vaca-Dixon Battery Energy Storage System | 2 2 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery
0 battery | | ruling_list
ruling_list | toe Bear PLS - 431058
tre Bear PLS - 431051 | | 1.92
1.92 | | physical
physical | none
none | 1 | 0 0 battery | | ruling list
ruling list | to Bear Pt5 - 431051
to Bear Pt5 - 431064
to Bear Pt5 - 431067 | to Bear PLS - 431051
for Bear PLS - 431064
for Bear PLS - 431067 | 1.92
1.92 | CAISO_LI_Battery
CAISO_LI_Battery
CAISO_LI_Battery | physical
physical | none | 1 | 0 0 battery | | ruling list | Ice Bear PLS - 431070 | Ice Bear PLS - 431070 | 1.92
1.75 | CAISO_Li_Battery
CAISO_Li_Battery | physical | none | 1 | 0 0 battery | | ruling_list
ruling_list | Gonzales Bank 4 PLS/TES - Mt San Antonio College | Gonzales Bank 4 PLS/TES - Mt San Antonio College | 1.75
1.5
1.4 | CAISO_Li_Battery | physical
physical | none | 1 | 0 battery
0 battery | | ruling_list
ruling_list | Distribution Energy Storage Integration ("DESI") 2
W Power - Stanton - 1 | Distribution Energy Storage Integration ("DESI") 2
W Power - Stanton - 1 | 1.3 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 0 battery
0 0 battery | | ruling_list
ruling_list | Ice Bear PLS - 431145
Ice Bear PLS - 431148 | Ice Bear PLS - 431145
Ice Bear PLS - 431148 | 1.28
1.28 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 0 battery
0 0 battery | | ruling_list | toe Bear PLS - 431151
toe Bear PLS - 431154 | toe Bear PLS - 481151
toe Bear PLS - 481154 | 1.28
1.28 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery
0 battery | | ruling_list
ruling_list | too Bear PLS - 431157
toe Bear PLS - 431163 | toe Bear PLS - 431157
toe Bear PLS - 431163 | 1.28
1.28 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 0 battery | | | loe Bear PLS - 431166 | to Bear PLS - 431166 PLS/TES - Lockheed Martin | 1.28
1.19 | CAISO_Li_Battery CAISO_Li_Battery CAISO_Li_Battery | nhysical | none | 1 | 0 battery
0 battery | | ruling_list
ruling_list | PLS/TES - Lockheed Martin
PLS/TES - Molina Healthcare | PLS/TES - Molina Healthcare | 1.14 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 battery
0 battery | | | Catalina Island Battery Storage
Gonzales Bank 3 | Catalina Island Battery Storage
Gonzales Bank 3 | 1 1 | | physical | none | 1 | 0 0 battery 0 battery | | ruling_list
ruling_list
ruling_list | PLS/TES - Long Beach Convention Center
PLS/TES - Golden West College | PLS/TES - Long Beach Convention Center
PLS/TES - Golden West College | 0.82 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery
0 battery | | ruling_list
ruling_list | | | 0.8 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 0 battery | | ruling_list
ruling_list | PLS/TES - Cypress College PLS/TES - Santa Ana College PLS/TES - Santa Ana College Central | PLS/TES - Cypress Collage PLS/TES - Cypress Collage VZG-LA AFB PLS/TES - Santa Ana Collage Central | 0.65
0.53 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none
none | 1 | 0 1 battery
0 0 battery | | ruling_list
ruling_list | Browns Valley Energy Storage Discovery Science Center Irvine Smart Grid-Residential ES Unit | Browns Valley Energy Storage
Discovery Science Center | 0.5
0.1 | CAISO_Li_Battery
CAISO_Li_Battery | physical
physical | none | 1 | 0 0 battery | | ruling list | Irvine Smart Grid-Residential ES Unit Irvine Smart Grid-Community Energy
Storge | Irvine Smart Grid- Residential ES Unit | 0.06 | CAISO Li Battery | physical | none | 1 | 0 0 battery | | ruling_list
ruling_list | Grayson 3-5 | Irvine Smart Grid-Community Energy Storge
Grayson 3-5 | 0.03 | CAISO_Li_Battery
LDWP_CCGT | physical
physical | none | 1 | 0 battery
0 1 thermal | | ruling_list
ruling_list | BRDWAY_7_UNIT 1 Magnolia Power Project (Biomethane portion) | Broadway Unit B-3
Magnolia Power Project (Biomethane portion) | 0 | LDWP_CCGT
LDWP_CCGT | physical
physical | none | 1 | 0 1 thermal 0 1 thermal | | ruling_list
added | VERNON, 7, CTG1
sellers_choice | Malburg Generating Station | 0
#N/A | LDWP_CCGT
sellers_choice | physical
special | none
fillme_buyer, seller, approximate resource mix | 1 | 0 1 thermal
0 filme unknown | | ruling_list
ruling_list | RCXCRX_7_UNIT 2
DUTCH2 7_UNIT 1 | Rock Creek Powerhouse
Nevada Irrigation District (NID) (RPS) - Dutch Flat / Rollins / Bowman | 56.9
42.6 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | roling list | DUTCH2_7_UNIT_1
FRANT_6_UNITS
DMDVXY_1_GEN_1 | Friant-Kern Hydro Facility (River Outlet, Madera Canal, F-K)
Diamond Valley Lake | 30.57
29.7 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | DMDVLY_1_GEN 1
Tieton
KERRON_1_UNT1 | Tieton
Kern River No. 1 | 28.734
25.6 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | | | 25.4 | CAISO Small Hudeo | physical
physical | none
none | 1 | 0 1 hvdro | | ruling_list
ruling_list
ruling_list | FMEAD O _ LINET FMEAD O _ LINET FTWMD 6 MWDETI PARCE 2 _ LINET 1 | PCWA (RPS) - French Meadows / Oxbow / Hell Hole Eliwanda - Metropolitan Water District (MWD) Pardee Power Plant | 24.6
24
23.6 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | PARDES, 2, UNIT1
KELYRG, 6, UNIT
DUTCH1, 7, UNIT1 | SPWP (RPS) - Sly Creek / Kelly Ridge | 23.6
23
22 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | ELDORO 7 UNIT1 | Dutch Flat #1 Powerhouse
El Dorado Irrigation District | 22
22 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruting_list | GRIZLY_1_UNIT 1
WISHON_6_UNIT 1 | Grizzly
Wishon Powerhouse | 21
20 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | DSARIA 7 LINIT | | 18.5
17.1 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling list | TULICK 7 UNIT 1
SNDBAR 7 UNIT 1
RIOBY 6 UNIT 1 | Tulloch
Tri-Dam Authority
Oficese Water District | 16.2
16 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | BISHOP 1 UNITS
HAYPRS 6 QFUNTS | Bishop Creek No. 3
Elf Haypress, LLC (Lwr) | 15.8
14.8 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none
none | 1 | 0 1 hydro | | ruling_list
ruling_list | WISE_I_UNIT I WESTPT_2_UNIT | Wise Powerhouse Wast Point Brougerhouse | 14.5
14.5 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list | HALSEY, 6, UNIT
BISHOP 1 ALAMO | Halsey Powerhouse
Bishop Creek No. 2 | 13.5 | CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | COLEMN_2_UNIT | Coleman Powerhouse | 13.4
13 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | MONTPH_7_UNITS VESTAL_6_QF | Solano Irrigation District (SID)(ID/WA)
Daniel M. Bates | 12.5
12.3 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | NAROW1_2_UNIT
NWCSTL_7_UNIT 1 | Narrows #1 Powerhouse
Newcastle Powerhouse | 12
12 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | CONTRL 1 RUSHCK
MONTPH 7 UNIT 1 | Rush Creek Solano Irrigation District (SIDI(ID/WA) | 11.94
11.9 | CAISO_Small_Hydro | nhysical | none
none | 1 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | KRNCNY_6_UNIT
BEARDS_7_UNIT 1 | Kern Carryon Powerhouse
Beardsley | 11.5
11.5 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | | Borel Poole Mant | 11
10.9
9.2 | | physical
physical | none | 1 | 0 1 hydro | | ruling_list | CONTRL 1 POOLE POTTER_6_UNIT 1 | Potter Valley Powerhouse | 9.2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | VOLTA 2. UNIT 1
HATCR1 7. UNIT
PLACVI_1_CHUIB | Volta 1 Powerhouse
Hat Creek #1 Powerhouse | 9.1
8.5
8.4 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | Chili Bar Powerhouse
Inskip Powerhouse | 8.4
8 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | DEERCR 6 UNIT 1
SPRGAP_1_UNIT 1 | Deer Creek Powerhouse
Spring Gap Powerhouse | 7 7 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | Spaulding #1 Powerhouse | 7 | | physical
physical | none
none | 1 | 0 1 hydro | | ruling list
ruling list | COVERD 2 QFUNTS
SBERDO 2. SNTANA
SPAULD 6 UNIT 3 | Mega Renewables (Hatchet Crk)
Santa Ana No. 1
Spaulding #8 Powerhouse | 6.95
6.5 | CAISO Small Hydro
CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list | CNTRVL 6_UNIT | Centerville Powerhouse Tule Powerhouse | 6.4 | CAISO Small Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | SPRGVL 2_TULE
BLCKBT_2_STONEY | Black Buttle | 6.4
6.2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | OLSEN_2_UNIT
CONTA_7_RPPCHF | Olsen Power Partners
SDCWA - Rancho Penasquitos Hydro | 5.8
5.25 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | Rugraw Inc. (Lassen Lodge Hydro) ELKCRK_6_STONYG | Rugraw Inc. (Lassen Lodge Hydro)
Storw Gorea | 5
5 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | RHONDO_2_QF
HMLTBR_6_UNITS | LA CO Flood Control District ** Hamilton Branch Powerhouse | 4.975
4.9 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | Murphys
Spaulding #2 Powerhouse | 4.5 | CAISO Small Hudeo | physical
physical | none | 1 | 0 1 hydro | | | SPAULD_6_UNIT 2
CRIVEN_6_SIGN 3
SBERDO_6_MILLCX | San Joaquin #3 Powerhouse
Mill Creek No. 1 | 4.4
4.2
3.93 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | GYSKUL 7, WSPRING
GYSKUL 7, WSPRING
BOWINN, 6_HYDRO | Warm Springs
Warm Springs
Nevada Irrigation District/Bowman Hyroelectric Project | 3.75
3.6 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling list
ruling list | MERCFL_6_UNIT | Merced Falls Powerhouse Lake Mendorino | 3.5 | CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruting_list | MERCEL 6. UNIT
UKAH 7. LAKEMN
KIANC 2. UNIT 1 | Klarc Powerhouse | 3.5
3.2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | CRNEVL, 6, SIQN 2
TKOPWR, 2, UNIT
CONTRL, 1, LINDY | San Joaquin #2 Powerhouse
Tko Power (South Bear Creek) | 3.2
3 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | AZUSA 2 HYDRO | Lundy
Azusa | 3 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling list
ruling list | TKOPWR 6_HYDRO
ETIWND_2_FONTNA | TKO Power Inc. (South Bear Creek) Fontana | 2.834
2.56 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | SPRGVL_2_TULESC
RECTOR 2_KAWH1 | Tule River
Kawealh No. 1 | 2.5
2.25 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 | 0 1 hydro | | ruling list
ruling list | SPICER 1 UNIT 1
LOWGAP 7 MATHEW | Spicer
Humboldt Bav MWD | 2.2212 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list | CLRKRD_6_LIMESD | Lime Saddle Powerhouse | 2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | PHOENX 1 UNIT | Cow Creek Powerhouse
Phoenix Powerhouse | 2 | CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | HATLOS_G_QFUNTS
MSSION_2_QF | Mega Renewables (Bidwell Ditch)
Badger Filtration Plant | 2 2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | | SNCLRA_6_QF
Nimbus | Camrosa County Water District Nimbus | 1.65
1.5687324 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1
hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | TOADTW_6_UNIT City of Escondido - Bear Valley | Toadtown Powerhouse
City of Escondido - Bear Valley | 1.5
1.5 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | BRDGVL 7, BAKER
SPRGVL 2, QF
BUCKCK 7, OAKFET | Baker Creek Hydroelectric Project (SB32)
Lower Tule River Irrigation Dist. (f/k/a 4028) | 1.495
1.4
1.3 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | Calleguas MWD (East Portal Hydroelectric Generating Station, 17k/a 4022) | Oak Flat Powerhouse Collower MWD (East Bestel Medicalostic Generation Station 6/k/s 4022) | 1.25 | CAISO Small Hydro | physical
physical
physical | none
none | 1 1 | 0 1 hydro
0 1 hydro | | ruting_list | KANAKA, 1, UNIT Browns Valley Irrigation District FIT BNNEN, 7, ALTAH | Sts Hydropower Ltd. (Kanala)
Browns Valley Irrigation District FiT | 1.1
1.04 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none
none | 1 | 0 1 hvdro
0 1 hydro | | ruling_list
ruling_list | VOLTA 2 UNIT 2 | Alta Powerhouse
Volta 2 Powerhouse | 1 1 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Calleguas MWD (Springville Hydro) (f/k/a 4152) | Calleguas MWD (Springville Hydro) (f/k/a 4152) Hydro Partners (Clover Creek) | 1
0.999 | CAISO Small Hydro
CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Mill Sulphur Creek Project (\$832) (ReMAT) LOWGAP_1_SUPHR | Mill Sulphur Creek Project (S832) (ReMAT)
Mill & Sulphur Creek | 0.995
0.995 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list | | Lassen Station Hydro (SB32) Wolfsen Broass FIT | 0.995
0.98 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Wolfsen Bypass FIT STOREY_2_MORCH4 CURTS_1_CANLCX | Site 1923 (Madera Chowchilla) Canal Creek Power Plant (RETA) | 0.92 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro | | ruling_list | CURTS 1. CANLOX
CRNEV1_6_CRNVA
Monte Vista Water District (I/k/a 4147) | Crane Valley Powerhouse | 0.9 | CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list | Isabella Fishflow Hydroelectric Project LLC | Monte Vista Water District (f/k/a 4147)
Isabella Fishflow hydroelectric Project LLC | 0.865
0.86 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | METCLF_1_QF
MOORPK_6_QF | Santa Clara Valley Water Dist.
Calleguas MWD (Conejos, f/k/a 4010) | 0.8 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | Gibralter Conduit Hydroelectric Plant (f/k/a 4012)
VOLTA_6_DKGHYD | Gibralter Conduit Hydroelectric Plant (f/k/a 4012) Disser Creek Hydro | 0.75
0.65 | CAISO_Small_Hydro | physical
physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | San Luis Bypass FIT Tunnel Hill Hydroelectric Project | San Luis Bypass FIT
Tunnel Hill Hydroelectric Project | 0.6
0.6 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | STOREY 2 MDRCH2 | | 0.563 | | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | T&G Hydro Three Valleys MWD (Miramar) CTNWNP 1 OF | T&G Hydro Three Valley-MWD (Miramar) Hat Creek Hereford Ranch | 0.52
0.52
0.5 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | CTWWDP_1_QF
CSCHTD_2_UNIT_2 | High Line Canal | 0.5
0.5
0.48 | CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hvdro | | ruling_list
ruling_list | Eagle Hydro
Olivenhain Municipal Water District | Eagle Hydro Olivenhain Municipal Water District | 0.45 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Graeagle
Stampede | Graeogle
Stampede | 0.44
0.42413876 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | STOREY_2_MORCH3 CRNEVL 6 SION 1 | Site 1302 (Madera Chowchilla) | 0.424 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Buckeye Hydroelectric Project
GOLETA, 2, QF | San Joaquin #1-A Powerhouse
Buckeye Hydroelectric Project
Montecito Water District | 0.4
0.4
0.4 | CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | McFadden Hydroelectric Facility (\$832)
City of Oceanside - San Francisco Peak Hydro Plant | McFadden Hydroelectric Facility (S832)
City of Oceanside - San Francisco Peak Hydro Plant | 0.356
0.35 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Vecino Vineyards FiT California Water Service Company (PV Station 37) | Vecino Vineyards FIT California Water Service Company (PV Station 37) | 0.33
0.325 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list | PCWA- Lincoln Metering and Hydroelectric Station | PCWA- Lincoln Metering and Hydroelectric Station | 0.32 | CAISO_Small_Hydro | physical | none | 1 | 0 1 hydro | | ruling_list
ruling_list
ruling_list | Arbuckle Mountain Hydro
Cedar Flat | Arbuckle Mountain Hydro
Cedar Flat | 0.3 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | White Mountain Ranch LLC (f/k/a 4006) Goose Valley Hydro (5832) | White Mountain Ranch LLC (V/k/a 4006)
Goose Valley Hydro (SB32) | 0.29
0.28 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Eric And Dubbie Wattenburg
Calleguas WWD - Linit S (Santa Rosa)
Bishop Tungsten Development, LLC | Eric And Debbie Wattenburg
Calleguas MWD - Unit 3 (Santa Rosa) | 0.275
0.25
0.25 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | | | Bishop Tungsten Development, LLC
Goleta Water District (Van Horne) (f/k/a 4055) | 0.25 | | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | Clover last
BARRE_2_QF | Clover Leaf
City of Santa Ana | 0.2
0.2 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | San Bernardino MWD
Richard Moss | 0.18
0.155 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Richard Moss Richard Moss Mini Hydro Walnut Valley Water District | Mini Hydro
Walnut Valley Water District | 0.15
0.15
0.125 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | Cox Ave Hydro Steve & Bonnie Tetrick | Cox Ave Hydro Steve & Bonnie Tetrick | 0.112
0.1 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | | David O. Harde Calaveras PUD-Hydro #1 | 0.1
0.09 | CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical | none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | Caleveras PUD-Hydro #1
Caleveras PUD-Hydro #2
Caleveras PUD-Hydro #3 | Calaveras PUD-Hydro #2 Calaveras PUD-Hydro #3 Calaveras PUD-Hydro #3 | 0.09 | CAISO Small Hydro
CAISO Small Hydro
CAISO Small Hydro | physical
physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | . wend_max | Caute at 100-liquid as | Canada no Control 0 #3 | 0.49 | aman_nyara | budavill | The state of s | | - I frydro | | ruling_list
ruling_list | John Neerhout Jr.
San Bernardino MWD (Unit 3) | John Neerhout Jr. San Bernardino MWD (Unit 3) | 0.085
0.075 | CAISO Small Hydro
CAISO Small Hydro | physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro | |--|--
--|----------------------------|--|----------------------------------|----------------------------------|--------|--| | ruling_list
ruling_list
ruling_list | Mesa Consolidated Water District LEWSTN_7_UNIT 1 Wright Ranch Hydroebctir (fla Bertha Wright Bertillion) | Mesa Consolidated Water District Lewiston Wright Ranch Hydroelectric (file Bertha Wright Bertillion) | 0.05
0.04067084
0.04 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Small_Hydro | physical
physical
physical | none
none
none | 1 | 0 1 hydro
0 1 hydro
0 1 hydro | | ruling_list
ruling_list | SGE Site 1 | wright Kanch Pytotoanctric (Ha derena wright derenion) SGE Site 1 Walnut Valley Water District (#2) | 0.0375
0.025 | CAISO Small Hydro
CAISO Small Hydro
CAISO Small Hydro
CAISO Small Hydro | physical
physical | none | 1 1 | 0 1 hydro
0 1 hydro | | ruling_list
ruling_list
ruling_list | Walnut Valley Water District (#2)
RECTOR 2, EAWH 2
RECTOR 2, EAWH 3
BGCRKL 7, PORTAL | Kaweah No. 2
Kaweah No. 3 | 0 | | physical
physical | none
none | 1 1 | 0 1 hydro
0 1 hydro | | | Desert Water Agency (Snow Creek) | Portal Power Plant Desert Water Agency (Snow Creek) Topaz Solar Farm | 0
0
550 | CAISO_Small_Hydro
CAISO_Small_Hydro
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 hydro
0 1 hydro
0 1 solar | | ruling_list
ruling_list
ruling_list | Tribal Solar, LLC
SLSTR1_2_SOLAR1 | Tribal Solar, LLC
Solar Star California XIX, LLC (AVPV I) | 328
310 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | DSRTSN_2_SOLAR:
DSRTSL_2_SOLAR:
AGUCAL_5_SOLAR! | Desert Center Scalar Farm Desert Stateline Agua Calente Solar Project | 300
300
290 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | AGUSAL 3 SUANI
SLSTR 2 SUANI
SANDLT 2 SUNTS
93LF RM ELL (Mount Signal V) | Augus Culiente Solar Project Solar Star Calfornia XX, LLC (APPV II) Mojave Solar Project 934E Mbt LLC (Mount Signal V) | 276
275
252.32 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | 93LF 8ME LLC (Mount Signal V)
GENES) _2_STG
DSREN _2_SCHARL | 93LF 8ME LLC (Mount Signal V) Genesis Solar (Station) Energy Project Desert Sunilabr 250 LLC | 252.32
250
250 | CAISO_Solar
CAISO_Solar
CAISO Solar | physical
physical | none | 1 | | | ruling_list
ruling_list
ruling_list | PRIMM 2 SOLAR1
RUKERK 2 SOLAR1 | Dissert Suntiget 230, LtC
Silver State Solar Power, LtC
McCoy Solar, LtC | 250
250
250 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | Panoche Valley Solar, LLC
AVSOLR, 2, SOLAR | Panoche Valley Solar, LLC
AV Solar Ranch One | 246.713
241.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | CAVLSR 2 . RSOLAR1
IVSLRP_2 SOLAR1
RE Tranquilly 8 | High Plains Ranch II
Imperial Valley Solar 1. LLC - Silver Ridge Mt. Signal | 210
200 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | | RE: Franquisty 8 Wright Solar Park GABLEN 2: GASLE | RE: Tranquility 8
Wright Solar Park
RE Garland, LLC | 200
200
186.96 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | MSOLAR 2 SOLAR1
North Rosamond Solar, LLC | Mesquite Solar 1
North Rosamond Solar, LLC | 165
160 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Sun Stranns, LLC
COPMT2_2_SOLAR2
88F1 8ME LLC (Mount Signal II) | Sun Streams, LLC
Copper Mountain Solar 2
88°F 8ME LLC (Mount Signal II) | 160
155
153.52 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | | 152 | | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list | California Plas Solar Project NWEST 2 SOLAR CPUERD 2 SOLAR | Interspetter south 3, LLL. CSIO TO West - Imperial Solar Energy Center-West CSolar IV West - Imperial Solar Energy Center-West Color Town Verdis Solar CSOLAR - IMPROVED Verdis Solar CSOLAR - IMPROVED Verdis Solar CSOLAR - IMPROVED VERDIS SOLAR - IMPROVED VERDIS | 150
150
139 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 0 solar | | ruling list
ruling list
ruling list | Blythe Solar III, LLC
IVANPA J. LUNTZ
DRACER Z. SOLARZ | Blythe Solar III, LLC Solar Partners I, LLC (Evanpah) Blythe Solar II, LLC | 136.8
133
131.2 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical
physical | none
none
none | 1 | 0 0 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | CSLR4S_2_SOLAR American Kings Solar, LLC | CSolar IV South - Imperial Solar Energy Center-South
American Kings Solar, LLC | 130
128 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 0 solar | | ruling_list
ruling_list | IVANPA_1_UNIT3
CNTNLA 2 SOLAR1 | Ivanpah Unit 3
Centinela Solar Energy Facility (Centinela I) | 126.1
125 | CAISO_Solar
CAISO_Solar | physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | IVANPA, I UNITI
Valentine Solar, LLC
CATLINA, 2 SOLAR | Ivanpah Unit 1
Valentine Solar, LLC
Catalina Solar | 114.46
111.2
110 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 1 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list | DRACKR 2 SOLAR1
SIST13 2 SOLAR1 | Dracker Solar Unit 1
Solar Star California XIII, LLC (Quinto) | 110
108 | CAISO Solar
CAISO Solar | physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Willow Springs Solar, LLC
Antelope II Expansion
Sunchine Valley Solar, LLC | Willow Springs Solar, LLC Antelope II Expansion Sunshine Valley Solar, LLC | 108
105
104 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Surinitive Valley Sould, ILL. Mesquie Sould 2 HENNTS, 1, SOLAR ASTORA, 2, SOLARI | SumStrine values Solar LLC Merquite Solar 2 Henrietta Solar RE Astoria LLC | 100.815 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | ASTORA_2_SOLAR1
Mustang 2 | | 100
100
100 | | physical
physical | none
none
none | 1 1 | 0 1 solar
0 1 solar | | | Mustang 2
COPMT4, 2, SOLAR4
KRAMER, 2, SEGS89
BIGSRY, 2, SOLAR6 | Copper Mountain Solar 4, LLC Luz Solar Partners Ltd. VIII Solaret Ltd. VIII | 93.6
92 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Desert Harvest ASTORA_2_SOLAR2 | Desert Harvest
Astoria 2 | 85
80
75 |
CAISO_Solar
CAISO_Solar | physical
physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | NERNCH, É, SOLAR
MNDOTA, 1. SOLAR1
LAMONT, 1. SOLAR1 | Alpine Solar Project
North Star Solar | 66
60
60 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | EXCLSG_1_SOLAR | Regulus Solar, LLC Excelsion Solar Recursor Heat Solar 2 | 60 | CAISO_Solar
CAISO_Solar
CAISO Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | RTEDDY 2, SOLAR2
RTEDDY 2, SOLAR1
41MB SAME LLC | Rosamond West Solar 2 Rosamond West Solar 1 41M8 8ME LLC | 55
54
51.3 | CAISO Solar
CAISO Solar | physical
physical | none | 1 1 | 0 osolar | | ruling_list
ruling_list | AUSER_1_SPSSER
Midway Solar Farm I
BICSEY_2_SOLAR7 | Alpaugh 50
Midway Solar Farm I | 50
50 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 solar | | ruling_list
ruling_list
ruling_list | BIGSKY, 2, SOLAR/?
Little Bear 4
Little Bear 5 | Big Sky Solar 1
Little Bear 4
Little Bear 5 | 50
50
50 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | COPMTN, 2, SOLAR1 CNTNLA 2, SOLAR2 Tierra del Sel Soler Farm | CM48 (fka Sempra Copper Mountain 1) Centinella Solar Energy Facility Expansion (Centinella II) Tierra eski Sol Solar Farm | 48
45.6 | CAISO_Solar
CAISO_Solar | physical
physical
physical | nome
nome
nome | 1 1 | 0 1 solar
0 1 solar | | | Tierra del Sol Solar Farm
CAVLSR, 2. BSOLAR
Curarma Solar Array | Tierra del Sol Solar Farm
High Mains Ramch III
Curama Solar Arriav | 45
40
40 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | BIGSKY 2 SOLAR2
MSTANG 2 SOLAR3 | Curjama Solar Arriay
Big Sky Solar 4
Mustang 3 | 40
40
40 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | LINE BOAT 1
KRAMER _1 SEGS37
KRAMER _1 SEGSR3 | Little Buar 1
Luz Solar Farthers Ltd. VI
Luz Solar Farthers Ltd. III (SEGS III) (FI/A 5017) | 40
35 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | Luz Solar Partners Ltd. IV (SEGS IV) (f/k/a 5018) | 30
30 | | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | MSTANG 2 SOLAR
MSTANG 2 SOLARA
LAMONT 1 SOLARA | Mustang
Mustang 4
Hayworth Solar Farm | 30
27 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical
physical | none
none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | BREGGO 6 SOLAR
BLYTHE 1 SOLAR1 | NRG Solar Borrego
NRG Solar Blythe LLC | 26
21 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | LHILLS (S SOLAR)
STROUD - 6 - SOLAR
CANTUA - 1 - SOLAR | CED Lost Hills Solar, LLC (file Blackwell Solar Park, LLC) - RAM 4
Stroud Solar Station
Cantua Solar Station | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | HURON_6_SOLAR
GATES_2_SOLAR | Huron Solar Station
Gates Solar Station | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | GUERNS, 6, SOLAR
Maricopa West Solar PV 2, LLC | Guernsey Solar Station Maricopa West Solar PV 2, LLC | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | OROLOM_1_SOLAR1
KANSAS, 6_SOLAR
AUSER_1_NTHSER | Sunnay 20
Kansas South - PV 1
Alpaugh North | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | ATWELL_1_SOLAR
WALKNIA_1_SOLAR | Atwell Island
Corcoran | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | AVENAL 6, SUNCTY
OUVEP 1, SOLAR
LEPRED 1, SANSAS
LOSS HIIIS SOLAr | Sun City Project (Eurus)
White River | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | | | Kansas
Loost Hills Solar
West Anteliops - RAM 1 | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | PLAINY_6_BSOLAR
KNTSTH_6_SOLAR | Western Antelope Blus Sky Ranch A - RAM 1
Kent South - PV 2 | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | SKERN 6 SOLARI
WCTOR 1 SOLARI
CONCAN 1 SOLARI | Algenquin SRIC 20 Solar - PV 2 Alarmo Solar, LLC - RAM 2 CID Solar PV Project - RAM 2 | 20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | TSTORO I SOLARI
OLDAVI 6 SOLAR
RIMSR 6 SOLARZ | Shafter Solar - RAM 3 RE Old River One - RAM 3 | 20
20 | CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | | RE Rosamond Two, LLC TA - High Desert LLC (Antelope) | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | ADOBEE 1 SOLAR PLANN 6 SOLARC PLANN 5 NISSI | Adobe Solar, LLC Central Antelope Dvy Ranch C, LLC (A&R) North Lancaster Rench, LLC (A&R) | 20
20
20 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | PLAINV_6_SOLAR3
VESTAL_2_SOLAR1 | Sierra Solar Greenworks, LLC (A&R)
Nicolis, LLC (Weldon Solar) | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | VICTOR_1_LVSLR2
TWISSL_6_SOLAR1 | Lone Valley Solar Park II, LLC (I/I/a Marathon) Coronal Lost Hills, LLC | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling list
ruling list
ruling list | VEGA 6. SOLARI
PMPICK_1. SOLARI
WLDWD 1. SOLARI | Vega Solar LLC Pumpjack Solar LLC Wildwood Solar LLC | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | WLDWD_1_SOLARI
VICTOR_1_SOLARI
OASIS_6_SOLAR2 | Adelanto Solar, LLC
NRG Solar Oasis LLC | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | ATWEL2 1. SOLARI
MOIAWW 2_SOLARI
ADERA_1_SOLARI | CED Atwell Island West, LIC
SEPV Mejave West, LIC
Adera Solar | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | TORTA 1 SOLAR
GLDFGR 6 SOLARI
PMPICK 1 SOLARZ | Longboxt Solar, LLC Portal Ridge Solar 8, LLC Rio Bravo Solar 1, LLC | 20
20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | northe
northe
northe | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | PMPICK 1 BROSIR | | 20 | | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Jacumba Solar, ILC
GARIND _2 GASIAR
CEDUCR_2 3 GUARI | Jacomba Solar, LLC RE Garland A, LLC SR Sols Vestal Almond, LLC | 20
20
20 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical
physical | none
none
none | 1 1 1 | | | ruling list
ruling list | CEDUCR_2_SOLAR2
CEDUCR_2_SOLAR4 | SR Solis Vestal Herder, LLC
SR Solis Vestal Fireman, LLC | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Joshua Tree Solar Farm, LLC
MANGEW 6, SOLAR1
FRESHW 1, SOLAR1
PAIGES 6, SOLAR | Joshua Tree Solar Farm, LLC
Maricopa West
CED Corcoran Solar 3, LLC (PV 3 RFO) | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | Westside Solar, LLC (1) (PV 3 RFO)
RE: Walker Pass | 20
20
20 | CAISO_Solar
CAISO_Solar | physical
physical
physical | norne
norne
norne
norne | 1 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Midway Solar Farm III
Bayshore Solar A | Midway Solar Farm III
Bayshore Solar A
Baschove Solar C | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Bayshore Solar C
Bayshore Solar B
San Joaquin 1A | Bayshore Solar
C
Bayshore Solar B
San loaquin 1A | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Antelope DSR 3, LLC
Windhub Solar A Solar Project | Antelogo DSR 3, LLC
Windhub Solar A Solar Project | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | | EEKTMN_6_SOLAR1 | EE K Solar 1 - Kettleman Solar
AP North Lake Solar - Diamond Valley Lake Solar | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | RSMSIR 6 SOLARI
BIGSRY 2 SOLARI
BIGSRY 2 SOLARI | RE Rosamond One
Antelope Big Sky Ranch
Wystern Antelope Big Sky Ranch B | 20
20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | BLYTHE_1_SOLAR2
CRWCKS_1_SOLAR1 | Blythe Green 1
Crow Creek Solar 1 | 20
20 | CAISO_Solar
CAISO_Solar | physical
physical | none
none
none | 1 1 | 0 1 solar | | ruling_list
ruling_list | KNGBRD_2_SOLAR1
KNGBRD_2_SOLAR2 | Kingbird Solar A
Kingbird Solar B | 20
20
20 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Little Bear 3
OUVFR 1 SOLAR? | Little Bear 3
White River Solar 2 - RAM 2
CED Corcoran Solar 2, LLC | 20
19.75
19.75 | CAISO_Solar
CAISO Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | WALKWA I SOLAR2
AVENAL 6 SANDOG
CUMMA I SOLAR | Sand Drag (Eurus) Columbia Solar Energy | 19
19 | CAISO_Solar | physical
physical | none | 1 1 | | | ruling list
ruling list | ADMEST, 6, SOLAR
DEVERS, 1, SOLAR | RE Adams East Cascade Solar Monthode Color Service BM | 19
18.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | JAYNE 6, WISLR CATUNA_2_SOLAR2 Maricopa Exit Solar PV2, LLC | Westlands Solar Farms IPVI
Catalina Solar 2, LLC
Maricopa East Solar IPV2, LLC | 18
18
18 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | marticipa etal solar (2) (U.C.) VICTOR 3. SIOLARI SOGRE Solar Energy Project LANONT 1. SOLARS | RE Victor Phelan Solar One, LLC
SDG&E Solar Energy Project | 18
17.5
17 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list | | 67RK 8ME, LLC Woodmers Solar Farm - RAM 4 Westside Solar Station | 16.66
15 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | SCHNDR_1_WSTSDE
SCHNDR_1_FIVPTS
MRSDS_6_SOLIAR1 | Five Points Solar Station
Morelos Del Sol - RAM 3 | 15
15
15
15 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | WILDUMD 1 SOLARS WEDDWD 1 SOLARS CEDUCR 2 SOLARS CANIOT 2 SOLARS | Wildwood Solar II, LLC
SR Solis Crown, LLC | 15
15
15 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list
ruling_list | | Columbia Two, LLC San Jacinno Sollar 14.5, LLC Tropico, LLC (Great Lakes) | 14.5 | | physical
physical
physical | norne
norne
norne
norne | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | VESTAL 2 SOLAR2 SEGS 1, SEGS2 SUMBAY SEGS 1 | Sunray Energy, Inc. SUNRAY SEGS I | 14
13.8
13.8 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1
1 | 0 1 solar
0 1 solar
0 1 solar | | ruling list
ruling list
ruling list
ruling list | Java Solar
ARVANN, 6, ORION1
Rankwall Solar | Java Solar O'ion Solar - DV 1 Blackwell Solar | 13.5
12
12 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical
physical | none
none
none | 1 1 1 | 0 1 solar
0 1 solar | | ruling list
ruling list | DEVERS, 1, SOLAR1
GOOSLK, 1, SOLAR1 | SPVP008 - Ontario
Cottonwood Goose Lake LLC | 12
12 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | GLDGGR 6 SOLAR2
GLDGGR 6 SOLAR2
CONCAN 1 SOLAR2
GIFFEN 6 SOLAR | Portal Ridge Solar C Project
Corcoran City | 11.4
11
10 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | GIFFEN 6. SOLAR
GATES, 2. WSOLAR | Giffen Solar Station
West Gates Solar Station | 10
10 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | | | | | | | | | | | ruling_list
ruling_list | OROLOM_1_SOLAR2
COPMTN_2_CM10 | SR Solis Oro Loma Teresina, LLC- Project B
CM10 (fila Sempra El Dorado Solar) | 10
10 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | |--|---|--|--------------------------|---|----------------------------------|----------------------|--------|--| | ruling_list
ruling_list | GLDTWN 6 COLUM3
WCTOR_1_LVSLR1 | RE Columbia Three LLC
Lone Valley Solar Park I, LLC (f/k/a Agincourt) | 10
10 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | PMDLET_6_SOLAR1
SKERN 6 SOLAR2 | SEPV Palmdale East, LLC
Aleonouin SKIC 10 Solar, LLC | 10
10 | CAISO Solar
CAISO Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | | Sun Edison Victorville Solar
PLAINV_6_DSQLAR | Sun Edison Victorville Solar
Western Antelope Dry Ranch | 10
10 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | PBLOSM 2 SOLAR
DEVERS_1_SOLAR2
Aspiration Solar G LLC (1) (PV 3 RFO) | Pearlifoscom
SPVICOB - Ontario
Aspiration Solar G LLC (1) (IV 3 RFO) | 9.5
9 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | | 8 | | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | ARVININ 6 ORIONZ
AVENAL 5 AVSIRI
AVENAL 5 AVSIRI | Orion Solar II, LLC SR Sols Rocket, LLC - Project A SR Sols Rocket, LLC - Project B | 7.9
7.9 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | RVSIDE 6 SOLARI
VICTOR 1 SOLARI | Tequesquite Landfill Solar Project
Adelanto Solar 2 | 7.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | 50001 SCWA North and South Ponds
American Solar Greenworks, LLC (ARR)
DESUR 6, SOLARI | 50001 SCWA North and South Ponds | 7
6.5
6.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | | American Solar Greenworks, LLC (A&R) FTS Project Owner 1, LLC (Summer North) Desert Green Solar Farm | 6.5
6.3 | CAISO_Solar | physical
physical | none | 1 | | | ruling_list
ruling_list | AVENAL 6 AVPARK
ETIWND 2 RTS026 | Avenal Park (Eurus)
SPVP026 - Nalto | 6 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | MIRLOM 2. ONTARO
San Jacinto Solar 5.5, LLC
MENBIO . 6. RENEWI | SPAYDOS - Ornario
San Jacinto Solar 5.5, LLC
CaIRENEW-1 (1st Amended & Restated) | 5.5
5.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | VESTAL 2 RTS042 | Calife Net W-1 (154 Amended & Rist Lated) SPVP042 - Porterville SPVP048 - Barllands | 5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | SBERDO_2_RTSO48
GLDTWN_6_SOLAR
DELSUR_6_DWYF8B | RE Rio Grande, LLC
Lancaster Dry Farm Ranch B, LLC | 5 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | MCTOR 1 VORKYA
VICTOR 1 VORKYB
MNOOTA 1 SOLAR? | Victor Day Farm Ranch A, LLC
Victor Day Farm Ranch B, LLC
Chizen Solar B, LLC | 5
5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | MNDOTA_1_SOLAR2
LITLRK_6_SOLAR1 | | 5
5 | | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | SunE- Victorville CRELMIN_6_RAMON2 | Sunf-Victorville
Sol Orchard 21 - Ramona 2 | 5
5 | CAISO_Solar
CAISO_Solar | physical
physical
 none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | VLOTIT 6 VESIE2
BIGSIV 2 SOLARS
MARTIN 3 SUNSET | Sol Orchard 23 - Valley Center 2
Big Sky Solar 2
Sunsiet Reservoir North Basin | 5
5
4.96 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | GARNET_I_SOLAR2 | Summer twestered record makes North Palm Springs #4A Garnet Solar Power Generation Station, 1 LLC | 4.95
4.12 | | physical
physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling list
ruling list
ruling list | Lancaster Solar 1
SBERDO 2 RTSO11 | Lancaster Solar 1
SPVP011 - Redlands | 3.75
3.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none
none | 1 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | SBERDO 2 RTS013
ETIWND 2 RTS017 | SPVPO13 - Redlands
SPVPO17 - Fontana | 3.5
3.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | VISTA_2_RTS028
SunE- Mission Pomona | SPVP028 - San Bernardino
SunE- Mission Pomona | 3.5
3.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | ETIWND, 2, RTS015
LITLRK, 6, S0LAR4 | SPVP015 - Fontana
Little Rock - Pham Solar PV, LLC | 3 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | US Topco Energy, Inc. (Soccer Center) PWNavitator, LLC ROSMAND. 6. SOLAR | US Topco Energy, Inc. (Soccer Center) PVNavitator, LLC | 3 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | ROSMMD, 6. SOLAR
LILIAC_6_SOLAR
Central Antelope Dry Ranch B, LLC | Lancaster WAD B, LLC NLP Granger AB2, LLC Central Antelopa Dry Ranch B, LLC | 3 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar | | | | Central Antidope Dry Ranch B, LLC Oak Leaf Solar X (S832) ANS Phase 2 | 3 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | AVS Phase 2
SERV Bookward 2
SBERDO 2, NTSO05 | AVS VINAS 2
SEPV Bouleward 2
SPVP005 - Rediands | 2.9
2.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | SERNO 2 N 15007 SERNO 2 N 15007 ETWWD 2 N 15007 Sol Orchard 22 - Valley Center 1 | | 2.5 | | physical
physical | none | 1 | 0 1 solar | | | Sol Orchard 22 - Valley Center 1 | SPVP023 - Fontana
Sol Orchard 22 - Valley Center 1
Coltens Solar Deat IC | 2.5
2.5
2.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Colton Solar One LLC
GRIDLY 6, SOLAR
BUCKWD, 1, NIVALM1 | Gridday Main Two
North Palm Springs #1A | 2.5
2.4 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | | NLP Valley Center Solar, LLC
Pristine Sun - 2245 Gentry (S832) | 2.33 | | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | Pristine Sun - 2245 (Sentry (5832)
2241 Alavi (5832)
PUTHCR, 1 501AR1 | 2241 Alavi (SB32)
Pritah Crook Solar Farms (SB32) | 2.3
2.1
2 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling list
ruling list | Poteston Rt. Solar (S832) (BehART) Camden 1 FT (GASNA 309) Gustine 1 FT (GASNA 609) | Peterson Rd. Solar I (SB32) (ReMAT)
Camden 1 FIT (GASNA 30P) | 2 2 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Vaca Dixon Solar Station | Gustine 1 FiT 2 (GASNA 60P) Vaca Dixon Solar Station | 2 2 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | SBERDO, 2. REDUND
ETIWND, 2. RTS027 | SPVP022 - Redlands
SPVP027 - Rialto | 2 2 | CAISO Solar
CAISO Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | LITLRK_6_SEPV01
DEVERS_1_SEPV0S | SEPV1, LLC
SEPV2, LLC | 2 2 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | VICTOR_1_EXSLRA
VICTOR_1_EXSLRB
LITUK_6_SOLAR2 | Expressway Solar A Expressway Solar B | 2 2 | CAISO_Solar
CAISO Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | | CHINO 2 IURUPA | FTS Master Tenant 2, LLC (SEPV18) California PV Energy, LLC (Jurupa Ave) | 2 2 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | DELAMO 2 SOLARG
ETWIND 2 SOLARS
CREMIN 6, RAMONI | Freeway Springs
Dulles
Sol Orchard 20 - Ramona 1 | 2 2 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | OCI Solire Lakeside Pala (SDG&E Solar Energy Project) One Ten Partners, LLC | | 2 | | physical
physical
physical | none | 1 | 0 1 solar
0 1 solar | | | One Ten Partners, LLC | Pala (SDG&E Solar Energy Project) One Ten Partners, LLC Assistance Company Monta | 2 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Anaheim Solar Energy Plant Southeast Wastevater Treatment Plant/CCSF SO00_SCWA Rt & Rt 2 Ponds | Anahaim Solar Energy Mant Southeast Wastwater Treatment Mant/CCSF SOOD SOVA M 18 & 12 Ponds SOOD SOVA M 10 & 12 Ponds | 2 2 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | | | 2
1.88 | CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | 2275 Hattesen (S832) SunE- Cucamonga Ontario West Bonner Solar 18 | 2275 Hattesen (\$832)
Sunfi - Cucamonga Ontario West
Boomer Solar 18 | 1.88
1.76 | CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | ruling list
ruling list | RGA2 Solar (SB32) (ReMAT)
PADUA_2 SOLAR1 | RGA2 Solar (SB32) (ReMAT) Rancho Cucamonga Distribution Center 1 | 1.75
1.75 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | DELAMO_2_SOLAR2
SunE- Quarry Corona | Golden Springs Bldg M
SunE- Quarry Corona | 1.75
1.75 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | 2235 Leong
2184 Gruber (5832) | 2235 Leong
2184 Gruber (S832) | 1.75
1.52 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | HENRTA_6_SOLAR1
S_RITA_6_SOLAR1 | ImMODO-Lemoore 1
NDP1 (S832) | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | PEDIRA 1 SOLAR
LDCXFD_1 BEARCK
Ignite Solar Holdings 1 - Achomawi | Fresh Air Energy IV, LLC - Sonora 1
Bear Creek Solar Project | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | | ignite Solar Holdings 1 - Achomawi
Ignite Solar Holdings 1 - Ahjumawi
KNGBRG 1 KESIR1 | Ignite Solar Holdings 1 - Achomawi
Ignite Solar Holdings 1 - Altjurnawi
Kineburu 1 1 | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | MYGENG J. KESLYI
MYGENG J. KESLYI
WFRESN J. SOLAR | Kingsburg 1
Kingsburg 2
La Joya Dal Sol #1 | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | | 1.5
1.5
1.5 | | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar | | ruling_list | COCOSS, 6, SOLAR
ELCAP, 1, SOLAR
HOLSTR, 1, SOLAR | Oakley Executive Solar Project Pristine Sun Helton Fenerac Tal Fife San Peninco Want Parki | 1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | TMFUTN 2 SOLAR
CLOVDL_1_SOLAR | Vintner Solar Project
Cloverdale Solar PSEC 1 | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | HOLSTR_1_SOLAR2 | | 1.5 | CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | MERCED 1 SOLAR2
MERCED 1 SOLAR1
KERMAN 6 SOLAR1 | Ecos Energy - Mercad Solar Project Ecos Energy - Mission Solar Fresno Cogneration - Fresno Solar South | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar | | ruling_list
ruling_list | KERMAN 6 SOLAR2
TX-ELK 6 SOLAR1 | Fresno Cogeneration - Fresno Solar West
Greenlight - Castor Solar Project | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | ETIWND_2_RTS010
SBERDO_2_RTS016 | SPVPO10 - Fontana
SPVPO16 - Redlands | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0
1 solar | | ruling_list
ruling_list
ruling_list | ETIWND, 2, RTS018
MIRLOM, 2, RTS032 | SPVPO18 - Fontana
SPVP032 - Ontario
Industry Metrolink PV 1 | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | WALNUT_2_SOLAR CHINO_2_SASOUR Neenach Solar 18 South, LLC | SS San Antonio West LLC (Chino South Building E) Neenach Solar 18 South, LLC | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | L-8 Solar Project, LLC
Heliocentric, LLC | revenuer soler 18 Solern, LLC
L-8 Solar Project, LLC
Heliocentric, LLC | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar | | | Annie Power, LLC
Illam Solar 1, LLC | Annie Power, LLC | 1.5 | CAISO_Solar | physical
physical | | 1 | 0 1 solar | | ruling_list
ruling_list
ruling_list | altam Solar 2, LLC
Sandra Energy, LLC | JRam Solar 2, LLC
Sandra Energy, LLC | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Dreamer Solar, LLC
Voyager Solar 2, LLC
Voyager Solar 2, LLC | Dreamer Solar, LLC
Voyager Solar 1, LLC
Voyager Solar 2, LLC | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Voyager Solar 2, LLC
Becca Solar, LLC | | 1.5 | | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruting_list | Becca Solar, LLC Toro Power 1, LLC Radiance Solar 5 LLC Radiance Solar 4 LLC | Toro Power 1, LLC Radiance Solar 5 LLC Radiance Solar 5 LLC | 1.5
1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | | | ruling_list
ruling_list
ruling_list | Radiance Solar 4 LC
Summer Solar C2, LLC
Summer Solar A2, LLC | Radiance Solar 4 LLC
Summer Solar C2, LLC
Summer Solar A2, LLC | 1.5
1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | | Summer Solar B2, LLC | Summer Solar B2 LLC | 15 | CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar
0 1 solar | | ruling list
ruling list
ruling list | Rodeo Solar C2, U.C
Rodeo Solar D2, U.C
Espréssway Solar C2, U.C | Rodeo Solar C2, LLC Rodeo Solar D2, LLC Experiessway Solar C2, LLC | 1.5
1.5
1.5 | CAISO Solar
CAISO Solar | physical
physical | | 1
1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | Tulare PV1, LLC (Exeter 3) Tulare PV1, LLC (Lindsay 1) | Tulare PV1, LLC (Exeter 3) Tulare PV1, LLC (Lindsay 1) | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Tulare PV1, LLC (Lindsay 3) Tulare PV1, LLC (Ivanhoe 1) | Tulare PV1, LLC (Lindsay 3) Tulare PV1, LLC (Ivanhoe 1) | 1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1
1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list | Tulare PV1, LLC (Ivanhoe 3) Tulare PV1, LLC (Porterville 5) | Tulare PV1, LLC (Ivanhoe 3) Tulare PV1, LLC (Porterville 5) | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | | | ruling_list
ruling_list | Sequoia PV1, LLC (Tulare 1) Sequoia PV1, LLC (Tulare 2) | Sequoia PV1, LLC (Tulare 1)
Sequoia PV1, LLC (Tulare 2) | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list
ruling_list | Division 1 (fl/y/a Ever CT Solar Farm, LLC - Ste 2A) Sequola PV1, LLC (Farmersville 1) Sequola PV1, LLC (Farmersville 2) Sequola PV1, LLC (Farmersville 3) | Division 1 (f/k/a Ever CT Solar Farm, LLC - Site 2A) Sequeia PV1, LLC (Farmersville 1) Sequeia PV1 LLC (Farmersville 2) | 1.5
1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list | Sequola PV1, LLC (Farmersville 3) Sequola PV2, LLC (Farmersville 3) | Sequela PVI, LLC (Farmeroville 2) Sequela PVI, LLC (Farmeroville 3) Sequela PVI, LLC (Farmeroville 3) Sequela PVI LLC (Protrietle 6) | 1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | i
i | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | Sequoia PP3 LLC (Porterville 6) Sequoia PP3 LLL (Porterville 7) VICTOR 1_SURMES | Segusia PV3 LLC (Perferville 6) Segusia PV3 LLC (Perferville 7) DG Solar Lessee, LLC (Hesperia) | 1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | i
i | 0 1 solar | | ruling_list
ruling_list | | | 1.5
1.5 | | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | DG Solar Lessee, LCC, (Solar Different Collection Collection) Victor Messa Linda C 2 LLC Victor Messa Linda D 2 LLC Victor Messa Linda D 2 LLC Victor Messa Linda D 2 LLC | Victor Missa Linds 22 LLC Victor Missa Linds D2 LLC Victor Missa Linds b2 LLC Victor Missa Linds b2 LLC | 1.5
1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | | | ruling list
ruling list | Sequoia PV2, LLC (Hanford 1)
Sequoia PV2, LLC (Hanford 2) | Seguoia PV2, LLC (Hanford 1)
Seguoia PV2, LLC (Hanford 2) | 1.5
1.5
1.5 | CAISO Solar
CAISO Solar | physical
physical | none | 1
1 | 0 1 solar
0 1 solar
0 1 solar | | ruling list | Coronus Joshua Tree East 5 LLC
Desert Hos Springs 2
Gales A West | Coronus Joshua Tree East 5 LLC Desert Hot Springs 2 Gales A West | 1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | | Gales B East | 1.5
1.5
1.5 | CAISO_Solar | physical
physical | none
none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | DG Solar Lessee, LLC (Snowline-White Road North) DG Solar Lessee, LLC (Snowline-White Road Central) | DG Solar Lessee, LLC (Snowline-White Road North) DG Solar Lessee, LLC (Snowline-White Road Central) | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Mitchell Solar, LLC
Rudy Solar, LLC | Mitchell Solar, LLC
Rudy Solar, LLC | 1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list | Madelyn Solar, LLC
DG Solar Lessee, LLC (Snowline-White Road South) | Madelyn Solar, LLC
DG Solar Lessee, LLC (Snowline-White Road South) | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | Adelanto West 1
Adelanto West 2 | Adelanto West 1
Adelanto West 2 | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar | | ruling_list
ruling_list | Venable #2 North Venable #2 South | Venable #1 North Venable #2 South | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Lancaster Solar 2 OASIS, 6, SOLAR1 Sunf. Redlands | Lancaster Solar 2 Morgan Lancaster I, LLC Sunf - Redilands | 1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list
ruling_list | SunE - Redlands
DELAMO_2_SOLAR1
SunE - Elm Fontana | Sunf - Redlands
Golden Springs Bldg H
Sunf-Elm Fontana | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical | none
none | 1 | 0 1 solar | | ruling_list
ruling_list
ruling_list | Suné: Elm Fontana
Buckman Springs PV 1
Buckman Springs PV 2
Viejas Bivd PV 1 | SunE. Elm Fontana
Buckman Springs PV 1
Buckman Springs PV 2 | 1.5 | | physical
physical
physical | none
none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list | | Viejas Blvd PV 1
Victor Mesa Linda B2 LLC | 1.5
1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical
physical | none | i
i | | | ruling list
ruling list | Merced 2 - (SB32)
Summer Solar E2, LLC | Merced 2 - (5832)
Summer Solar E2, LLC | 1.5
1.5 | CAISO Solar
CAISO Solar | physical
physical | none | 1
1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Summer Solar F2, LLC
Summer Solar G2, LLC
Summer Solar H2, LLC | Summer Solar F2, LLC
Summer Solar G2, LLC | 1.5
1.5
1.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 solar
0 1 solar
0 1 solar | | ruling_list
ruling_list | Summer Solar H2, LLC
Madera 1 | Summer Solar H2, LLC
Madera 1 | 1.5
1.5 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 1 | 0 1 solar
0 1 solar | | | | | | | | | | | | ruling_list
ruling_list | 50003 SCWA R4 Pond
CORONS 2 SOLAR | 50003 SCWA R4 Pond
Temescal Carryon | 1.5
1.499278 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 | 1 solar
1 solar | |---|--|---|--------------------------|---
----------------------------------|--|--------|--------------------|---| | ruling_list
ruling_list
ruling_list | Powhatan Solar Power Generation Station 1, LLC | Powhatan Solar Power Generation Station 1. LLC | 1.496 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling list | Navajo Solar Power Generation Station 1, LLC | Otoe Solar Power Generation Station 1, LLC
Navajo Solar Power Generation Station 1, LLC | 1.496
1.496 | CAISO Solar | physical
physical | none
none | 1 | | | | ruling_list
ruling_list | Industry Solar Power Generation Station 1, LLC
Newberry Solar 1, LLC
Park Meridian 1 | Industry Solar Power Generation Station 1, LLC
Newberry Solar 1, LLC
Park Meridian 1 | 1.496
1.492
1.49 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | | Park Meridian 1
Terra Francesco 1 | | 1.49
1.49 | | physical
physical | none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list
ruling_list | Terra Francesco 1
BKRFLD _ SOLAR1
Sunt: Santa Ana | Balorsfield 111
SunE- Santa Ana | 1.49
1.4
1.4 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list | DELAMO, 2. SOLIAPA
ETIWNO 2. CHMPNE
DELAMO, 2. SOLID | | 1.32
1.3 | | physical
physical | none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list | DELAMO 2_SOURD Pristine Sun - 2042 Baldwin (S832) | California PV Energy, LLC (Champagne Avee) Golden Springs, LLC, (Building D) Pristins Sun – 2042 Baldwin (S832) | 1.2599
1.25 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list
ruling_list | PTISOTH SUIT - COLD BARDWIN (2002) LIVEOK & SOLAR REEDLY 6 SOLAR | Prisitne Sun - 2042 Ballowin (5032)
Prisitne Sun Harris
Pristine Sun Terzian | 1.25 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar
1 solar
1 solar | | ruling_list | Diamond Valley Solar, LLC | | 1.25
1.25 | | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list | DELAMO_2_SOLAR3
Milestone Wildomar, LLC | Golden Springs Building G
Milestone Wildomar, LLC | 1.25
1.224 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 | i solar
i solar | | roling list | Milestone Wildomar, LLC
SunE- Jurupa Ontario
Boomer Solar 7 | SunE-Jurupa Ontario
Boomer Solar 7 | 1.2
1.2 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list
ruling_list | DELAMO, 2. SOLRC1
SunE (Bell Tustin) | Golden Springs, LLC, (Building C1) Sunf (Beil Tustin) | 1.1815
1.131 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list | SunE (Red Hill) | SunE (Red Hill) | 1.036 | CAISO_Solar | physical | none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list | LOCKFD_1_KSOLAR
DAVIS_1_SOLAR1 | Kettleman Solar Project
Yolo County Grassland #3 | 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list | DAVIS_1_SOLAR2
CHINO_2_SOLAR | Yolo County Grassland #4
SPVP002 - Chino | 1 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | | SPVP003 - Nialto
SPVP033 - Ontario | 1 1 | CAISO_Solar
CAISO Solar | physical
physical | none
none | 1
1 | | | | ruling_list
ruling_list | MIRLOM 2. RTS033
Treen Solar 2, LLC
Treen Solar 2, LLC | Treen Solar 2, LLC
Treen Solar 2, LLC | 1 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list
ruling_list | | | 1 | | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list | Drew Farigy, LLC Voyager Solar 3, LLC Summer Solar 02, LLC | Drew Energy, ILC Voyager Solar 3, LLC Summer Solar 10, LLC | i | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | Summer Solar DJ, LLC Tullare PV3, LLC (Exster 1) Tullare PV4, LLC (Exster 2) | Summer Solar DZ, LLC Tullare PV1, LLC (Exeter 1) Tullare PV1, LLC (Exeter 2) | 1 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar
1 solar
1 solar | | ruting_list | | | 1 | CAISO_Solar | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | Tulare PV1, LLC (Porterville 1) Tulare PV1, LLC (Porterville 2) | Tulare PV1, LLC (Porterville 1) Tulare PV1, LLC (Porterville 2) | 1 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | | | | ruling_list
ruling_list | | Kettering 1 (f/k/a Ever CT Solar Farm, LLC - Site 1A)
Kettering 2 (f/k/a Ever CT Solar Farm, LLC - Site 1B) | 1 1 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling list | Kettering 2 (f/k/a Ever CT Solar Farm, LLC - Ste 1B)
Division 2 (f/k/a Ever CT Solar Farm, LLC - Ste 2B)
Division 3 (f/k/a Ever CT Solar Farm, LLC - Ste 2C) | Division 2 (I/Ik/a Ever CT Solar Farm, LLC - Site 28)
Division 3 (I/Ik/a Ever CT Solar Farm, LLC - Site 2C) | 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list | DG Solar Lessee, LLC (Snowline-Duncan Road South) Desert Hot Springs 1 ETIVIND 2 SOLAR2 | DG Solar Lessee, LLC (Snowline-Duncan Road South) Desert Hot Springs 1 | 1 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | ETIWND_2_SOLAR2 | SunE - Rochester
SunE - Philadelphia Ontario | i | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list | Sunë - E Philadelphia Ontario
Boomer Solar 2
DELAMO, 2. SULANS | Boomer Solar 2 | 1 | CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list
ruling_list | DELAMIO 2. SOLARS Calico Ranch Solar Project Mirasol Murrieta 1 | Golden Springs Building L
Calico Ranch Solar Project | 1 | CAISO_Solar
CAISO_Solar | physical
physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar
1 solar | | ruling list | Freathy 1 (FIT) | Mirasol Murrieta 1 Freethy 1 (FIT) | 1 1 | CAISO_Solar
CAISO_Solar | physical | none
none | i
1 | | | | ruling_list
ruling_list
ruling_list | Freethy 2 (RT) GreenLight - Peacok Project Pristine Sun Bouzelle | Freethy 2 (FIT)
GreenLight - Associck Solar Project
Pristine Sun Buzzelle | 0.999 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | Pristine Sun Buzzelle Pristine Sun Christensen | | 0.999
0.999
0.999 | | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list
ruling_list | Pristine Sun Christensen
Pristine Sun Cotton
Pristine Sun Ritzjarrell | Pristine Sun Cotton Pristine Sun Fitzjarrell | 0.999
0.999 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | | | | ruling_list
ruling_list
ruling_list | | | 0.999 | | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar
1 solar
1 solar | | runing_list | Printing Sun Javolis Printing Sun Javolis Geornight - Sinus Solar Project Sund W 2020-C, LC | Pristing Sun Javis Greenlight - Strius Solar Project | 0.999 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | 0 1 | i solar | | ruling_list
ruling_list
ruling_list | SunE W12DG-C, LLC
Colton Solar Two LLC | SunE W12DG-C, LLC
Coltro Solar Two LLC
Calience Springs, LLC | 0.999
0.998
0.928 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | Callente Springs, LLC
CENTER_2_SOLAR1 | SunE - Pico Rivera | 0.9 | | physical
physical | none | 1
1 | | | | ruling_list
ruling_list | SunE-Fontana
Boomer Solar 15 | SunE- Fontana
Boomer Solar 15 | 0.9 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | | CA - Port of Oakland - Site 1 | 0.899 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling list
ruling list | Boomer Solar 6 Boomer Solar 17 2126 Lowell (5822) | Boomer Solar 6
Boomer Solar 17
2125 (covall (S832) | 0.88
0.833 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list | 21.2b Lovell (3852)
SunE- Cherry Fontana
Pristine Sun - 2257 Campbell (5832) | SunE-Cherry Fontana | 0.8 | CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list | Pristine Sun - 2257 Campbell (5832)
Kingsburg 3 | Pristine Sun - 2257 Campbell (S832)
Kingsburg 3 | 0.75
0.75 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | Kingsburg 3
Pristine Sun Hill
Pristine Sun Stroling | Pristine Sun Hill
Pristine Sun Stroing | 0.75
0.75 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1
solar
1 solar | | | | APEX 646-460 | 0.75 | CAISO_Solar
CAISO Solar | physical
physical | none
none | 1
1 | | | | ruling_list
ruling_list
ruling_list | One Miracle Property, LLC
Boomer Solar 12
Boomer Solar 22 | Boomer Solar 22
Boomer Solar 22 | 0.75
0.7
0.56 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling list | Innovative Cold Storage Enterprises (ICE) Pristine Sun-2192 Ramirez | | 0.504 | | physical
physical | none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list
ruling_list | | Pristing Sun-120 Ramirez 3N Energy Woodland | 0.5
0.5 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | 2105 Hart (Priotine Sun) Pristine Sun - 2272 McCall (8832) Pristine Sun - 50herz | 2:05 Hart (Pristine Sun) Pristine Sun - 2:272 McCall (SB32) | 0.5
0.5
0.5 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | i
i | 0 1 | 1 solar
1 solar
1 solar | | ruling_list | | Pristine Sun Scherz
Toro Power 2, LLC | 0.5 | | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | Tulare PV1, LLC (Ivanhoe 2)
SunE - Mira Loma | Tulare PV1, LLC (Ivanhoe 2)
SunE - Mira Loma | 0.5
0.5 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1
1 | 0 1 | i solar | | ruling_list
ruling_list | SunE - Dupont Ontario
Mirasol Pomona 1 | SunE - Dupont Ontario
Mirasol Pomona 1 | 0.5 | | physical
physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling list | Wilco Investments
2207 Ritchie | Wilco Investments
2207 Ritchie | 0.3843
0.333 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical | none
none | 1 | 0 1 | 1 solar | | ruling_list | Marinos Ventures, LLC | Marings Ventures, LLC | 0.2832 | CAISO_Solar | physical | none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | Pristine Sun- 2154 Foote
Pristine Sun Alvares 2041 | Pristine Sun - 2154 Foote
Pristine Sun Alvares 2041 | 0.25
0.25 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list | Pristine Sun Rogers
Pristine Sun Smotherman | Pristine Sun Rogers Pristine Sun Smotherman | 0.25
0.25 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar
1 solar | | ruling_list
ruling_list | USFS San Dimas Technology and Development Center Sanford-Burnhan Medical Research Institute I Amylin Pharmaceuticals | USFS San Dimas Technology and Development Center Sanford-Burnhan Medical Research Institute I | 0.25 | CAISO_Solar
CAISO Solar | physical
physical | none
none | 1
1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list
ruling_list | Amylin Pharmaceuticals
SF Service Center Solar Array 2 | Amylin Pharmaceuticals
SF Service Center Solar Array 2 | 0.2
0.11 | CAISO_Solar
CAISO_Solar | physical
physical | none | 1 | | 1 solar
1 solar
1 solar | | ruling_list
ruling_list | SE Service Contac Salar Arrau 1 | SE Somiro Contor Solve Avenu 1 | 0.11 | CHISO Solv | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | | Padific Station
Hunter Industries | Pacific Station Hunder Industries Towns at Bressi Banch | 0.10922
0.102
0.08 | CAISO_Solar
CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | ruling_list
ruling_list
ruling_list | Towers at Bressi Ranch
SCAQMD Solar Port | SCAQMD Solar Port AT&T Park Solar Arrays | 0.073
0.07 | CAISO_Solar
CAISO_Solar | physical | none | 1 | 0 1 | 1 solar | | ruling_list
ruling_list
ruling_list | AT&T Park Solar Arrays Fairfield Grossmont Trolley | Fairfield Grossmont Trolley | 0.0647 | | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | runing_list | SDCCD - Skills Center
Ladera Ranch I | SDCCD - Skills Center
Ladera Ranch I | 0.056
0.05 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | | | | ruling_list
ruling_list | | Del Sur Elementary School
X-nth | 0.041
0.04 | | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar | | ruling_list
ruling_list
ruling_list | X-nth VIIIa Sorriss Solar Curis, Edwin | Villa Sorriso Solar
Curtis, Edwin | 0.0072
0.0013 | CAISO Solar
CAISO Solar
CAISO Solar | physical
physical | none
none | 1 | | | | ruling_list
ruling_list | SPVP012 - Ontario
Green Beamworks C, LLC | SPV9012 - Ontario
Green Beanworks C, LLC | 0 | CAISO_Solar
CAISO_Solar | physical
physical | none
none | 1 | 0 1 | 1 solar
1 solar
1 solar | | template list | transfer_purchase
transfer_sale | 0 | an/A
an/A | transfer_purchase
transfer_sale | special
special | fillme huver seller annrovimate resource mix | 1 | | unknown | | template_list
template_list | unbundled_rec | 0 | #N/A | unbundled_rec
unspecified import | special | filme_buyer, seller, approximate resource mix
filme_approximate resource mix | 1 | 0 filme
0 filme | unknown | | template_list
template_list | unspecified_import
unspecified_non_import | 0 | an/A
an/A | unspecified non import | special
special | fillme_intertie, carbon content
fillme_approximate resource mix, carbon content | 1 | 0 filme
0 filme | unknown | | ruling_list
ruling_list | El Cabo Wind, LLC
S. Hurlburt Wind, LLC | El Cabo Wind, LLC
S. Hurlburt Wind, LLC | 298
290 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | i
i | 0 1 | wind low of wind low of | | ruling_list
ruling_list | Horseshoe Bend Wind, LLC
N. Hurlburt Wind, LLC | Horseshoe Bend Wind, LLC
N. Hurlburt Wind, LLC | 290
265 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of | | ruling_list
ruling_list | OCTILO_5_WIND | Ocotillo Express Wind Project AES Tehachapi Wind, LLC 85-A | 265
207 | CAISO_Wind | physical
physical | none
none | i
i | 0 1 | | | ruling_list
ruling_list | NaturEner Rim Rock
MANZNA 2 WIND | Natur£ner Rim Rock
Iberdrola - Manzana | 189
189 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1
1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list
ruling_list | Broadview Energy IN, LLC
ALTAJA 2 CPCES
ALTGON 2 LWND7 | Broadview Energy JN, LLC
Alta Windpower V | 181.7 | | physical
physical | none
none | 1 | 0 1 | wind low of | | ruling_list | | North Sky River Energy Center | 168
168
162 | CAISO_Wind
CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low of | | ruling_list
ruling_list
ruling_list | JAWENE Z. KOWWNO
BRDSID 2. HIWMD
ENERSJ. 2_WIND | North Say Nivel Enlergy Center
High Winds
Energia Sierra Juarez | 162
162
155.1 | CAISO_Wind
CAISO_Wind | physical
physical
physical | none
none
none | 1 | 0 1 | wind low of | | roling list | | Emerging Sent at Daniel
Blackspring Ridge IA
Blackspring Ridge IB | 150 | CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling list
ruling list
ruling list | Blackspring Ridge B
Hallárik Wind Project
BRDSLD 2 SHILO2 | Blackspring Midge IB
Halkirk I Wind Project
Shiloh II Wind Project | 150
150
150 | CAISO_Wind
CAISO_Wind
CAISO_Wind | physical
physical
physical | none
none
none | 1 | | | | ruling list | BROSID 2_SHILD1
BROSID 2_SHILD1
ALTA4A_2_CPCW1 | Shiloh I Wind Project | 150
150
150 | CAISO_Wind
CAISO_Wind | physical | none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | ALTA4A 2. CPCW1
ALTA4B 2_CPCW2
ALTA4B 2_CPCW3 | Alta Windpower I
Alta Windpower II | 150 | CAISO_Wind | physical
physical | none | 1 | 0 1 | wind low of
wind low of | | ruling_list
ruling_list | ALTA4B_2_CPCW6 | Alta Windpower III Mustang Hills, LLC | 150
150 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | ALTAJA 2. CPCEB
Green Ridge Power LLC (110 MW)
Broadview Energy KW, LLC | Alta Windpower VIII Green Ridge Power LLC (110 MW) | 150
144.1 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1
1 | 0 1 | wind low of
wind low of | | ruling_list | | Broadview Energy KW, LLC
Pacific Wind Project | 142.6
140 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | i
i | 0 1 | 1 wind low of
1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | ALTAGE 2 WINDS
ALTEDS 2 WINDS | Alta Windpower X Pinyon Pines II | 138
132 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low cf
1 wind low cf
1 wind low cf | | ruling list | Tule Wind | Tule Wind | 132
132
132 | CAISO_Wind | physical
physical | none
none | 1 | 0 1 | wind low of | | ruling_list
ruling_list
ruling_list | Voyager Wind I, ILC
Los Banos Wind
Goshen Phase II, ILC | Voyager Wind I, LLC
Los Banco Wind
Goshen Phase II, LLC | 132
125
124.5 | CAISO_Wind
CAISO_Wind | physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | | Goshen Phase II, LLC
WNDSTR. 2, WIND | Windstar Energy, LLC | 120 | | physical
physical | none | 1 | 0 1 | wind low of | | ruling_list
ruling_list | NaturEner Glader 1
Big Horn 1 | NaturEner Glacier 1
Big Horn 1 | 106.5
105 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | Palouse Wind
NaturEner Glader
2
HATROG_2_WIND | Palouse Wind
NaturEner Glacier 2 | 104.4
103.5 | CAISO_Wind
CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1
1 | 0 1 | wind low of
wind low of | | ruting_list | | Hatchet Ridge Rattlesnake Road (Arlington) Wind Power Project | 103.2
102.9 | CAISO_Wind | physical
physical | none | 1
1 | 0 1 | 1 wind low of
1 wind low of | | ruling_list
ruling_list | BRDSLD 2, SHLO3A
BRODIE 2, WIND | Shiloh III Wind Project Coram Brodie | 102.5
102 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1
1 | | | | ruling_list | ALTASA 2 CPCE4 | Coram Brodie
Alta Windpower IV
Shiloh IV | 102 | | physical | none | 1 | | | | ruling_list
ruling_list | BRDSLD 2 SHLO3B
RTREE 2 WIND3 | Rising Tree Wind Farm III, LLC (f/k/a Alta XIII) | 100
100 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | Vantage Wind Energy Center
Klondike IIIA | Vantage Wind Energy Center
Klondike IIIA | 90
90 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list | ALTA68_2_WIND11
Klondike Wind Power Project III | Alta Windpower XI
Klondike Wind Power Project III | 90
85 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1
1 | 0 1 | wind low of
wind low of | | ruling_list
ruling_list | RTREE_2_WIND1
USWPJR_2_UNITS | Rising Tree Wind Farm, LLC
Vasco Wind Energy Center | 80
78.2 | CAISO_Wind
CAISO_Wind | physical
physical | none | i
i | 0 1 | 1 wind low of
1 wind low of
1 wind low of
1 wind low of | | roling list | BRDSLD 2 MTZUM2 | Montezuma II Wind Energy Center
Skr River Patnership (Wilderness I) | 78.2
77 | CAISO_Wind
CAISO Wind | physical
physical | none | 1
1 | 0 1 | wind low of | | ruling_list
ruling_list
ruling_list | JAWBNE_2_SRWND
MTWIND_1_UNIT 1
ENVIND_2_WIND2 | Mountain View Power Partners, LLC Ridgetop Energy, LLC (1) | 66.6
65 | CAISO_Wind
CAISO_Wind | physical
physical | none
none
none | 1 | 0 1 | 1 wind low cf
1 wind low cf
1 wind low cf | | culion lies | MINCHT 2 MESTING | Oxide Research | 60 | CAISO Wind | physical | none | 1 | 0 1 | 1 wind low of | | ruling_list
ruling_list | ANTURE_2_GF Green Ridge Power LLC (70 MW) | Tehachapi Power Purchase Contract Trust
Green Ridge Power LLC (70 MW) | 56
54 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of
1 wind low of | | ruling_list
ruling_list
ruling_list | CRSTWD_6_KUMYAY | Kumeyaay Wind Energy Facility
San Gorgenio Wind
Mountain View Power Partners IV, LLC | 50
49.5
49 | CAISO_Wind
CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | | BLAST_1_WIND Altamort Midway Ltd. | Altamont Midway Ltd. | 48.9 | | physical
physical | none | 1 | 0 1 | wind low of
wind low of | | ruling_list
ruling_list | ENWIND 2 WIND1
TIFFNY_1_DILLON | Cameron Ridge LLC (III) Dillon Wind LLC (A&R) | 47.12 | CAISO_Wind
CAISO_Wind | physical
physical | none
none | 1 | | 1 wind low of
1 wind low of
1 wind low of | | roling list | | Green Birles Power LLC (100 MW - A) | 45
43.1
43 | | physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling list
ruling list
ruling list | WNDMAS, 2, UNIT 1
USWND2, 1, WIND2
USWND2, 1, WIND1 | Buena Vista
Golden Hilfs B
Golden Hilfs A | 43
42.96
42.96 | CAISO_Wind
CAISO_Wind
CAISO_Wind | physical
physical
physical | none
none
none | 1
1 | 0 1 | 1 wind low of | | ruling_list
ruling_list
ruling_list | USWND2_1_WIND1 Voyager Wind III Golden Hilk North | Golden Hills A
Voyager Wind III
Golden Hills North | 42.96
42
41.2 | CAISO_Wind
CAISO_Wind | physical
physical
physical | none
none | 1 | 0 1 | 1 wind low of
1 wind low of
1 wind low of | | ruling_list | TRASWD_1_QF | Cabazon Wind Partners, LLC | 41 | CAISO_Wind | physical | none | 1 | 0 1 | wind low of | | ruling_list | BRDSLD_2_MTZUMA | Montezuma Wind Energy Center | 36.8 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | |----------------------------|---|---|-------------------|--------------------------|----------------------|--------------------|-----|---|--------------------------------| | ruling_list
ruling_list | INTTRB_6_UNIT
DEVERS 1 OF | International Turbine Research
Section 16-29 Trust (Altech IIII) | 34
32.874 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | PANSEA_1_PANARO | Mesa Wind Power Corporation | 29.9 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Pleasant Valley (WEST Wyoming Wind Energy Center) Tres Vaqueros Wind Farms, LLC | Pleasant Valley (WEST Wyoming Wind Energy Center) Tres Vagueros Wind Farms, LLC | 29.89263055
28 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list
ruling_list | Northwind Energy | Northwind Energy | 27
27 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Alta Mesa Pwr. Purch. Contract Trust
MTWIND_1_UNIT 3 | Alta Mesa Pwr. Purch. Contract Trust
(berdrola - Mountain Wind | 27
22.8 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling list | Patterson Pass Wind Farm LLC | Patterson Pass Wind Farm LLC | 22 | CAISO Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Altech III - RAM 5
Sand Hill Wind, LLC - RAM 3 | Altech III - RAM 5
Sand Hill Wind, LLC - RAM 3 | 20
20 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | ARBWD_6_QF | Wind Resource II - RAM 2 | 19.955 | CAISO_Wind | physical | none | i | 0 | 1 wind low of | | ruling_list
ruling_list | RTREE_2_WIND2 Pubble Springs | Rising Tree Wind Farm II LLC - RAM 4 Pubble Springs | 19.8
19.74 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | CAPWD_1_QF | Edom Hills Project 1, LLC | 19.55 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Altamont Power LLC (4-4) | Altamont Power LLC (4-4) | 19
19 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | FLOWD2_2_FPLWND | Diablo Winds (2) | 18 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | ZOND_6_UNIT
Big Horn 2 | Santa Clara 85C
Big Horn 2 | 18
17.5 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | GARNET_1_UNITS | FPL Energy Green Power Wind | 16.5 | CAISO_Wind | physical | none | i | 0 | 1 wind low of | | ruling_list
ruling_list | Smoke Tree Wind, LLC
Horse Butte Wind | Smake Tree Wind, LLC
Horse Butte Wind | 16
15.1965504 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of | | ruling_list | ALTWD_1_QF | Difwind Partners | 15.063 | CAISO_Wind | physical | none | 1 | ō | 1 wind low of | | ruling_list
ruling_list | Green Ridge Power LLC (100 MW - D) Section 20 Trust | Green Ridge Power LLC (100 MW - D)
Section 20 Trust | 15
13.51 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | FLOWD_2_WIND1 | Cameron Ridge II, LLC (f/k/a 6091) | 11.9 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Energy Development & Const. Corp. (I/Iv/a 6062)
GARNET_2_WIND1 | Energy Development & Const. Corp. (f/k/a 6052)
San Gorgonio | 11.7
11.2 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | Green Ridge Power LLC (23.8 MW) | Green Ridge Power LLC (23.8 MW) | 10.8 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | USWNDR_2_UNITS
GARNET 2_WIND4 | Edf Renewable Windfarm V, Inc. (10 MW) San Gorgonio Westwinds II- Windustries. LLC If/k/a 6058) | 10
9.8 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | NZWIND 6 CALWIND | Wind Resource I - RAM 1 | 9.0 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list | MIDWD 2 WIND1
MIDWD 7 CORAMB | Windland Refresh 2, LLC (f/k/a 6097)
Coram Energy | 7.81 | CAISO_Wind
CAISO Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | MIDWD_7_CORAMS
MIDWD_6_WNDLND | Coram Energy
Windland Refresh, LLC | 7.5
7.46 | CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling list | NZWIND 6 WDSTR2 | Wind Stream Operations, LLC (VG # 2) | 6.925 | CAISO Wind | physical | none | i | 0 | 1 wind low of | | ruling_list
ruling_list | NZWIND_6_WDSTR4
GARNET_1_WIND | Wind Stream Operations, LLC (VG # 4) Garnet Wind Energy Center | 6.77 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | NZWIND 6 WDSTR3 | Wind Stream Operations, LLC (VG # 3) | 6.015 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | GARNET_1_WT3WND
BNY Western Trust Company | WAGNER WIND, LLC
BNY Western Trust Company | 6
5.93 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | |
ruling_list | Green Ridge Power LLC (5.9 MW) | Green Ridge Power LLC (5.9 MW) | 5.9 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Forebay Wind LLC - Altech Millford Wind WT11 | Forebay Wind LLC - Altech
Millford Wind WT11 | 5.76
5.0875 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list | Juniper Carryon Wind Power | Juniper Canyon Wind Power | 4.67208 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of
0 wind low of | | ruling_list | Western Wind Energy Corp (Windridge) | Western Wind Energy Corp (Windridge) | 4.5 | CAISO_Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
ruling_list | Altamont Power LLC (3-4) Mogul Energy Partnership I | Altamont Power LLC (3-4) Mogul Energy Partnership I | 4.05 | CAISO_Wind
CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of | | ruling_list | OAKWD 6 ZEPHWD | Oak Creek Wind - Zephyr | 3.5 | CAISO Wind | physical | none | 1 | ō | 1 wind low of | | ruling_list
ruling_list | MIDWD 2 WIND2
Coram Energy LLC | Coram Energy, LLC
Coram Energy LLC | 3 | CAISO Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | GARNET_2_WINDS | Yavi Energy (f/k/a 6052) | 3 | CAISO_Wind | physical | none | i | 0 | 1 wind low of | | ruling_list
ruling_list | Forebay Wind LLC - Western
Forebay Wind LLC - Cwes | Forebay Wind LLC - Western Forebay Wind LLC - Cwes | 2.7
2.1 | CAISO_Wind
CAISO Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | PWEST_1_UNIT | Iberdrola - Phoenix West | 2.1 | CAISO_Wind | physical | none | i | 0 | 1 wind low of | | ruling_list
ruling_list | Forebay Wind LLC - Viking RUCKWO 7 WINTOV | Forebay Wind LLC - Viking
Winter Energy #2-A | 1.69 | CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling_list | Forebay Wind LLC - Taxvest | Forebay Wind LLC - Taxvest | 0.715 | CAISO_Wind | physical | none | 1 | o | 1 wind low of | | ruling_list
ruling_list | Forebay Wind LLC - Seawest Donald & Chemworth | Forebay Wind LLC - Seawest Donald R. Chenoweth | 0.065 | CAISO_Wind | physical
physical | none | 1 | 0 | 1 wind low of
1 wind low of | | ruling list | Bennett Creek Windfarm, LLC | Bennett Creek Windfarm, LLC | 0.01 | CAISO Wind | physical | none | 1 | 0 | 1 wind low of | | ruling_list
added | Hot Springs Windfarm, LLC, Mountain Wind Power II; Nine Canyon Wind Project - Phase 3
SutterEnergyCC-Total | Hot Springs Windfarm, LLC, Mountain Wind Power II; Nine Canyon Wind Project - Phase 3 | 0
525 | CAISO_Wind
BANC CCGT | physical
physical | none | 1 0 | 0 | 1 wind low of
1 thermal | | template_list | Mountain Pass El Dorado Solar | 0 | #N/A | CAISO_Solar | new_resolve | filme_name,type,mw | 0 | 1 | 0 solar | | | | · · | | | | | - | Ise | NAME | LSE Type | |-----------------|---|------------| | 3PR | 3 Phases Renewables | ESP | | APN | American PowerNet Management | ESP | | AVCE | Apple Valley Choice Energy | CCA | | CEI | Just Energy Solutions | ESP | | CES | Commercial Energy of Montana | ESP | | CNE | Constellation New Energy | ESP | | COBP | City of Baldwin Park | CCA | | COSB | City of Solana Beach | CCA | | CPA | Calpine Power America | ESP | | CPASC | Clean Power Alliance of Southern California | CCA | | CPSF | CleanPowerSF | CCA | | DCE | Desert Community Energy | CCA | | DEB | Direct Energy Business | ESP | | EBCE | East Bay Community Energy | CCA | | EIPS | EDF Industrial Power Services | ESP | | HANFORD | City of Hanford | CCA | | KCCP | King City Community Power | CCA | | LCE | Lancaster Choice Energy | CCA | | LPH | Liberty Power Holdings | ESP | | MBCPA | Monterey Bay Community Power Authority | CCA | | MCE | Marin Clean Energy | CCA | | NES | Calpine Energy Solutions | ESP | | PALMDALE | City of Palmdale | CCA | | PCEA | Peninsula Clean Energy Authority | CCA | | PGE | Pacific Gas & Electric | IOU | | PIONEER | Pioneer Community Energy | CCA | | POMONA | City of Pomona | CCA | | PPG
PRIME | Pilot Power Group Pico Rivera Innovative Municipal Energy | ESP
CCA | | RCEA | | CCA | | RMEA | Redwood Coast Energy Authority Rancho Mirage Energy Authority | CCA | | SCE | Southern California Edison | IOU | | SDGE | San Diego Gas & Electric | IOU | | SENA | Shell Energy North America | ESP | | SJCE | San Jose Clean Energy | CCA | | SJP | San Jacinto Power | CCA | | SOMA | Sonoma Clean Power Authority | CCA | | SVCEA | Silicon Valley Clean Energy Authority | CCA | | TNG | Tiger Natural Gas | ESP | | UCOP | University of California | ESP | | VCEA | Valley Clean Energy Alliance | CCA | | WCE | Western Community Energy | CCA | | generic_example | Example LSE for illustrative purposes | None | | PCORP | PacifiCorp | IOU | | BEAR | Bear Valley Electric Service | IOU | | LIB | Liberty Utilities | IOU | | BCE | Butte Choice Energy | CCA | |----------|---|------| | CEA | Clean Energy Alliance | CCA | | COM | City of Commerce | CCA | | SDCP | San Diego Community Power | CCA | | SBCE | Santa Barbara Clean Energy | CCA | | AGERA | Agera Energy, LLC | ESP | | GEXA | Gexa Energy California, LLC | ESP | | LPD | Liberty Power Delaware, LLC | ESP | | PALMCO | Palmco Power CA | ESP | | PRAX | Praxair Plainfield, Inc. | ESP | | TENA | Tenaska Power Services Co. | ESP | | YEP | Yep Energy | ESP | | ANZA | Anza Electric Cooperative | COOP | | PLUMAS | Plumas Sierra Rural Electric Cooperative | COOP | | SURPRISE | Surprise Valley Electrification Corporation | COOP | | VEA | Valley Electric Association | COOP | Values through 2023 from: https://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442463337 Values 2024 and after from RESOLVE. | type
wind_low_cf | 2020 | 1 | elcc_type_year_month
wind_low_cf_2020_1 | elcc_percent_46mmt
14% | elcc_percent_38mmt
14% | selected_elcc: 46 mmt
14% | |------------------------------|--------------|----|--|---------------------------|---------------------------|------------------------------| | wind_low_cf | 2020 | | wind_low_cf_2020_2 | 12% | 12% | 12% | | wind low cf | 2020 | | wind_low_cf_2020_3 | 28% | 28% | 28% | | wind_low_cf | 2020 | 4 | wind_low_cf_2020_4 | 25% | 25% | 25% | | wind low cf | 2020 | | wind_low_cf_2020_5 | 25% | 25% | 25% | | wind_low_cf | 2020 | 6 | wind_low_cf_2020_6 | 33% | 33% | 33% | | wind_low_cf | 2020 | | wind_low_cf_2020_7 | 23% | 23% | 23% | | wind_low_cf | 2020 | | wind_low_cf_2020_8 | 21% | 21% | 21% | | wind_low_cf | 2020 | | wind_low_cf_2020_9 | 15% | 15% | 15% | | wind_low_cf | 2020 | | wind_low_cf_2020_10 | 8% | 8% | 8% | | wind_low_cf | 2020
2020 | 11 | wind_low_cf_2020_11 | 12%
13% | 12%
13% | 12%
13% | | wind_low_cf
wind_low_cf | 2020 | | wind_low_cf_2020_12
wind_low_cf_2021_1 | 13%
14% | 13%
14% | 14% | | wind_low_cf | 2021 | | wind_low_cf_2021_2 | 12% | 12% | 12% | | wind_low_cf | 2021 | | wind_low_cf_2021_3 | 28% | 28% | 28% | | wind_low_cf | 2021
2021 | 4 | wind_low_cf_2021_4 | 25%
25% | 25%
25% | 25%
25% | | wind_low_cf
wind_low_cf | 2021 | | wind_low_cf_2021_5
wind_low_cf_2021_6 | 33% | 33% | 33% | | wind_low_cf | 2021 | | wind_low_cf_2021_7 | 23% | 23% | 23% | | wind low cf | 2021 | | wind_low_cf_2021_8 | 21% | 21% | 21% | | wind_low_cf | 2021 | 9 | wind_low_cf_2021_9 | 15% | 15% | 15% | | wind_low_cf | 2021 | 11 | wind_low_cf_2021_10 | 8% | 8% | 8% | | wind_low_cf | 2021 | | wind_low_cf_2021_11 | 12% | 12% | 12% | | wind_low_cf | 2021 | | wind_low_cf_2021_12 | 13% | 13% | 13% | | wind low cf | 2022 | | wind_low_cf_2022_1 | 14% | 14% | 14% | | wind_low_cf | 2022 | 2 | wind_low_cf_2022_2 | 12% | 12% | 12% | | wind_low_cf | 2022 | | wind_low_cf_2022_3 | 28% | 28% | 28% | | wind_low_cf | 2022 | 4 | wind_low_cf_2022_4 | 25% | 25% | 25% | | wind_low_cf | 2022 | | wind_low_cf_2022_5 | 25% | 25% | 25% | | wind_low_cf | 2022 | | wind_low_cf_2022_6 | 33% | 33% | 33% | | wind_low_cf | 2022 | 7 | wind_low_cf_2022_7 | 23% | 23% | 23% | | wind_low_cf | 2022 | | wind_low_cf_2022_8 | 21% | 21% | 21% | | wind_low_cf | 2022 | 9 | wind_low_cf_2022_9 | 15% | 15% | 15% | | wind_low_cf | 2022 | | wind_low_cf_2022_10 | 8% | 8% | 8% | | wind_low_cf | 2022 | | wind_low_cf_2022_11 | 12% | 12% | 12% | | wind_low_cf | 2022 | 12 | wind_low_cf_2022_12 | 13% | 13% | 13% | | wind_low_cf | 2023 | | wind low cf 2023 1 | 14% | 14% | 14% | | wind_low_cf | 2023 | 2 | wind_low_cf_2023_2 | 12% | 12% | 12% | | wind_low_cf | 2023 | 4 | wind_low_cf_2023_3 | 28% | 28% | 28% | | wind_low_cf | 2023 | | wind_low_cf_2023_4 | 25% | 25% | 25% | | wind_low_cf | 2023 | | wind_low_cf_2023_5 | 25% | 25% | 25% | | wind_low_cf | 2023 | | wind_low_cf_2023_6 | 33% | 33% | 33% | | wind_low_cf | 2023 | 7 | wind_low_cf_2023_7 | 23% | 23% | 23% | | wind_low_cf | 2023 | | wind_low_cf_2023_8 | 21% | 21% | 21% | | wind_low_cf | 2023 | | wind_low_cf_2023_9 | 15% | 15% | 15% | | wind_low_cf | 2023 | | wind_low_cf_2023_10 | 8% | 8% | 8% | | wind_low_cf | 2023 | | wind_low_cf_2023_11 | 12% | 12% | 12% | | wind_low_cf | 2023 | 12 | wind_low_cf_2023_12 | 13% | 13% | 13% | | wind_low_cf | 2024 | | wind_low_cf_2024_1 | 16% | 16% | 16% | | wind_low_cf | 2024 | | wind_low_cf_2024_2 | 14% | 14% | 14% | | wind_low_cf | 2024 | 3 | wind_low_cf_2024_3 | 32% | 32% | 32% | | wind_low_cf | 2024 | | wind_low_cf_2024_4 | 28% | 29% | 28% | | wind_low_cf | 2024 | 5 | wind_low_cf_2024_5 | 28% | 29% | 28% |
| wind_low_cf | 2024 | | wind_low_cf_2024_6 | 37% | 38% | 37% | | wind_low_cf | 2024 | | wind_low_cf_2024_7 | 26% | 26% | 26% | | wind_low_cf | 2024 | 8 | wind_low_cf_2024_8 | 24% | 24% | 24% | | wind_low_cf | 2024 | | wind_low_cf_2024_9 | 17% | 17% | 17% | | wind_low_cf | 2024 | 10 | wind_low_cf_2024_10 | 9% | 9% | 9% | | wind_low_cf | 2024 | | wind_low_cf_2024_11 | 14% | 14% | 14% | | wind_low_cf | 2024 | | wind_low_cf_2024_12 | 15% | 15% | 15% | | wind_low_cf | 2025 | 1 | wind_low_cf_2025_1 | 19% | 18% | 19% | | wind_low_cf | 2025 | | wind_low_cf_2025_2 | 16% | 16% | 16% | | wind_low_cf | 2025 | 3 | wind_low_cf_2025_3 | 37% | 36% | 37% | | wind_low_cf | 2025 | | wind_low_cf_2025_4 | 33% | 33% | 33% | | wind_low_cf | 2025 | | wind_low_cf_2025_5 | 33% | 33% | 33% | | wind_low_cf | 2025 | | wind_low_cf_2025_6 | 44% | 43% | 44% | | wind_low_cf | 2025 | | wind_low_cf_2025_7 | 31% | 30% | 31% | | wind_low_cf | 2025 | 8 | wind_low_cf_2025_8 | 28% | 27% | 28% | | wind_low_cf | 2025 | | wind_low_cf_2025_9 | 20% | 20% | 20% | | wind_low_cf | 2025 | | wind_low_cf_2025_10 | 11% | 10% | 11% | | wind_low_cf | 2025 | | wind_low_cf_2025_11 | 16% | 16% | 16% | | wind low cf | 2025 | | wind_low_cf_2025_12 | 17% | 17% | 17% | | wind_low_cf | 2026 | 1 | wind_low_cf_2026_1 | 21% | 20% | 21% | | wind_low_cf | 2026 | | wind_low_cf_2026_2 | 18% | 17% | 18% | | wind_low_cf | 2026 | | wind_low_cf_2026_3 | 41% | 41% | 41% | | wind_low_cf | 2026 | | wind_low_cf_2026_4 | 37% | 36% | 37% | | wind_low_cf | 2026 | | wind_low_cf_2026_5 | 37% | 36% | 37% | | wind_low_cf | 2026 | 6 | wind_low_cf_2026_6 | 48% | 48% | 48% | | wind_low_cf | 2026 | | wind_low_cf_2026_7 | 34% | 33% | 34% | | wind_low_cf | 2026 | | wind_low_cf_2026_8 | 31% | 31% | 31% | | wind_low_cf | 2026 | 9 | wind_low_cf_2026_9 | 22% | 22% | 22% | | wind_low_cf | 2026 | | wind_low_cf_2026_10 | 12% | 12% | 12% | | wind_low_cf | 2026 | 11 | wind_low_cf_2026_11 | 18% | 17% | 18% | | wind_low_cf | 2026 | 1 | wind_low_cf_2026_12 | 19% | 19% | 19% | | wind_high_cf | 2026 | | wind_high_cf_2026_1 | 26% | 26% | 26% | | wind_high_cf | 2026 | | wind_high_cf_2026_2 | 22% | 22% | 22% | | wind_high_cf | 2026 | | wind_high_cf_2026_3 | 52% | 51% | 52% | | wind_high_cf | 2026
2026 | 4 | wind_high_cf_2026_4
wind_high_cf_2026_5 | 47%
47% | 46%
46% | 47%
47% | | wind_high_cf
wind_high_cf | 2026 | 6 | wind_high_cf_2026_6 | 62% | 60% | 62% | | wind_high_cf | 2026 | | wind_high_cf_2026_7 | 43% | 42% | 43% | | wind_high_cf | 2026 | | wind_high_cf_2026_8 | 39% | 38% | 39% | | wind_high_cf | 2026 | 9 | wind_high_cf_2026_9 | 28% | 27% | 28% | | wind_high_cf | 2026 | | wind_high_cf_2026_10 | 15% | 15% | 15% | | wind_high_cf | 2026 | 11 | wind_high_cf_2026_11 | 22% | 22% | 22% | | wind_high_cf | 2026 | | wind_high_cf_2026_12 | 24% | 24% | 24% | | wind_low_cf | 2027 | | wind_low_cf_2027_1 | 21% | 20% | 21% | | wind_low_cf | 2027 | 2 | wind_low_cf_2027_2 | 18% | 17% | 18% | | wind_low_cf | 2027 | | wind_low_cf_2027_3 | 41% | 41% | 41% | | wind_low_cf | 2027 | 4 | wind_low_cf_2027_4 | 37% | 36% | 37% | | wind_low_cf | 2027 | 6 | wind_low_cf_2027_5 | 37% | 36% | 37% | | wind_low_cf | 2027 | | wind_low_cf_2027_6 | 48% | 48% | 48% | | wind_low_cf | 2027 | | wind_low_cf_2027_7 | 34% | 33% | 34% | | wind_low_cf | 2027 | | wind_low_cf_2027_8 | 31% | 30% | 31% | | wind_low_cf | 2027 | 9 | wind_low_cf_2027_9 | 22% | 22% | 22% | | wind_low_cf | 2027 | 11 | wind_low_cf_2027_10 | 12% | 12% | 12% | | wind_low_cf | 2027 | | wind_low_cf_2027_11 | 18% | 17% | 18% | | wind_low_cf | 2027 | 12 | wind_low_cf_2027_12 | 19% | 19% | 19% | | wind high cf | 2027 | | wind_high_cf_2027_1 | 26% | 26% | 26% | | wind_high_cf | 2027 | 2 | wind_high_cf_2027_2 | 22% | 22% | 22% | | wind_high_cf | 2027 | 4 | wind_high_cf_2027_3 | 52% | 51% | 52% | | wind_high_cf | 2027 | | wind_high_cf_2027_4 | 47% | 46% | 47% | | wind_high_cf | 2027 | 5 | wind_high_cf_2027_5 | 47% | 46% | 47% | | wind_high_cf | 2027 | | wind_high_cf_2027_6 | 62% | 60% | 62% | | wind_high_cf | 2027 | 7 | wind_high_cf_2027_7 | 43% | 42% | 43% | | wind_high_cf | 2027 | 9 | wind_high_cf_2027_8 | 39% | 38% | 39% | | wind_high_cf | 2027 | | wind_high_cf_2027_9 | 28% | 27% | 28% | | wind_high_cf | 2027 | | wind_high_cf_2027_10 | 15% | 15% | 15% | | wind high cf | 2027 | | wind_high_cf_2027_11 | 22% | 22% | 22% | | wind_high_cf
wind_low_cf | 2027 | 12 | wind_high_cf_2027_12
wind_low_cf_2028_1 | 24%
21% | 24% | 24%
21% | | wind_low_cf
wind_low_cf | 2028 | | wind_low_cf_2028_1
wind_low_cf_2028_2 | 21%
18% | 20%
17% | 21%
18% | | | | | | | | | | wind_low_cf | 2028
2028 | 3 wind_low_cf_2028_3
4 wind low cf 2028 4 | 41%
37% | 41%
36% | 41%
37% | |------------------------------|--------------|--|--------------|--------------|--------------| | wind_low_cf
wind_low_cf | 2028 | 4 wind_low_cf_2028_4
5 wind_low_cf_2028_5 | 37% | 36% | 37% | | wind_low_cf | 2028 | 6 wind_low_cf_2028_6 | 48% | 48% | 48% | | wind_low_cf
wind low cf | 2028
2028 | 7 wind_low_cf_2028_7
8 wind_low_cf_2028_8 | 34%
31% | 33%
30% | 34%
31% | | wind_low_cf | 2028 | 9 wind_low_cf_2028_9 | 22% | 22% | 22% | | wind_low_cf | 2028 | 10 wind_low_cf_2028_10 | 12% | 12% | 12% | | wind_low_cf
wind_low_cf | 2028
2028 | 11 wind_low_cf_2028_11
12 wind_low_cf_2028_12 | 18%
19% | 17%
19% | 18%
19% | | wind_low_cr | 2028 | 1 wind_high_cf_2028_1 | 26% | 26% | 26% | | wind_high_cf | 2028 | 2 wind_high_cf_2028_2 | 22% | 22% | 22% | | wind_high_cf | 2028
2028 | 3 wind_high_cf_2028_3
4 wind high cf 2028 4 | 52%
47% | 51%
46% | 52%
47% | | wind_high_cf
wind_high_cf | 2028 | 4 wind_high_cf_2028_4
5 wind_high_cf_2028_5 | 47% | 46% | 47% | | wind_high_cf | 2028 | 6 wind_high_cf_2028_6 | 62% | 60% | 62% | | wind_high_cf | 2028 | 7 wind_high_cf_2028_7 | 43% | 42% | 43% | | wind_high_cf
wind_high_cf | 2028
2028 | 8 wind_high_cf_2028_8
9 wind_high_cf_2028_9 | 39%
28% | 38%
27% | 39%
28% | | wind_high_cf | 2028 | 10 wind_high_cf_2028_10 | 15% | 15% | 15% | | wind_high_cf | 2028 | 11 wind_high_cf_2028_11 | 22% | 22% | 22% | | wind_high_cf
wind low cf | 2028
2029 | 12 wind_high_cf_2028_12
1 wind_low_cf_2029_1 | 24%
21% | 24%
20% | 24%
21% | | wind_low_cf | 2029 | 2 wind_low_cf_2029_2 | 18% | 17% | 18% | | wind_low_cf | 2029 | 3 wind_low_cf_2029_3 | 41% | 41% | 41% | | wind_low_cf
wind_low_cf | 2029
2029 | 4 wind_low_cf_2029_4
5 wind_low_cf_2029_5 | 37%
37% | 36%
36% | 37%
37% | | wind_low_cf | 2029 | 6 wind_low_cf_2029_6 | 48% | 48% | 48% | | wind_low_cf | 2029 | 7 wind_low_cf_2029_7 | 34% | 33% | 34% | | wind_low_cf
wind low cf | 2029
2029 | 8 wind_low_cf_2029_8
9 wind_low_cf_2029_9 | 31%
22% | 30%
22% | 31%
22% | | wind_low_cf | 2029 | 9 wind_low_cf_2029_9
10 wind_low_cf_2029_10 | 12% | 12% | 12% | | wind_low_cf | 2029 | 11 wind_low_cf_2029_11 | 18% | 17% | 18% | | wind_low_cf | 2029
2029 | 12 wind_low_cf_2029_12
1 wind high cf 2029 1 | 19%
26% | 19%
26% | 19%
26% | | wind_high_cf
wind_high_cf | 2029 | 1 wind_high_cf_2029_1
2 wind_high_cf_2029_2 | 22% | 22% | 22% | | wind_high_cf | 2029 | 3 wind_high_cf_2029_3 | 52% | 51% | 52% | | wind_high_cf | 2029
2029 | 4 wind_high_cf_2029_4
5 wind high cf 2029 5 | 47% | 46%
46% | 47% | | wind_high_cf
wind_high_cf | 2029 | 5 wind_high_cf_2029_5
6 wind_high_cf_2029_6 | 47%
62% | 46% | 47%
62% | | wind_high_cf | 2029 | 7 wind_high_cf_2029_7 | 43% | 42% | 43% | | wind_high_cf | 2029 | 8 wind_high_cf_2029_8 | 39% | 38% | 39% | | wind_high_cf
wind_high_cf | 2029
2029 | 9 wind_high_cf_2029_9
10 wind high cf 2029 10 | 28%
15% | 27%
15% | 28%
15% | | wind_high_cf | 2029 | 11 wind_high_cf_2029_11 | 22% | 22% | 22% | | wind_high_cf | 2029 | 12 wind_high_cf_2029_12 | 24% | 24% | 24% | | wind_low_cf
wind low cf | 2030
2030 | 1 wind_low_cf_2030_1
2 wind low cf 2030 2 | 21%
18% | 20%
17% | 21%
18% | | wind_low_cf | 2030 | 2 wind_low_cf_2030_2
3 wind_low_cf_2030_3 | 41% | 40% | 41% | | wind_low_cf | 2030 | 4 wind_low_cf_2030_4 | 37% | 36% | 37% | | wind_low_cf | 2030 | 5 wind_low_cf_2030_5 | 37% | 36% | 37% | | wind_low_cf
wind_low_cf | 2030
2030 | 6 wind_low_cf_2030_6
7 wind_low_cf_2030_7 | 48%
34% | 48%
33% | 48%
34% | | wind_low_cf | 2030 | 8 wind_low_cf_2030_8 | 31% | 30% | 31% | | wind_low_cf | 2030 | 9 wind_low_cf_2030_9 | 22% | 22% | 22% | | wind_low_cf
wind low cf | 2030
2030 | 10 wind_low_cf_2030_10
11 wind_low_cf_2030_11 | 12%
18% | 12%
17% | 12%
18% | | wind_low_cf | 2030 | 12 wind_low_cf_2030_12 | 19% | 19% | 19% | | wind_high_cf | 2030 | 1 wind_high_cf_2030_1 | 26% | 26% | 26% | | wind_high_cf
wind_high_cf | 2030
2030 | 2 wind_high_cf_2030_2
3 wind_high_cf_2030_3 | 22%
52% | 22%
51% | 22%
52% | | wind_high_cf | 2030 | 4 wind_high_cf_2030_4 | 47% | 46% | 47% | | wind_high_cf | 2030 | 5 wind_high_cf_2030_5 | 47% | 46% | 47% | | wind_high_cf | 2030
2030 | 6 wind_high_cf_2030_6
7 wind high cf 2030 7 | 62%
43% | 60%
42% | 62%
43% | | wind_high_cf
wind_high_cf | 2030 | 7 wind_high_cf_2030_7
8 wind_high_cf_2030_8 | 39% | 38% | 39% | | wind_high_cf | 2030 | 9 wind_high_cf_2030_9 | 28% | 27% | 28% | | wind_high_cf | 2030
2030 | 10 wind_high_cf_2030_10
11 wind high cf 2030_11 | 15% | 15%
22% | 15% | | wind_high_cf
wind high cf | 2030 | 11 wind_high_cf_2030_11
12 wind_high_cf_2030_12 | 22%
24% | 24% | 22%
24% | | biomass | 2020 | 1 biomass_2020_1 | 82% | 82% | 82% | | biomass | 2020 | 2 biomass_2020_2 | 86% | 86% | 86% | | biomass
biomass | 2020
2020 | 3 biomass_2020_3
4 biomass_2020_4 | 84%
76% | 84%
76% | 84%
76% | | biomass | 2020 | 5 biomass_2020_5 | 83% | 83% | 83% | | biomass | 2020 | 6 biomass_2020_6 | 89% | 89% | 89% | | biomass
biomass | 2020
2020 | 7 biomass_2020_7
8
biomass_2020_8 | 87%
90% | 87%
90% | 87%
90% | | biomass | 2020 | 9 biomass_2020_9 | 90% | 90% | 90% | | biomass | 2020 | 10 biomass_2020_10 | 81% | 81% | 81% | | biomass
biomass | 2020
2020 | 11 biomass_2020_11
12 biomass_2020_12 | 85%
86% | 85%
86% | 85%
86% | | cogen | 2020 | 1 cogen_2020_1 | 81% | 81% | 81% | | cogen | 2020 | 2 cogen_2020_2 | 79% | 79% | 79% | | cogen
cogen | 2020
2020 | 3 cogen_2020_3
4 cogen_2020_4 | 73%
66% | 73%
66% | 73%
66% | | cogen | 2020 | 5 cogen_2020_5 | 79% | 79% | 79% | | cogen | 2020 | 6 cogen_2020_6 | 85% | 85% | 85% | | cogen | 2020
2020 | 7 cogen_2020_7
8 cogen_2020_8 | 83%
83% | 83%
83% | 83%
83% | | cogen | 2020 | 9 cogen_2020_9 | 80% | 80% | 80% | | cogen | 2020 | 10 cogen_2020_10 | 72% | 72% | 72% | | cogen | 2020
2020 | 11 cogen_2020_11
12 cogen_2020_12 | 78%
82% | 78%
82% | 78%
82% | | geothermal | 2020 | 12 cogen_2020_12
1 geothermal_2020_1 | 95% | 95% | 82%
95% | | geothermal | 2020 | 2 geothermal_2020_2 | 92% | 92% | 92% | | geothermal
geothermal | 2020
2020 | 3 geothermal_2020_3
4 geothermal_2020_4 | 88%
76% | 88%
76% | 88%
76% | | geothermal | 2020 | 5 geothermal_2020_5 | 74% | 74% | 74% | | geothermal | 2020 | 6 geothermal_2020_6 | 70% | 70% | 70% | | geothermal
geothermal | 2020
2020 | 7 geothermal_2020_7
8 geothermal_2020_8 | 84%
82% | 84%
82% | 84%
82% | | geothermal | 2020 | 9 geothermal_2020_9 | 83% | 83% | 83% | | geothermal | 2020 | 10 geothermal_2020_10 | 86% | 86% | 86% | | geothermal
geothermal | 2020
2020 | 11 geothermal_2020_11
12 geothermal_2020_12 | 93%
95% | 93%
95% | 93%
95% | | hydro | 2020 | 12 geothermai_2020_12
1 hydro_2020_1 | 60% | 60% | 60% | | hydro | 2020 | 2 hydro_2020_2 | 70% | 70% | 70% | | hydro
hydro | 2020
2020 | 3 hydro_2020_3
4 hydro_2020_4 | 73%
72% | 73%
72% | 73%
72% | | hydro
hydro | 2020 | 5 hydro_2020_5 | 69% | 69% | 69% | | hydro | 2020 | 6 hydro_2020_6 | 74% | 74% | 74% | | hydro | 2020
2020 | 7 hydro_2020_7 | 73%
72% | 73%
72% | 73%
72% | | hydro
hydro | 2020 | 8 hydro_2020_8
9 hydro_2020_9 | 72% | 72%
71% | 72%
71% | | hydro | 2020 | 10 hydro_2020_10 | 64% | 64% | 64% | | hydro | 2020 | 11 hydro_2020_11 | 56% | 56% | 56% | | hydro
thermal | 2020
2020 | 12 hydro_2020_12
1 thermal_2020_1 | 64%
100% | 64%
100% | 64%
100% | | thermal | 2020 | 2 thermal_2020_2 | 100% | 100% | 100% | | thermal | 2020 | 3 thermal_2020_3 | 100% | 100% | 100% | | thermal
thermal | 2020
2020 | 4 thermal_2020_4
5 thermal_2020_5 | 100%
100% | 100%
100% | 100%
100% | | | | = | | | | | thermal | 2020 | 6 thermal_2020_6 | 100% | 100% | 100% | |--------------------------|--------------|--|--------------|--------------|--------------| | thermal
thermal | 2020
2020 | 7 thermal_2020_7
8 thermal_2020_8 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2020 | 9 thermal_2020_9 | 100% | 100% | 100% | | thermal | 2020 | 10 thermal_2020_10 | 100% | 100% | 100% | | thermal
thermal | 2020
2020 | 11 thermal_2020_11
12 thermal_2020_12 | 100%
100% | 100%
100% | 100%
100% | | battery | 2020 | 1 battery_2020_1 | 100% | 100% | 100% | | battery | 2020 | 2 battery_2020_2 | 100% | 100% | 100% | | battery
battery | 2020
2020 | 3 battery_2020_3
4 battery_2020_4 | 100%
100% | 100%
100% | 100%
100% | | battery | 2020 | 5 battery_2020_5 | 100% | 100% | 100% | | battery | 2020 | 6 battery_2020_6 | 100% | 100% | 100% | | battery
battery | 2020
2020 | 7 battery_2020_7
8 battery_2020_8 | 100%
100% | 100%
100% | 100%
100% | | battery | 2020 | 9 battery_2020_9 | 100% | 100% | 100% | | battery
battery | 2020
2020 | 10 battery_2020_10 | 100%
100% | 100%
100% | 100%
100% | | battery | 2020 | 11 battery_2020_11
12 battery_2020_12 | 100% | 100% | 100% | | nuclear | 2020 | 1 nuclear_2020_1 | 100% | 100% | 100% | | nuclear
nuclear | 2020
2020 | 2 nuclear_2020_2
3 nuclear_2020_3 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2020 | 4 nuclear_2020_4 | 100% | 100% | 100% | | nuclear | 2020 | 5 nuclear_2020_5 | 100% | 100% | 100% | | nuclear | 2020 | 6 nuclear_2020_6 | 100% | 100% | 100% | | nuclear | 2020
2020 | 7 nuclear_2020_7
8 nuclear_2020_8 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2020 | 9 nuclear_2020_9 | 100% | 100% | 100% | | nuclear | 2020 | 10 nuclear_2020_10 | 100% | 100% | 100%
100% | | nuclear | 2020
2020 | 11 nuclear_2020_11
12 nuclear_2020_12 | 100%
100% | 100%
100% | 100% | | biomass | 2021 | 1 biomass_2021_1 | 82% | 82% | 82% | | biomass | 2021 | 2 biomass_2021_2 | 86% | 86% | 86% | | biomass
biomass | 2021
2021 | 3 biomass_2021_3
4 biomass_2021_4 | 84%
76% | 84%
76% | 84%
76% | | biomass | 2021 | 5 biomass_2021_5 | 83% | 83% | 83% | | biomass | 2021 | 6 biomass_2021_6 | 89% | 89% | 89% | | biomass
biomass | 2021
2021 | 7 biomass_2021_7
8 biomass_2021_8 | 87%
90% | 87%
90% | 87%
90% | | biomass | 2021 | 9 biomass_2021_9 | 90% | 90% | 90% | | biomass | 2021 | 10 biomass_2021_10 | 81% | 81% | 81% | | biomass
biomass | 2021
2021 | 11 biomass_2021_11
12 biomass_2021_12 | 85%
86% | 85%
86% | 85%
86% | | cogen | 2021 | 1 cogen_2021_1 | 81% | 81% | 81% | | cogen | 2021 | 2 cogen_2021_2 | 79% | 79% | 79% | | cogen | 2021
2021 | 3 cogen_2021_3
4 cogen_2021_4 | 73%
66% | 73%
66% | 73%
66% | | cogen | 2021 | 4 cogen_2021_4
5 cogen_2021_5 | 79% | 79% | 79% | | cogen | 2021 | 6 cogen_2021_6 | 85% | 85% | 85% | | cogen | 2021 | 7 cogen_2021_7 | 83% | 83% | 83% | | cogen | 2021
2021 | 8 cogen_2021_8
9 cogen_2021_9 | 83%
80% | 83%
80% | 83%
80% | | cogen | 2021 | 10 cogen_2021_10 | 72% | 72% | 72% | | cogen | 2021 | 11 cogen_2021_11 | 78% | 78% | 78% | | cogen
geothermal | 2021
2021 | 12 cogen_2021_12
1 geothermal_2021_1 | 82%
95% | 82%
95% | 82%
95% | | geothermal | 2021 | 2 geothermal_2021_2 | 92% | 92% | 92% | | geothermal | 2021 | 3 geothermal_2021_3 | 88% | 88% | 88% | | geothermal
geothermal | 2021
2021 | 4 geothermal_2021_4
5 geothermal 2021 5 | 76%
74% | 76%
74% | 76%
74% | | geothermal | 2021 | 6 geothermal_2021_6 | 70% | 70% | 74% | | geothermal | 2021 | 7 geothermal_2021_7 | 84% | 84% | 84% | | geothermal | 2021 | 8 geothermal_2021_8 | 82% | 82% | 82% | | geothermal
geothermal | 2021
2021 | 9 geothermal_2021_9
10 geothermal_2021_10 | 83%
86% | 83%
86% | 83%
86% | | geothermal | 2021 | 11 geothermal_2021_11 | 93% | 93% | 93% | | geothermal | 2021 | 12 geothermal_2021_12 | 95% | 95% | 95% | | hydro
hydro | 2021
2021 | 1 hydro_2021_1
2 hydro_2021_2 | 60%
70% | 60%
70% | 60%
70% | | hydro | 2021 | 3 hydro_2021_3 | 73% | 73% | 73% | | hydro | 2021 | 4 hydro_2021_4 | 72% | 72% | 72% | | hydro
hydro | 2021
2021 | 5 hydro_2021_5
6 hydro_2021_6 | 69%
74% | 69%
74% | 69%
74% | | hydro | 2021 | 7 hydro_2021_7 | 73% | 73% | 73% | | hydro | 2021 | 8 hydro_2021_8 | 72% | 72% | 72% | | hydro
hydro | 2021 | 9 hydro_2021_9
10 hydro_2021_10 | 71%
64% | 71%
64% | 71%
64% | | hydro | 2021 | 11 hydro_2021_11 | 56% | 56% | 56% | | hydro | 2021 | 12 hydro_2021_12 | 64% | 64% | 64% | | thermal
thermal | 2021
2021 | 1 thermal_2021_1
2 thermal_2021_2 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2021 | 3 thermal_2021_3 | 100% | 100% | 100% | | thermal | 2021 | 4 thermal_2021_4 | 100% | 100% | 100% | | thermal
thermal | 2021
2021 | 5 thermal_2021_5
6 thermal_2021_6 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2021 | 6 thermal_2021_6
7 thermal_2021_7 | 100% | 100% | 100% | | thermal | 2021 | 8 thermal_2021_8 | 100% | 100% | 100% | | thermal
thermal | 2021
2021 | 9 thermal_2021_9
10 thermal_2021_10 | 100%
100% | 100%
100% | 100% | | thermal | 2021 | 10 thermal_2021_10
11 thermal_2021_11 | 100% | 100% | 100% | | thermal | 2021 | 12 thermal_2021_12 | 100% | 100% | 100% | | battery
battery | 2021
2021 | 1 battery_2021_1
2 battery_2021_2 | 100%
100% | 100%
100% | 100%
100% | | battery | 2021 | 2 battery_2021_2
3 battery_2021_3 | 100% | 100% | 100% | | battery | 2021 | 4 battery_2021_4 | 100% | 100% | 100% | | battery | 2021 | 5 battery_2021_5 | 100% | 100% | 100% | | battery
battery | 2021
2021 | 6 battery_2021_6
7 battery_2021_7 | 100%
100% | 100%
100% | 100%
100% | | battery | 2021 | 8 battery_2021_8 | 100% | 100% | 100% | | battery | 2021 | 9 battery_2021_9 | 100% | 100% | 100% | | battery
battery | 2021
2021 | 10 battery_2021_10
11 battery_2021_11 | 100%
100% | 100%
100% | 100%
100% | | battery | 2021 | 12 battery_2021_12 | 100% | 100% | 100% | | nuclear | 2021 | 1 nuclear_2021_1 | 100% | 100% | 100% | | nuclear
nuclear | 2021
2021 | 2 nuclear_2021_2
3 nuclear_2021_3 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2021 | 4 nuclear_2021_4 | 100% | 100% | 100% | | nuclear | 2021 | 5 nuclear_2021_5 | 100% | 100% | 100% | | nuclear
nuclear | 2021
2021 | 6 nuclear_2021_6
7 nuclear_2021_7 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2021 | 8 nuclear_2021_8 | 100% | 100% | 100% | | nuclear | 2021 | 9 nuclear_2021_9 | 100% | 100% | 100% | | nuclear
nuclear | 2021
2021 | 10 nuclear_2021_10
11 nuclear_2021_11 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2021 | 12 nuclear_2021_12 | 100% | 100% | 100% | | biomass | 2022 | 1 biomass_2022_1 | 82% | 82% | 82% | | biomass
biomass | 2022
2022 | 2 biomass_2022_2
3 biomass_2022_3 | 86%
84% | 86%
84% | 86%
84% | | | 2022 | 4 biomass_2022_4 | 76% | 76% | 76% | | biomass | | | | | | | biomass | 2022 | 5 biomass_2022_5 | 83% | 83% | 83% | | biomass
biomass | 2022 | 6
biomass_2022_6 | 89% | 89% | 89% | | biomass | | | | | | | biomass
biomass | 2022
2022 | 9 biomass_2022_9 | 90%
81% | 90%
81% | 90%
81% | |--------------------------|--------------|--|--------------|--------------|--------------| | biomass | 2022 | 10 biomass_2022_10
11 biomass_2022_11 | 81%
85% | 81%
85% | 85% | | biomass | 2022 | 12 biomass_2022_12 | 86% | 86% | 86% | | cogen | 2022
2022 | 1 cogen_2022_1
2 cogen 2022_2 | 81%
79% | 81%
79% | 81%
79% | | cogen | 2022 | 3 cogen_2022_3 | 73% | 73% | 73% | | cogen | 2022 | 4 cogen_2022_4 | 66% | 66% | 66% | | cogen | 2022
2022 | 5 cogen_2022_5
6 cogen_2022_6 | 79%
85% | 79%
85% | 79%
85% | | cogen | 2022 | 7 cogen_2022_7 | 83% | 83% | 83% | | cogen | 2022 | 8 cogen_2022_8 | 83% | 83% | 83% | | cogen | 2022
2022 | 9 cogen_2022_9 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2022 | 10 cogen_2022_10
11 cogen_2022_11 | 72% | 72% | 72% | | cogen | 2022 | 12 cogen_2022_12 | 82% | 82% | 82% | | geothermal | 2022 | 1 geothermal_2022_1 | 95% | 95% | 95% | | geothermal
geothermal | 2022
2022 | 2 geothermal_2022_2
3 geothermal 2022_3 | 92%
88% | 92%
88% | 92%
88% | | geothermal | 2022 | 4 geothermal_2022_4 | 76% | 76% | 76% | | geothermal | 2022 | 5 geothermal_2022_5 | 74% | 74% | 74% | | geothermal
geothermal | 2022
2022 | 6 geothermal_2022_6
7 geothermal 2022_7 | 70%
84% | 70%
84% | 70%
84% | | geothermal | 2022 | 8 geothermal_2022_8 | 82% | 82% | 82% | | geothermal | 2022 | 9 geothermal_2022_9 | 83% | 83% | 83% | | geothermal
geothermal | 2022
2022 | 10 geothermal_2022_10
11 geothermal 2022_11 | 86%
93% | 86%
93% | 86%
93% | | geothermal | 2022 | 11 geothermal_2022_11
12 geothermal_2022_12 | 95% | 95% | 95% | | hydro | 2022 | 1 hydro_2022_1 | 60% | 60% | 60% | | hydro | 2022 | 2 hydro_2022_2 | 70% | 70% | 70% | | hydro
hydro | 2022
2022 | 3 hydro_2022_3
4 hydro_2022_4 | 73%
72% | 73%
72% | 73%
72% | | hydro | 2022 | 5 hydro_2022_5 | 69% | 69% | 69% | | hydro | 2022 | 6 hydro_2022_6 | 74% | 74% | 74% | | hydro
hydro | 2022 | 7 hydro_2022_7
8 hydro_2022_8 | 73%
72% | 73%
72% | 73%
72% | | hydro | 2022 | 9 hydro_2022_9 | 71% | 71% | 71% | | hydro | 2022 | 10 hydro_2022_10 | 64% | 64% | 64% | | hydro
hydro | 2022
2022 | 11 hydro_2022_11 | 56%
64% | 56%
64% | 56%
64% | | thermal | 2022 | 12 hydro_2022_12
1 thermal_2022_1 | 100% | 100% | 100% | | thermal | 2022 | 2 thermal_2022_2 | 100% | 100% | 100% | | thermal | 2022 | 3 thermal_2022_3 | 100% | 100% | 100% | | thermal
thermal | 2022
2022 | 4 thermal_2022_4
5 thermal 2022 5 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2022 | 6 thermal_2022_6 | 100% | 100% | 100% | | thermal | 2022 | 7 thermal_2022_7 | 100% | 100% | 100% | | thermal | 2022 | 8 thermal_2022_8 | 100% | 100% | 100% | | thermal
thermal | 2022
2022 | 9 thermal_2022_9
10 thermal_2022_10 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2022 | 11 thermal_2022_11 | 100% | 100% | 100% | | thermal | 2022 | 12 thermal_2022_12 | 100% | 100% | 100% | | battery
battery | 2022
2022 | 1 battery_2022_1
2 battery_2022_2 | 100%
100% | 100%
100% | 100%
100% | | battery | 2022 | 3 battery_2022_3 | 100% | 100% | 100% | | battery | 2022 | 4 battery_2022_4 | 100% | 100% | 100% | | battery | 2022 | 5 battery_2022_5 | 100% | 100% | 100% | | battery
battery | 2022
2022 | 6 battery_2022_6
7 battery_2022_7 | 100%
100% | 100%
100% | 100%
100% | | battery | 2022 | 8 battery_2022_8 | 100% | 100% | 100% | | battery | 2022 | 9 battery_2022_9 | 100% | 100% | 100% | | battery
battery | 2022
2022 | 10 battery_2022_10
11 battery_2022_11 | 100%
100% | 100%
100% | 100%
100% | | battery | 2022 | 12 battery_2022_12 | 100% | 100% | 100% | | nuclear | 2022 | 1 nuclear_2022_1 | 100% | 100% | 100% | | nuclear | 2022 | 2 nuclear_2022_2 | 100% | 100% | 100% | | nuclear
nuclear | 2022
2022 | 3 nuclear_2022_3
4 nuclear_2022_4 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2022 | 5 nuclear_2022_5 | 100% | 100% | 100% | | nuclear | 2022 | 6 nuclear_2022_6 | 100% | 100% | 100% | | nuclear
nuclear | 2022
2022 | 7 nuclear_2022_7
8 nuclear_2022_8 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2022 | 9 nuclear_2022_9 | 100% | 100% | 100% | | nuclear | 2022 | 10 nuclear_2022_10 | 100% | 100% | 100% | | nuclear
nuclear | 2022
2022 | 11 nuclear_2022_11
12 nuclear_2022_12 | 100%
100% | 100%
100% | 100%
100% | | biomass | 2023 | 1 biomass_2023_1 | 82% | 82% | 82% | | biomass | 2023 | 2 biomass_2023_2 | 86% | 86% | 86% | | biomass
biomass | 2023
2023 | 3 biomass_2023_3 | 84%
76% | 84%
76% | 84% | | biomass | 2023 | 4 biomass_2023_4
5 biomass_2023_5 | 76%
83% | 83% | 76%
83% | | biomass | 2023 | 6 biomass_2023_6 | 89% | 89% | 89% | | biomass | 2023 | 7 biomass_2023_7 | 87% | 87% | 87% | | biomass
biomass | 2023
2023 | 8 biomass_2023_8
9 biomass_2023_9 | 90%
90% | 90%
90% | 90%
90% | | biomass | 2023 | 10 biomass_2023_10 | 81% | 81% | 81% | | biomass | 2023 | 11 biomass_2023_11 | 85% | 85% | 85% | | biomass
cogen | 2023
2023 | 12 biomass_2023_12
1 cogen_2023_1 | 86%
81% | 86%
81% | 86%
81% | | cogen | 2023 | 2 cogen_2023_2 | 79% | 79% | 79% | | cogen | 2023 | 3 cogen_2023_3 | 73% | 73% | 73% | | cogen | 2023
2023 | 4 cogen_2023_4
5 cogen_2023_5 | 66%
79% | 66%
79% | 66%
79% | | cogen | 2023 | 5 cogen_2023_5
6 cogen_2023_6 | 79%
85% | 79%
85% | 79%
85% | | cogen | 2023 | 7 cogen_2023_7 | 83% | 83% | 83% | | cogen | 2023 | 8 cogen_2023_8 | 83% | 83% | 83% | | cogen
cogen | 2023
2023 | 9 cogen_2023_9
10 cogen_2023_10 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2023 | 11 cogen_2023_11 | 78% | 78% | 78% | | cogen | 2023 | 12 cogen_2023_12 | 82% | 82% | 82% | | geothermal
geothermal | 2023
2023 | 1 geothermal_2023_1
2 geothermal_2023_2 | 95%
92% | 95%
92% | 95%
92% | | geothermal | 2023 | 3 geothermal_2023_3 | 88% | 88% | 88% | | geothermal | 2023 | 4 geothermal_2023_4 | 76% | 76% | 76% | | geothermal
geothermal | 2023
2023 | 5 geothermal_2023_5
6 geothermal_2023_6 | 74%
70% | 74%
70% | 74%
70% | | geothermal | 2023 | 7 geothermal_2023_7 | 84% | 70%
84% | 84% | | geothermal | 2023 | 8 geothermal_2023_8 | 82% | 82% | 82% | | geothermal
geothermal | 2023
2023 | 9 geothermal_2023_9 | 83%
86% | 83%
86% | 83%
86% | | geothermal | 2023 | 10 geothermal_2023_10
11 geothermal_2023_11 | 93% | 93% | 93% | | geothermal | 2023 | 12 geothermal_2023_12 | 95% | 95% | 95% | | hydro | 2023
2023 | 1 hydro_2023_1 | 60%
70% | 60%
70% | 60%
70% | | hydro
hydro | 2023 | 2 hydro_2023_2
3 hydro_2023_3 | 70% | 70% | 70% | | hydro | 2023 | 4 hydro_2023_4 | 72% | 72% | 72% | | hydro | 2023 | 5 hydro_2023_5 | 69% | 69% | 69% | | hydro
hydro | 2023
2023 | 6 hydro_2023_6
7 hydro_2023_7 | 74%
73% | 74%
73% | 74%
73% | | hydro | 2023 | 8 hydro_2023_8 | 72% | 72% | 72% | | hydro | 2023 | 9 hydro_2023_9 | 71% | 71% | 71% | | hydro
hydro | 2023
2023 | 10 hydro_2023_10
11 hydro_2023_11 | 64%
56% | 64%
56% | 64%
56% | | , | 2023 | ya.o_2023_11 | 30% | 30% | 30% | | hydro
thermal | 2023
2023 | 12 hydro_2023_12
1 thermal_2023_1 | 64%
100% | 64%
100% | 64%
100% | |--------------------------|--------------|--|--------------|--------------|--------------| | thermal | 2023 | 2 thermal_2023_2 | 100% | 100% | 100% | | thermal | 2023 | 3 thermal_2023_3 | 100% | 100% | 100% | | thermal
thermal | 2023
2023 | 4 thermal_2023_4
5 thermal 2023 5 | 100%
100% | 100%
100% | 100% | | thermal | 2023 | 6 thermal_2023_6 | 100% | 100% | 100% | | thermal | 2023 | 7 thermal_2023_7 | 100% | 100% | 100% | | thermal
thermal | 2023
2023 | 8 thermal_2023_8
9 thermal_2023_9 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2023 | 10 thermal_2023_10 | 100% | 100% | 100% | | thermal | 2023 | 11 thermal_2023_11 | 100% | 100% | 100% | | thermal
battery | 2023
2023 | 12 thermal_2023_12
1 battery_2023_1 | 100%
100% | 100%
100% | 100%
100% | | battery | 2023 | 2 battery_2023_2 | 100% | 100% | 100% | | battery | 2023 | 3 battery_2023_3 | 100% | 100% | 100% | | battery
battery | 2023
2023 | 4 battery_2023_4
5 battery_2023_5 | 100%
100% | 100%
100% | 100%
100% | | battery | 2023 | 6 battery_2023_6 | 100% | 100% | 100% | | battery
battery | 2023
2023 | 7 battery_2023_7 | 100%
100% | 100%
100% | 100%
100% | | battery | 2023 | 8 battery_2023_8
9 battery_2023_9 | 100% | 100% | 100% | | battery | 2023 | 10 battery_2023_10 | 100% | 100% | 100% | | battery | 2023 | 11 battery_2023_11 | 100% | 100% | 100%
100% | | battery
nuclear | 2023
2023 | 12 battery_2023_12
1 nuclear_2023_1 | 100%
100% | 100%
100% | 100% | | nuclear | 2023 | 2 nuclear_2023_2 | 100% | 100% | 100% | | nuclear | 2023 | 3 nuclear_2023_3 | 100% | 100% | 100% | | nuclear
nuclear | 2023
2023 | 4 nuclear_2023_4
5 nuclear_2023_5 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2023 | 6 nuclear_2023_6 | 100% | 100% | 100% | | nuclear | 2023 | 7 nuclear_2023_7 | 100% | 100% | 100% | | nuclear
nuclear | 2023
2023 | 8 nuclear_2023_8
9 nuclear_2023_9 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2023 | 10 nuclear_2023_10 | 100% | 100% | 100% | | nuclear | 2023 | 11 nuclear_2023_11 | 100% | 100% | 100% | | nuclear
biomass | 2023
2024 | 12 nuclear_2023_12
1 biomass_2024_1 | 100%
82% | 100%
82% | 100%
82% | | biomass | 2024 | 2 biomass_2024_2 | 86% | 86% | 86% | | biomass | 2024 | 3 biomass_2024_3 | 84% | 84% | 84% | | biomass | 2024 | 4 biomass_2024_4 | 76% |
76% | 76% | | biomass
biomass | 2024
2024 | 5 biomass_2024_5
6 biomass_2024_6 | 83%
89% | 83%
89% | 83%
89% | | biomass | 2024 | 7 biomass_2024_7 | 87% | 87% | 87% | | biomass | 2024
2024 | 8 biomass_2024_8 | 90%
90% | 90%
90% | 90%
90% | | biomass
biomass | 2024
2024 | 9 biomass_2024_9
10 biomass 2024_10 | 90%
81% | 90%
81% | 90%
81% | | biomass | 2024 | 11 biomass_2024_11 | 85% | 85% | 85% | | biomass | 2024 | 12 biomass_2024_12 | 86% | 86% | 86% | | cogen | 2024
2024 | 1 cogen_2024_1
2 cogen_2024_2 | 81%
79% | 81%
79% | 81%
79% | | cogen | 2024 | 3 cogen_2024_3 | 73% | 73% | 73% | | cogen | 2024 | 4 cogen_2024_4 | 66% | 66% | 66% | | cogen
cogen | 2024
2024 | 5 cogen_2024_5
6 cogen_2024_6 | 79%
85% | 79%
85% | 79%
85% | | cogen | 2024 | 7 cogen_2024_7 | 83% | 83% | 83% | | cogen | 2024 | 8 cogen_2024_8 | 83% | 83% | 83% | | cogen | 2024
2024 | 9 cogen_2024_9 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2024 | 10 cogen_2024_10
11 cogen_2024_11 | 72% | 72% | 78% | | cogen | 2024 | 12 cogen_2024_12 | 82% | 82% | 82% | | geothermal | 2024 | 1 geothermal_2024_1 | 95% | 95% | 95% | | geothermal
geothermal | 2024
2024 | 2 geothermal_2024_2
3 geothermal_2024_3 | 92%
88% | 92%
88% | 92%
88% | | geothermal | 2024 | 4 geothermal_2024_4 | 76% | 76% | 76% | | geothermal | 2024 | 5 geothermal_2024_5 | 74% | 74% | 74% | | geothermal
geothermal | 2024
2024 | 6 geothermal_2024_6
7 geothermal_2024_7 | 70%
84% | 70%
84% | 70%
84% | | geothermal | 2024 | 8 geothermal_2024_8 | 82% | 82% | 82% | | geothermal | 2024 | 9 geothermal_2024_9 | 83% | 83% | 83% | | geothermal
geothermal | 2024
2024 | 10 geothermal_2024_10
11 geothermal 2024_11 | 86%
93% | 86%
93% | 86%
93% | | geothermal | 2024 | 12 geothermal_2024_12 | 95% | 95% | 95% | | hydro | 2024 | 1 hydro_2024_1 | 60% | 60% | 60% | | hydro
hydro | 2024
2024 | 2 hydro_2024_2
3 hydro_2024_3 | 70%
73% | 70%
73% | 70%
73% | | hydro | 2024 | 4 hydro_2024_4 | 72% | 72% | 72% | | hydro | 2024 | 5 hydro_2024_5 | 69% | 69% | 69% | | hydro
hydro | 2024
2024 | 6 hydro_2024_6 | 74%
73% | 74%
73% | 74%
73% | | hydro | 2024 | 7 hydro_2024_7
8 hydro_2024_8 | 72% | 72% | 72% | | hydro | 2024 | 9 hydro_2024_9 | 71% | 71% | 71% | | hydro
hydro | 2024
2024 | 10 hydro_2024_10
11 hydro 2024 11 | 64%
56% | 64%
56% | 64%
56% | | hydro | 2024 | 12 hydro_2024_12 | 64% | 64% | 64% | | thermal | 2024 | 1 thermal_2024_1 | 100% | 100% | 100% | | thermal
thermal | 2024
2024 | 2 thermal_2024_2
3 thermal_2024_3 | 100%
100% | 100% | 100%
100% | | thermal | 2024 | 4 thermal_2024_4 | 100% | 100% | 100% | | thermal | 2024 | 5 thermal_2024_5 | 100% | 100% | 100% | | thermal
thermal | 2024
2024 | 6 thermal_2024_6
7 thermal 2024 7 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2024 | 8 thermal_2024_8 | 100% | 100% | 100% | | thermal | 2024 | 9 thermal_2024_9 | 100% | 100% | 100% | | thermal
thermal | 2024
2024 | 10 thermal_2024_10
11 thermal_2024_11 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2024 | 12 thermal_2024_12 | 100% | 100% | 100% | | battery | 2024 | 1 battery_2024_1 | 100% | 100% | 100% | | battery
battery | 2024
2024 | 2 battery_2024_2
3 battery_2024_3 | 100%
100% | 100%
100% | 100%
100% | | battery | 2024 | 4 battery_2024_4 | 100% | 100% | 100% | | battery | 2024 | 5 battery_2024_5 | 100% | 100% | 100% | | battery
battery | 2024
2024 | 6 battery_2024_6
7 battery_2024_7 | 100%
100% | 100%
100% | 100%
100% | | battery | 2024 | 8 battery_2024_8 | 100% | 100% | 100% | | battery | 2024 | 9 battery_2024_9 | 100% | 100% | 100% | | battery
battery | 2024
2024 | 10 battery_2024_10
11 battery_2024_11 | 100%
100% | 100%
100% | 100%
100% | | battery | 2024 | 12 battery_2024_12 | 100% | 100% | 100% | | nuclear | 2024 | 1 nuclear_2024_1 | 100% | 100% | 100% | | nuclear
nuclear | 2024
2024 | 2 nuclear_2024_2
3 nuclear_2024_3 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2024 | 4 nuclear_2024_4 | 100% | 100% | 100% | | nuclear | 2024 | 5 nuclear_2024_5 | 100% | 100% | 100% | | nuclear | 2024 | 6 nuclear_2024_6 | 100% | 100% | 100% | | nuclear
nuclear | 2024
2024 | 7 nuclear_2024_7
8 nuclear_2024_8 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2024 | 9 nuclear_2024_9 | 100% | 100% | 100% | | nuclear | 2024 | 10 nuclear_2024_10 | 100% | 100% | 100% | | nuclear
nuclear | 2024
2024 | 11 nuclear_2024_11
12 nuclear_2024_12 | 100%
100% | 100%
100% | 100%
100% | | biomass | 2025 | 1 biomass_2025_1 | 82% | 82% | 82% | | biomass | 2025 | 2 biomass_2025_2 | 86% | 86% | 86% | | | | | | | | | biomass | 2025 | 3 biomass_2025_3 | 84% | 84% | 84% | |--------------------------|--------------|--|--------------|--------------|--------------| | biomass | 2025 | 4 biomass_2025_4 | 76% | 76%
83% | 76% | | biomass
biomass | 2025
2025 | 5 biomass_2025_5
6 biomass_2025_6 | 83%
89% | 89% | 83%
89% | | biomass | 2025 | 7 biomass_2025_7 | 87% | 87% | 87% | | biomass | 2025 | 8 biomass_2025_8 | 90% | 90% | 90% | | biomass | 2025 | 9 biomass_2025_9 | 90% | 90% | 90% | | biomass
biomass | 2025
2025 | 10 biomass_2025_10
11 biomass_2025_11 | 81%
85% | 81%
85% | 81%
85% | | biomass | 2025 | 12 biomass 2025_12 | 86% | 86% | 86% | | cogen | 2025 | 1 cogen_2025_1 | 81% | 81% | 81% | | cogen | 2025 | 2 cogen_2025_2 | 79% | 79% | 79% | | cogen
cogen | 2025
2025 | 3 cogen_2025_3
4 cogen_2025_4 | 73%
66% | 73%
66% | 73%
66% | | cogen | 2025 | 4 cogen_2025_4
5 cogen_2025_5 | 79% | 79% | 79% | | cogen | 2025 | 6 cogen_2025_6 | 85% | 85% | 85% | | cogen | 2025 | 7 cogen_2025_7 | 83% | 83% | 83% | | cogen | 2025 | 8 cogen_2025_8 | 83% | 83% | 83% | | cogen | 2025 | 9 cogen_2025_9 | 80% | 80% | 80% | | cogen | 2025
2025 | 10 cogen_2025_10
11 cogen_2025_11 | 72%
78% | 72%
78% | 72%
78% | | cogen | 2025 | 12 cogen_2025_12 | 82% | 82% | 82% | | geothermal | 2025 | 1 geothermal_2025_1 | 95% | 95% | 95% | | geothermal | 2025 | 2 geothermal_2025_2 | 92% | 92% | 92% | | geothermal | 2025 | 3 geothermal_2025_3 | 88% | 88% | 88% | | geothermal
geothermal | 2025
2025 | 4 geothermal_2025_4
5 geothermal_2025_5 | 76%
74% | 76%
74% | 76%
74% | | geothermal | 2025 | 6 geothermal_2025_6 | 70% | 70% | 70% | | geothermal | 2025 | 7 geothermal_2025_7 | 84% | 84% | 84% | | geothermal | 2025 | 8 geothermal_2025_8 | 82% | 82% | 82% | | geothermal | 2025 | 9 geothermal_2025_9 | 83% | 83% | 83% | | geothermal
geothermal | 2025
2025 | 10 geothermal_2025_10
11 geothermal_2025_11 | 86%
93% | 86%
93% | 86%
93% | | geothermal | 2025 | 12 geothermal_2025_12 | 95% | 95% | 95% | | hydro | 2025 | 1 hydro_2025_1 | 60% | 60% | 60% | | hydro | 2025 | 2 hydro_2025_2 | 70% | 70% | 70% | | hydro | 2025 | 3 hydro_2025_3 | 73% | 73% | 73% | | hydro
hydro | 2025
2025 | 4 hydro_2025_4
5 hydro_2025_5 | 72%
69% | 72%
69% | 72%
69% | | hydro | 2025 | 6 hydro_2025_6 | 74% | 74% | 74% | | hydro | 2025 | 7 hydro_2025_7 | 73% | 73% | 73% | | hydro | 2025 | 8 hydro_2025_8 | 72% | 72% | 72% | | hydro | 2025 | 9 hydro_2025_9 | 71% | 71% | 71% | | hydro | 2025 | 10 hydro_2025_10 | 64% | 64% | 64% | | hydro
hydro | 2025
2025 | 11 hydro_2025_11
12 hydro_2025_12 | 56%
64% | 56%
64% | 56%
64% | | thermal | 2025 | 1 thermal_2025_1 | 100% | 100% | 100% | | thermal | 2025 | 2 thermal_2025_2 | 100% | 100% | 100% | | thermal | 2025 | 3 thermal_2025_3 | 100% | 100% | 100% | | thermal | 2025 | 4 thermal_2025_4 | 100% | 100% | 100% | | thermal
thermal | 2025
2025 | 5 thermal_2025_5
6 thermal_2025_6 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2025 | 7 thermal_2025_7 | 100% | 100% | 100% | | thermal | 2025 | 8 thermal_2025_8 | 100% | 100% | 100% | | thermal | 2025 | 9 thermal_2025_9 | 100% | 100% | 100% | | thermal | 2025 | 10 thermal_2025_10 | 100% | 100% | 100% | | thermal
thermal | 2025
2025 | 11 thermal_2025_11 | 100%
100% | 100%
100% | 100%
100% | | battery | 2025 | 12 thermal_2025_12
1 battery_2025_1 | 98% | 100% | 98% | | battery | 2025 | 2 battery_2025_2 | 98% | 100% | 98% | | battery | 2025 | 3 battery_2025_3 | 98% | 100% | 98% | | battery | 2025 | 4 battery_2025_4 | 98% | 100% | 98% | | battery
battery | 2025
2025 | 5 battery_2025_5 | 98%
98% | 100%
100% | 98%
98% | | battery | 2025 | 6 battery_2025_6
7 battery_2025_7 | 98% | 100% | 98% | | battery | 2025 | 8 battery_2025_8 | 98% | 100% | 98% | | battery | 2025 | 9 battery_2025_9 | 98% | 100% | 98% | | battery | 2025 | 10 battery_2025_10 | 98% | 100% | 98% | | battery | 2025 | 11 battery_2025_11 | 98% | 100% | 98% | | battery
nuclear | 2025
2025 | 12 battery_2025_12
1 nuclear_2025_1 | 98%
100% | 100%
100% | 98%
100% | | nuclear | 2025 | 2 nuclear_2025_2 | 100% | 100% | 100% | | nuclear | 2025 | 3 nuclear_2025_3 | 100% | 100% | 100% | | nuclear | 2025 | 4 nuclear_2025_4 | 100% | 100% | 100% | | nuclear
nuclear | 2025
2025 | 5 nuclear_2025_5 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2025 | 6 nuclear_2025_6
7 nuclear_2025_7 | 100% | 100% | 100% | | nuclear | 2025 | 8 nuclear_2025_8 | 100% | 100% | 100% | | nuclear | 2025 | 9 nuclear_2025_9 | 100% | 100% | 100% | | nuclear | 2025
2025 | 10 nuclear_2025_10 | 100% | 100% | 100% | | nuclear
nuclear | 2025 | 11 nuclear_2025_11 | 100%
100% | 100%
100% | 100%
100% | | biomass | 2025 | 12 nuclear_2025_12
1 biomass_2026_1 | 82% | 82% | 82% | | biomass | 2026 | 2 biomass_2026_2 | 86% | 86% | 86% | | biomass | 2026 | 3 biomass_2026_3 | 84% | 84% | 84% | | biomass
biomass | 2026
2026 | 4 biomass_2026_4 | 76%
83% | 76%
83% | 76%
83% | | biomass |
2026 | 5 biomass_2026_5
6 biomass_2026_6 | 83%
89% | 83%
89% | 83%
89% | | biomass | 2026 | 7 biomass_2026_7 | 87% | 87% | 87% | | biomass | 2026 | 8 biomass_2026_8 | 90% | 90% | 90% | | biomass | 2026 | 9 biomass_2026_9 | 90% | 90% | 90% | | biomass
biomass | 2026
2026 | 10 biomass_2026_10
11 biomass_2026_11 | 81%
85% | 81%
85% | 81%
85% | | biomass | 2026 | 12 biomass_2026_12 | 86% | 86% | 86% | | cogen | 2026 | 1 cogen_2026_1 | 81% | 81% | 81% | | cogen | 2026 | 2 cogen_2026_2 | 79% | 79% | 79% | | cogen | 2026
2026 | 3 cogen_2026_3
4 cogen_2026_4 | 73%
66% | 73%
66% | 73%
66% | | cogen | 2026 | 4 cogen_2026_4
5 cogen_2026_5 | 79% | 79% | 79% | | cogen | 2026 | 6 cogen_2026_6 | 85% | 85% | 85% | | cogen | 2026 | 7 cogen_2026_7 | 83% | 83% | 83% | | cogen | 2026 | 8 cogen_2026_8
9 cogen 2026 9 | 83%
80% | 83%
80% | 83%
80% | | cogen | 2026
2026 | 9 cogen_2026_9
10 cogen_2026_10 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2026 | 11 cogen_2026_11 | 72% | 72% | 78% | | cogen | 2026 | 12 cogen_2026_12 | 82% | 82% | 82% | | geothermal | 2026 | 1 geothermal_2026_1 | 95% | 95% | 95% | | geothermal | 2026 | 2 geothermal_2026_2 | 92%
88% | 92%
88% | 92%
88% | | geothermal
geothermal | 2026
2026 | 3 geothermal_2026_3
4 geothermal 2026_4 | 88%
76% | 88%
76% | 88%
76% | | geothermal | 2026 | 5 geothermal_2026_5 | 74% | 74% | 74% | | geothermal | 2026 | 6 geothermal_2026_6 | 70% | 70% | 70% | | geothermal | 2026 | 7 geothermal_2026_7 | 84% | 84% | 84% | | geothermal | 2026
2026 | 8 geothermal_2026_8 | 82%
83% | 82%
83% | 82%
83% | | geothermal
geothermal | 2026
2026 | 9 geothermal_2026_9
10 geothermal_2026_10 | 83%
86% | 83%
86% | 83%
86% | | geothermal | 2026 | 11 geothermal_2026_11 | 93% | 93% | 93% | | geothermal | 2026 | 12 geothermal_2026_12 | 95% | 95% | 95% | | hydro | 2026 | 1 hydro_2026_1 | 60% | 60% | 60% | | hydro | 2026 | 2 hydro_2026_2 | 70% | 70% | 70% | | hydro
hydro | 2026
2026 | 3 hydro_2026_3
4 hydro_2026_4 | 73%
72% | 73%
72% | 73%
72% | | hydro | 2026 | 4 hydro_2026_4
5 hydro_2026_5 | 69% | 69% | 69% | | | | | | | | | | | | | | | | hydro
hydro | 2026 | 6 hydro_2026_6
7 hydro_2026_7 | 74%
73% | 74%
73% | 74%
73% | |--------------------------|--------------|--|--------------|--------------|--------------| | hydro | 2026 | 8 hydro_2026_8 | 72% | 72% | 72% | | hydro | 2026 | 9 hydro_2026_9 | 71% | 71% | 71% | | hydro
hydro | 2026
2026 | 10 hydro_2026_10
11 hydro_2026_11 | 64%
56% | 64%
56% | 64%
56% | | hydro | 2026 | 12 hydro_2026_12 | 64% | 64% | 64% | | thermal | 2026 | 1 thermal_2026_1 | 100% | 100% | 100% | | thermal
thermal | 2026
2026 | 2 thermal_2026_2
3 thermal_2026_3 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2026 | 4 thermal_2026_4 | 100% | 100% | 100% | | thermal | 2026 | 5 thermal_2026_5 | 100% | 100% | 100% | | thermal
thermal | 2026
2026 | 6 thermal_2026_6
7 thermal_2026_7 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2026 | 8 thermal_2026_8 | 100% | 100% | 100% | | thermal | 2026 | 9 thermal_2026_9 | 100% | 100% | 100% | | thermal
thermal | 2026
2026 | 10 thermal_2026_10
11 thermal_2026_11 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2026 | 12 thermal_2026_12 | 100% | 100% | 100% | | battery | 2026
2026 | 1 battery_2026_1 | 97%
97% | 100%
100% | 97%
97% | | battery
battery | 2026 | 2 battery_2026_2
3 battery_2026_3 | 97%
97% | 100% | 97%
97% | | battery | 2026 | 4 battery_2026_4 | 97% | 100% | 97% | | battery | 2026 | 5 battery_2026_5 | 97% | 100% | 97% | | battery
battery | 2026
2026 | 6 battery_2026_6
7 battery_2026_7 | 97%
97% | 100%
100% | 97%
97% | | battery | 2026 | 8 battery_2026_8 | 97% | 100% | 97% | | battery | 2026 | 9 battery_2026_9 | 97% | 100% | 97% | | battery
battery | 2026
2026 | 10 battery_2026_10 | 97%
97% | 100%
100% | 97%
97% | | battery | 2026 | 11 battery_2026_11
12 battery_2026_12 | 97% | 100% | 97% | | nuclear | 2026 | 1 nuclear_2026_1 | 100% | 100% | 100% | | nuclear | 2026 | 2 nuclear_2026_2 | 100% | 100% | 100% | | nuclear
nuclear | 2026
2026 | 3 nuclear_2026_3
4 nuclear 2026_4 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2026 | 5 nuclear_2026_5 | 100% | 100% | 100% | | nuclear | 2026 | 6 nuclear_2026_6 | 100% | 100% | 100% | | nuclear
nuclear | 2026
2026 | 7 nuclear_2026_7
8 nuclear_2026_8 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2026 | 9 nuclear_2026_9 | 100% | 100% | 100% | | nuclear | 2026 | 10 nuclear_2026_10 | 100% | 100% | 100% | | nuclear
nuclear | 2026
2026 | 11 nuclear_2026_11
12 nuclear_2026_12 | 100%
100% | 100%
100% | 100%
100% | | biomass | 2026 | 1 biomass_2027_1 | 82% | 82% | 82% | | biomass | 2027 | 2 biomass_2027_2 | 86% | 86% | 86% | | biomass
biomass | 2027
2027 | 3 biomass_2027_3
4 biomass_2027_4 | 84%
76% | 84%
76% | 84%
76% | | biomass | 2027 | 4 biomass_2027_4
5 biomass_2027_5 | 83% | 83% | 83% | | biomass | 2027 | 6 biomass_2027_6 | 89% | 89% | 89% | | biomass | 2027 | 7 biomass_2027_7 | 87% | 87% | 87% | | biomass
biomass | 2027
2027 | 8 biomass_2027_8
9 biomass_2027_9 | 90%
90% | 90%
90% | 90%
90% | | biomass | 2027 | 10 biomass_2027_10 | 81% | 81% | 81% | | biomass | 2027 | 11 biomass_2027_11 | 85% | 85% | 85% | | biomass | 2027
2027 | 12 biomass_2027_12 | 86%
81% | 86% | 86%
81% | | cogen
cogen | 2027 | 1 cogen_2027_1
2 cogen_2027_2 | 79% | 81%
79% | 79% | | cogen | 2027 | 3 cogen_2027_3 | 73% | 73% | 73% | | cogen | 2027 | 4 cogen_2027_4 | 66% | 66% | 66% | | cogen | 2027
2027 | 5 cogen_2027_5
6 cogen_2027_6 | 79%
85% | 79%
85% | 79%
85% | | cogen | 2027 | 7 cogen_2027_7 | 83% | 83% | 83% | | cogen | 2027 | 8 cogen_2027_8 | 83% | 83% | 83% | | cogen | 2027
2027 | 9 cogen_2027_9
10 cogen_2027_10 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2027 | 11 cogen_2027_11 | 72% | 78% | 78% | | cogen | 2027 | 12 cogen_2027_12 | 82% | 82% | 82% | | geothermal | 2027
2027 | 1 geothermal_2027_1 | 95% | 95% | 95% | | geothermal
geothermal | 2027 | 2 geothermal_2027_2
3 geothermal_2027_3 | 92%
88% | 92%
88% | 92%
88% | | geothermal | 2027 | 4 geothermal_2027_4 | 76% | 76% | 76% | | geothermal | 2027 | 5 geothermal_2027_5
6 geothermal_2027_6 | 74% | 74% | 74% | | geothermal
geothermal | 2027
2027 | 7 geothermal_2027_7 | 70%
84% | 70%
84% | 70%
84% | | geothermal | 2027 | 8 geothermal_2027_8 | 82% | 82% | 82% | | geothermal | 2027 | 9 geothermal_2027_9 | 83% | 83% | 83% | | geothermal
geothermal | 2027
2027 | 10 geothermal_2027_10
11 geothermal_2027_11 | 86%
93% | 86%
93% | 86%
93% | | geothermal | 2027 | 12 geothermal_2027_12 | 95% | 95% | 95% | | hydro | 2027 | 1 hydro_2027_1 | 60% | 60% | 60% | | hydro
hydro | 2027
2027 | 2 hydro_2027_2
3 hydro_2027_3 | 70%
73% | 70%
73% | 70%
73% | | hydro | 2027 | 4 hydro_2027_4 | 72% | 72% | 72% | | hydro | 2027 | 5 hydro_2027_5 | 69% | 69% | 69% | | hydro
hydro | 2027
2027 | 6 hydro_2027_6
7 hydro_2027_7 | 74%
73% | 74%
73% | 74%
73% | | hydro | 2027 | 8 hydro_2027_8 | 73% | 72% | 72% | | hydro | 2027 | 9 hydro_2027_9 | 71% | 71% | 71% | | hydro
hydro | 2027
2027 | 10 hydro_2027_10
11 hydro_2027_11 | 64%
56% | 64%
56% | 64%
56% | | hydro | 2027 | 11 hydro_2027_11
12 hydro_2027_12 | 64% | 64% | 64% | | thermal | 2027 | 1 thermal_2027_1 | 100% | 100% | 100% | | thermal | 2027 | 2 thermal_2027_2
3 thermal 2027 3 | 100% | 100% | 100% | | thermal
thermal | 2027
2027 | 3 thermal_2027_3
4 thermal 2027 4 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2027 | 5 thermal_2027_5 | 100% | 100% | 100% | | thermal
thermal | 2027
2027 | 6 thermal_2027_6 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2027 | 7 thermal_2027_7
8 thermal_2027_8 | 100% | 100% | 100% | | thermal | 2027 | 9 thermal_2027_9 | 100% | 100% | 100% | | thermal | 2027
2027 | 10 thermal_2027_10 | 100% | 100% | 100% | | thermal
thermal | 2027
2027 | 11 thermal_2027_11
12 thermal_2027_12 | 100%
100% | 100%
100% | 100%
100% | | battery | 2027 | 1 battery_2027_1 | 97% | 98% | 97% | | battery | 2027 | 2 battery_2027_2 | 97%
97% | 98% | 97%
97% | | battery
battery | 2027
2027 | 3 battery_2027_3
4 battery_2027_4 | 97%
97% | 98%
98% | 97%
97% | | battery | 2027 | 5 battery_2027_5 | 97% | 98% | 97% | | battery | 2027 | 6 battery_2027_6 | 97% | 98% | 97% | | battery
battery | 2027
2027 | 7 battery_2027_7
8 battery_2027_8 | 97%
97% | 98%
98% | 97%
97% | | battery | 2027 | 9 battery_2027_9 | 97% | 98% | 97% | | battery | 2027 | 10 battery_2027_10 | 97% | 98% | 97% | | battery
battery | 2027
2027 | 11 battery_2027_11
12 battery_2027_12 | 97%
97% | 98%
98% | 97%
97% | | nuclear | 2027 | 1 nuclear_2027_1 | 100% | 100% | 100% | | nuclear | 2027 | 2 nuclear_2027_2 | 100% | 100% | 100% | | nuclear
nuclear | 2027
2027 | 3 nuclear_2027_3
4 nuclear_2027_4 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2027 | 4 nuclear_2027_4
5 nuclear_2027_5 | 100% | 100% | 100% | | nuclear | 2027 | 6 nuclear_2027_6 | 100% | 100% | 100% | | nuclear | 2027 | 7 nuclear_2027_7 | 100% | 100% | 100% | | nuclear | 2027 | 8 nuclear_2027_8 | 100% | 100% | 100% | | | | | | | | | nuclear | 2027
2027 | 9 nuclear_2027_9 | 100%
100% | 100%
100% | 100%
100% | |--------------------------|--------------|--|--------------|--------------|--------------| | nuclear | 2027 | 10 nuclear_2027_10
11 nuclear_2027_11 | 100% | 100% | 100% | | nuclear | 2027 | 12 nuclear_2027_12 | 100% | 100% | 100% | |
biomass
biomass | 2028
2028 | 1 biomass_2028_1 | 82%
86% | 82%
86% | 82%
86% | | biomass | 2028 | 2 biomass_2028_2
3 biomass_2028_3 | 84% | 84% | 84% | | biomass | 2028 | 4 biomass_2028_4 | 76% | 76% | 76% | | biomass
biomass | 2028
2028 | 5 biomass_2028_5
6 biomass_2028_6 | 83%
89% | 83%
89% | 83%
89% | | biomass | 2028 | 7 biomass_2028_7 | 87% | 87% | 87% | | biomass | 2028 | 8 biomass_2028_8 | 90% | 90% | 90% | | biomass
biomass | 2028
2028 | 9 biomass_2028_9 | 90%
81% | 90%
81% | 90%
81% | | biomass | 2028 | 10 biomass_2028_10
11 biomass_2028_11 | 85% | 85% | 85% | | biomass | 2028 | 12 biomass_2028_12 | 86% | 86% | 86% | | cogen | 2028 | 1 cogen_2028_1 | 81% | 81% | 81% | | cogen
cogen | 2028
2028 | 2 cogen_2028_2
3 cogen_2028_3 | 79%
73% | 79%
73% | 79%
73% | | cogen | 2028 | 4 cogen_2028_4 | 66% | 66% | 66% | | cogen | 2028 | 5 cogen_2028_5 | 79% | 79% | 79% | | cogen | 2028
2028 | 6 cogen_2028_6
7 cogen_2028_7 | 85%
83% | 85%
83% | 85%
83% | | cogen | 2028 | 8 cogen_2028_8 | 83% | 83% | 83% | | cogen | 2028 | 9 cogen_2028_9 | 80% | 80% | 80% | | cogen | 2028
2028 | 10 cogen_2028_10 | 72%
78% | 72%
78% | 72%
78% | | cogen
cogen | 2028 | 11 cogen_2028_11
12 cogen_2028_12 | 82% | 82% | 82% | | geothermal | 2028 | 1 geothermal_2028_1 | 95% | 95% | 95% | | geothermal | 2028 | 2 geothermal_2028_2 | 92% | 92% | 92% | | geothermal
geothermal | 2028
2028 | 3 geothermal_2028_3
4 geothermal 2028 4 | 88%
76% | 88%
76% | 88%
76% | | geothermal | 2028 | 5 geothermal_2028_5 | 74% | 74% | 74% | | geothermal | 2028 | 6 geothermal_2028_6 | 70% | 70% | 70% | | geothermal
geothermal | 2028
2028 | 7 geothermal_2028_7
8 geothermal_2028_8 | 84%
82% | 84%
82% | 84%
82% | | geothermal | 2028 | 9 geothermal 2028 9 | 83% | 83% | 83% | | geothermal | 2028 | 10 geothermal_2028_10 | 86% | 86% | 86% | | geothermal | 2028
2028 | 11 geothermal_2028_11 | 93%
95% | 93%
95% | 93%
95% | | geothermal
hydro | 2028 | 12 geothermal_2028_12
1 hydro 2028 1 | 95%
60% | 95%
60% | 95%
60% | | hydro | 2028 | 2 hvdro 2028 2 | 70% | 70% | 70% | | hydro | 2028 | 3 hydro_2028_3 | 73% | 73% | 73% | | hydro
hydro | 2028
2028 | 4 hydro_2028_4
5 hydro_2028_5 | 72%
69% | 72%
69% | 72%
69% | | hydro | 2028 | 6 hydro_2028_6 | 74% | 74% | 74% | | hydro | 2028 | 7 hydro_2028_7 | 73% | 73% | 73% | | hydro | 2028 | 8 hydro_2028_8 | 72% | 72% | 72% | | hydro
hydro | 2028
2028 | 9 hydro_2028_9
10 hydro 2028 10 | 71%
64% | 71%
64% | 71%
64% | | hydro | 2028 | 11 hydro_2028_11 | 56% | 56% | 56% | | hydro | 2028 | 12 hydro_2028_12 | 64% | 64% | 64% | | thermal
thermal | 2028
2028 | 1 thermal_2028_1
2 thermal_2028_2 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2028 | 3 thermal_2028_3 | 100% | 100% | 100% | | thermal | 2028 | 4 thermal_2028_4 | 100% | 100% | 100% | | thermal | 2028 | 5 thermal_2028_5 | 100% | 100% | 100% | | thermal
thermal | 2028
2028 | 6 thermal_2028_6
7 thermal_2028_7 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2028 | 8 thermal_2028_8 | 100% | 100% | 100% | | thermal | 2028 | 9 thermal_2028_9 | 100% | 100% | 100% | | thermal
thermal | 2028
2028 | 10 thermal_2028_10
11 thermal_2028_11 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2028 | 12 thermal_2028_12 | 100% | 100% | 100% | | battery | 2028 | 1 battery_2028_1 | 97% | 97% | 97% | | battery | 2028 | 2 battery_2028_2 | 97% | 97% | 97% | | battery
battery | 2028
2028 | 3 battery_2028_3
4 battery_2028_4 | 97%
97% | 97%
97% | 97%
97% | | battery | 2028 | 5 battery_2028_5 | 97% | 97% | 97% | | battery | 2028 | 6 battery_2028_6 | 97% | 97% | 97% | | battery
battery | 2028
2028 | 7 battery_2028_7
8 battery 2028 8 | 97%
97% | 97%
97% | 97%
97% | | battery | 2028 | 9 battery_2028_9 | 97% | 97% | 97% | | battery | 2028 | 10 battery_2028_10 | 97% | 97% | 97% | | battery
battery | 2028
2028 | 11 battery_2028_11
12 battery_2028_12 | 97%
97% | 97%
97% | 97%
97% | | nuclear | 2028 | 1 nuclear_2028_1 | 100% | 100% | 100% | | nuclear | 2028 | 2 nuclear_2028_2 | 100% | 100% | 100% | | nuclear | 2028 | 3 nuclear_2028_3 | 100% | 100% | 100% | | nuclear | 2028 | 4 nuclear_2028_4
5 nuclear_2028_5 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2028 | 6 nuclear_2028_6 | 100% | 100% | 100% | | nuclear | 2028 | 7 nuclear_2028_7 | 100% | 100% | 100% | | nuclear
nuclear | 2028
2028 | 8 nuclear_2028_8
9 nuclear_2028_9 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2028 | 10 nuclear_2028_10 | 100% | 100% | 100% | | nuclear | 2028 | 11 nuclear_2028_11 | 100% | 100% | 100% | | nuclear
biomass | 2028
2029 | 12 nuclear_2028_12
1 biomass_2029_1 | 100%
82% | 100%
82% | 100%
82% | | biomass | 2029 | 2 biomass_2029_2 | 86% | 86% | 86% | | biomass | 2029 | 3 biomass_2029_3 | 84% | 84% | 84% | | biomass
biomass | 2029
2029 | 4 biomass_2029_4
5 biomass_2029_5 | 76%
83% | 76%
83% | 76%
83% | | biomass | 2029 | 5 biomass_2029_5
6 biomass_2029_6 | 83%
89% | 83%
89% | 83%
89% | | biomass | 2029 | 7 biomass_2029_7 | 87% | 87% | 87% | | biomass | 2029 | 8 biomass_2029_8 | 90% | 90% | 90% | | biomass
biomass | 2029
2029 | 9 biomass_2029_9
10 biomass_2029_10 | 90%
81% | 90%
81% | 90%
81% | | biomass | 2029 | 11 biomass_2029_11 | 85% | 85% | 85% | | biomass | 2029 | 12 biomass_2029_12 | 86% | 86% | 86% | | cogen | 2029
2029 | 1 cogen_2029_1
2 cogen_2029_2 | 81%
79% | 81%
79% | 81%
79% | | cogen | 2029 | 3 cogen_2029_3 | 73% | 73% | 73% | | cogen | 2029 | 4 cogen_2029_4 | 66% | 66% | 66% | | cogen | 2029
2029 | 5 cogen_2029_5
6 cogen_2029_6 | 79%
85% | 79%
85% | 79%
85% | | cogen | 2029 | 6 cogen_2029_6
7 cogen_2029_7 | 83% | 83% | 83% | | cogen | 2029 | 8 cogen_2029_8 | 83% | 83% | 83% | | cogen | 2029
2029 | 9 cogen_2029_9 | 80%
72% | 80%
72% | 80%
72% | | cogen | 2029 | 10 cogen_2029_10
11 cogen_2029_11 | 72% | 72%
78% | 78% | | cogen | 2029 | 12 cogen_2029_12 | 82% | 82% | 82% | | geothermal | 2029
2029 | 1 geothermal_2029_1 | 95%
92% | 95%
92% | 95%
92% | | geothermal
geothermal | 2029 | 2 geothermal_2029_2
3 geothermal_2029_3 | 92%
88% | 92%
88% | 92%
88% | | geothermal | 2029 | 4 geothermal_2029_4 | 76% | 76% | 76% | | geothermal | 2029 | 5 geothermal_2029_5 | 74% | 74% | 74% | | geothermal
geothermal | 2029
2029 | 6 geothermal_2029_6
7 geothermal_2029_7 | 70%
84% | 70%
84% | 70%
84% | | geothermal | 2029 | 8 geothermal_2029_8 | 82% | 82% | 82% | | geothermal | 2029 | 9 geothermal_2029_9 | 83% | 83% | 83% | | geothermal | 2029 | 10 geothermal_2029_10 | 86% | 86% | 86% | | geothermal | 2029 | 11 geothermal_2029_11 | 93% | 93% | 93% | | | | | | | | | geothermal | 2029 | 12 | geothermal_2029_12 | 95% | 95% | 95% | |--------------------------|--------------|----------|---|--------------|--------------|--------------| | hydro | 2029 | 1 | hydro_2029_1 | 60% | 60% | 60% | | hydro
hydro | 2029
2029 | | hydro_2029_2
hydro_2029_3 | 70%
73% | 70%
73% | 70%
73% | | hydro | 2029 | 4 | hydro_2029_4 | 72% | 72% | 72% | | hydro
hydro | 2029
2029 | | hydro_2029_5
hydro_2029_6 | 69%
74% | 69%
74% | 69%
74% | | hydro | 2029 | 7 | hydro_2029_7 | 73% | 73% | 73% | | hydro
hydro | 2029
2029 | | hydro_2029_8
hydro_2029_9 | 72%
71% | 72%
71% | 72%
71% | | hydro | 2029 | 10 | hydro_2029_10 | 64% | 64% | 64% | | hydro
hydro | 2029
2029 | | hydro_2029_11
hydro_2029_12 | 56%
64% | 56%
64% | 56%
64% | | thermal | 2029 | | thermal_2029_1 | 100% | 100% | 100% | | thermal | 2029 | | thermal_2029_2 | 100% | 100% | 100% | | thermal
thermal | 2029
2029 | | thermal_2029_3
thermal_2029_4 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2029 | 5 | thermal_2029_5 | 100% | 100% | 100% | | thermal
thermal | 2029
2029 | | thermal_2029_6
thermal_2029_7 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2029 | 8 | thermal_2029_8 | 100% | 100% | 100% | | thermal
thermal | 2029
2029 | | thermal_2029_9
thermal_2029_10 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2029 | | thermal_2029_11 | 100% | 100% | 100% | | thermal | 2029 | | thermal_2029_12 | 100% | 100% | 100% | | battery
battery | 2029
2029 | | battery_2029_1
battery_2029_2 | 97%
97% | 95%
95% | 97%
97% | | battery | 2029 | 3 | battery_2029_3 | 97% | 95% | 97% | | battery | 2029
2029 | | battery_2029_4
battery_2029_5 | 97%
97% | 95%
95% | 97%
97% | | battery | 2029 | 6 | battery_2029_6 | 97% | 95% | 97% | | battery | 2029
2029 | | battery_2029_7
battery_2029_8 | 97%
97% | 95%
95% | 97%
97% | | battery | 2029 | 9 | battery_2029_9 | 97% | 95% | 97% | | battery
battery | 2029
2029 | | battery_2029_10
battery_2029_11 | 97%
97% | 95%
95% | 97%
97% | | battery | 2029 | | battery_2029_12 | 97% | 95% | 97% | | nuclear | 2029
2029 | | nuclear_2029_1
nuclear_2029_2 | 100%
100% | 100%
100% | 100%
100% | | nuclear
nuclear | 2029 | | nuclear_2029_2
nuclear_2029_3 | 100% | 100% | 100% | | nuclear | 2029 | 4 | nuclear_2029_4 | 100% | 100% | 100% | | nuclear
nuclear | 2029
2029 | | nuclear_2029_5
nuclear_2029_6 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2029 | 7 | nuclear_2029_7 | 100% | 100% | 100% | | nuclear
nuclear | 2029
2029 | | nuclear_2029_8
nuclear_2029_9 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2029 | | nuclear_2029_10 | 100% | 100% | 100% | | nuclear | 2029 | | nuclear_2029_11 | 100% | 100% | 100% | | nuclear
biomass | 2029
2030 | | nuclear_2029_12
biomass_2030_1 | 100%
82% | 100%
82% | 100%
82% | |
biomass | 2030 | 2 | biomass_2030_2 | 86% | 86% | 86% | | biomass
biomass | 2030
2030 | | biomass_2030_3
biomass_2030_4 | 84%
76% | 84%
76% | 84%
76% | | biomass | 2030 | | biomass_2030_5 | 83% | 83% | 83% | | biomass
biomass | 2030
2030 | | biomass_2030_6 | 89%
87% | 89%
87% | 89%
87% | | biomass | 2030 | | biomass_2030_7
biomass_2030_8 | 90% | 90% | 90% | | biomass | 2030 | 9 | biomass_2030_9 | 90% | 90% | 90% | | biomass
biomass | 2030
2030 | 10
11 | biomass_2030_10
biomass_2030_11 | 81%
85% | 81%
85% | 81%
85% | | biomass | 2030 | 12 | biomass_2030_12 | 86% | 86% | 86% | | cogen | 2030
2030 | | cogen_2030_1
cogen_2030_2 | 81%
79% | 81%
79% | 81%
79% | | cogen | 2030 | 3 | cogen_2030_3 | 73% | 73% | 73% | | cogen | 2030
2030 | | cogen_2030_4
cogen_2030_5 | 66%
79% | 66%
79% | 66%
79% | | cogen | 2030 | 6 | cogen_2030_6 | 85% | 85% | 85% | | cogen | 2030 | | cogen_2030_7 | 83%
83% | 83% | 83%
83% | | cogen | 2030
2030 | | cogen_2030_8
cogen_2030_9 | 80% | 83%
80% | 80% | | cogen | 2030 | 10 | cogen_2030_10 | 72% | 72% | 72% | | cogen | 2030
2030 | | cogen_2030_11
cogen_2030_12 | 78%
82% | 78%
82% | 78%
82% | | geothermal | 2030 | 1 | geothermal_2030_1 | 95% | 95% | 95% | | geothermal
geothermal | 2030
2030 | | geothermal_2030_2
geothermal_2030_3 | 92%
88% | 92%
88% | 92%
88% | | geothermal | 2030 | | geothermal_2030_4 | 76% | 76% | 76% | | geothermal
geothermal | 2030
2030 | | geothermal_2030_5
geothermal_2030_6 | 74%
70% | 74%
70% | 74%
70% | | geothermal | 2030 | | geothermal_2030_7 | 84% | 84% | 84% | | geothermal | 2030 | | geothermal_2030_8 | 82% | 82% | 82% | | geothermal
geothermal | 2030
2030 | | geothermal_2030_9
geothermal_2030_10 | 83%
86% | 83%
86% | 83%
86% | | geothermal | 2030 | 11 | geothermal_2030_11 | 93% | 93% | 93% | | geothermal
hydro | 2030
2030 | | geothermal_2030_12
hydro_2030_1 | 95%
60% | 95%
60% | 95%
60% | | hydro | 2030 | 2 | hydro_2030_2 | 70% | 70% | 70% | | hydro
hydro | 2030
2030 | | hydro_2030_3
hydro_2030_4 | 73%
72% | 73%
72% | 73%
72% | | hydro | 2030 | 5 | hydro_2030_5 | 69% | 69% | 69% | | hydro
hydro | 2030
2030 | | hydro_2030_6
hydro_2030_7 | 74%
73% | 74%
73% | 74%
73% | | hydro | 2030 | 8 | hydro_2030_8 | 72% | 72% | 72% | | hydro | 2030 | 9 | hydro_2030_9
hydro_2030_10 | 71% | 71% | 71% | | hydro
hydro | 2030
2030 | | hydro_2030_10
hydro_2030_11 | 64%
56% | 64%
56% | 64%
56% | | hydro | 2030 | 12 | hydro_2030_12 | 64% | 64% | 64% | | thermal
thermal | 2030
2030 | | thermal_2030_1
thermal_2030_2 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2030 | 3 | thermal_2030_3 | 100% | 100% | 100% | | thermal
thermal | 2030
2030 | | thermal_2030_4
thermal_2030_5 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2030 | 6 | thermal_2030_6 | 100% | 100% | 100% | | thermal
thermal | 2030
2030 | | thermal_2030_7
thermal_2030_8 | 100%
100% | 100%
100% | 100%
100% | | thermal | 2030 | 9 | thermal_2030_9 | 100% | 100% | 100% | | thermal | 2030 | | thermal_2030_10 | 100%
100% | 100%
100% | 100%
100% | | thermal
thermal | 2030
2030 | | thermal_2030_11
thermal_2030_12 | 100%
100% | 100%
100% | 100%
100% | | battery | 2030 | 1 | battery_2030_1 | 97% | 93% | 97% | | battery | 2030
2030 | | battery_2030_2
battery_2030_3 | 97%
97% | 93%
93% | 97%
97% | | battery | 2030 | 4 | battery_2030_4 | 97% | 93% | 97% | | battery | 2030 | | battery_2030_5
battery_2030_6 | 97%
97% | 93%
93% | 97%
97% | | battery | 2030 | 7 | battery_2030_7 | 97% | 93% | 97% | | battery
battery | 2030
2030 | | battery_2030_8
battery_2030_9 | 97%
97% | 93%
93% | 97%
97% | | battery | 2030 | 10 | battery_2030_10 | 97% | 93% | 97% | | battery
battery | 2030
2030 | | battery_2030_11
battery_2030_12 | 97%
97% | 93%
93% | 97%
97% | | nuclear | 2030 | 1 | nuclear_2030_1 | 100% | 100% | 100% | | nuclear | 2030 | | nuclear_2030_2 | 100% | 100% | 100% | | | | | | | | | | nuclear
nuclear | 2030
2030 | 3 nuclear_2030_3
4 nuclear_2030_4 | 100%
100% | 100%
100% | 100%
100% | |--------------------|--------------|--|--------------|--------------|--------------| | nuclear | 2030 | 5 nuclear 2030 5 | 100% | 100% | 100% | | nuclear | 2030 | 6 nuclear_2030_6 | 100% | 100% | 100% | | nuclear | 2030 | 7 nuclear_2030_7 | 100% | 100% | 100% | | nuclear
nuclear | 2030
2030 | 8 nuclear_2030_8 | 100%
100% | 100%
100% | 100%
100% | | nuclear | 2030 | 9 nuclear_2030_9
10 nuclear_2030_10 | 100% | 100% | 100% | | nuclear | 2030 | 11 nuclear_2030_11 | 100% | 100% | 100% | | nuclear | 2030 | 12 nuclear_2030_12 | 100% | 100% | 100% | | solar | 2020 | 1 solar_2020_1 | 4% | 4% | 4% | | solar
solar | 2020
2020 | 2 solar_2020_2
3 solar_2020_3 | 3%
18% | 3%
18% | 3%
18% | | solar | 2020 | 4 solar_2020_4 | 15% | 15% | 15% | | solar | 2020 | 5 solar_2020_5 | 16% | 16% | 16% | | solar | 2020 | 6 solar_2020_6 | 31% | 31% | 31% | | solar | 2020 | 7 solar_2020_7 | 39% | 39% | 39% | | solar
solar | 2020 | 8 solar_2020_8
9 solar 2020 9 | 27% | 27% | 27% | | solar | 2020
2020 | 9 solar_2020_9
10 solar_2020_10 | 14%
2% | 14%
2% | 14%
2% | | solar | 2020 | 11 solar_2020_11 | 2% | 2% | 2% | | solar | 2020 | 12 solar_2020_12 | 0% | 0% | 0% | | solar | 2021 | 1 solar_2021_1 | 4% | 4% | 4% | | solar | 2021 | 2 solar_2021_2 | 3% | 3% | 3% | | solar
solar | 2021
2021 | 3 solar_2021_3
4 solar_2021_4 | 18%
15% | 18%
15% | 18%
15% | | solar | 2021 | 5 solar_2021_5 | 16% | 16% | 16% | | solar | 2021 | 6 solar_2021_6 | 31% | 31% | 31% | | solar | 2021 | 7 solar_2021_7 | 39% | 39% | 39% | | solar | 2021 | 8 solar_2021_8 | 27% | 27% | 27% | | solar | 2021 | 9 solar_2021_9 | 14% | 14% | 14% | | solar
solar | 2021
2021 | 10 solar_2021_10
11 solar_2021_11 | 2%
2% | 2%
2% | 2%
2% | | solar | 2021 | 12 solar_2021_12 | 0% | 0% | 0% | | solar | 2022 | 1 solar_2022_1 | 4% | 4% | 4% | | solar | 2022 | 2 solar_2022_2 | 3% | 3% | 3% | | solar | 2022 | 3 solar_2022_3 | 18% | 18% | 18% | | solar | 2022 | 4 solar_2022_4 | 15% | 15% | 15% | | solar
solar | 2022
2022 | 5 solar_2022_5
6 solar_2022_6 | 16%
31% | 16%
31% | 16%
31% | | solar | 2022 | 7 solar_2022_7 | 39% | 39% | 39% | | solar | 2022 | 8 solar_2022_8 | 27% | 27% | 27% | | solar | 2022 | 9 solar_2022_9 | 14% | 14% | 14% | | solar | 2022 | 10 solar_2022_10 | 2% | 2% | 2% | | solar
solar | 2022
2022 | 11 solar_2022_11 | 2%
0% | 2%
0% | 2%
0% | | solar | 2022 | 12 solar_2022_12
1 solar_2023_1 | 4% | 4% | 4% | | solar | 2023 | 2 solar_2023_2 | 3% | 3% | 3% | | solar | 2023 | 3 solar_2023_3 | 18% | 18% | 18% | | solar | 2023 | 4 solar_2023_4 | 15% | 15% | 15% | | solar | 2023 | 5 solar_2023_5 | 16% | 16% | 16% | | solar
solar | 2023
2023 | 6 solar_2023_6
7 solar_2023_7 | 31%
39% | 31%
39% | 31%
39% | | solar | 2023 | 8 solar_2023_8 | 27% | 27% | 27% | | solar | 2023 | 9 solar_2023_9 | 14% | 14% | 14% | | solar | 2023 | 10 solar_2023_10 | 2% | 2% | 2% | | solar | 2023 | 11 solar_2023_11 | 2% | 2% | 2% | | solar | 2023 | 12 solar_2023_12 | 0% | 0% | 0% | | solar
solar | 2024
2024 | 1 solar_2024_1
2 solar_2024_2 | 3%
3% | 3%
3% | 3%
3% | | solar | 2024 | 3 solar_2024_3 | 15% | 16% | 15% | | solar | 2024 | 4 solar_2024_4 | 13% | 13% | 13% | | solar | 2024 | 5 solar_2024_5 | 14% | 14% | 14% | | solar | 2024 | 6 solar_2024_6 | 27% | 27% | 27% | | solar | 2024 | 7 solar_2024_7 | 33% | 34% | 33% | | solar
solar | 2024
2024 | 8 solar_2024_8
9 solar_2024_9 | 23%
12% | 23%
12% | 23%
12% | | solar | 2024 | 10 solar_2024_10 | 2% | 2% | 2% | | solar | 2024 | 11 solar_2024_11 | 2% | 2% | 2% | | solar | 2024 | 12 solar_2024_12 | 0% | 0% | 0% | | solar | 2025 | 1 solar_2025_1 | 3% | 3% | 3% | | solar | 2025 | 2 solar_2025_2 | 2% | 2% | 2% | | solar
solar | 2025
2025 | 3 solar_2025_3
4 solar_2025_4 | 14%
12% | 13%
11% | 14%
12% | | solar | 2025 | 5 solar 2025 5 | 13% | 12% | 13% | | solar | 2025 | 6 solar_2025_6 | 24% | 23% | 24% | | solar | 2025 | 7 solar_2025_7 | 31% | 29% | 31% | | solar | 2025 | 8 solar_2025_8 | 21% | 20% | 21% | | solar
solar | 2025
2025 | 9 solar_2025_9 | 11%
2% | 10%
1% | 11%
2% | | solar | 2025 | 10 solar_2025_10
11 solar_2025_11 | 2% | 1% | 2% | | solar | 2025 | 12 solar_2025_12 | 0% | 0% | 0% | | solar | 2026 | 1 solar_2026_1 | 3% | 2% | 3% | | solar | 2026 | 2 solar_2026_2 | 2% | 2% | 2% | | solar
solar | 2026
2026 | 3 solar_2026_3 | 12%
10% | 11%
9% | 12%
10% | | solar | 2026 | 4 solar_2026_4
5 solar_2026_5 | 10% | 9%
10% | 10% | | solar | 2026 | 6 solar_2026_6 | 20% | 19% | 20% | | solar | 2026 | 7 solar_2026_7 | 25% | 24% | 25% | | solar | 2026 | 8 solar_2026_8 | 17% | 16% | 17% | | solar
solar | 2026
2026 | 9 solar_2026_9
10 solar_2026_10 | 9%
1% | 8%
1% | 9%
1% | | solar | 2026 | 10 solar_2026_10
11 solar_2026_11 | 1% | 1% | 1% | | solar | 2026 | 12 solar_2026_12 | 0% | 0% | 0% | | solar | 2027 | 1 solar_2027_1 | 3% | 2% | 3% | | solar | 2027 | 2 solar_2027_2 | 2% | 2% | 2% | | solar
solar | 2027
2027 | 3 solar_2027_3
4 solar_2027_4 | 12%
10% | 10%
8% | 12%
10% | | solar
solar | 2027 | 4 solar_2027_4
5 solar_2027_5 | 10% | 8%
9% | 10% | | solar | 2027 | 6 solar_2027_6 | 20% | 17% | 20% | | solar | 2027 | 7 solar_2027_7 | 25% | 21% | 25% | | solar | 2027 | 8 solar_2027_8 | 17% | 15% | 17% | | solar
solar | 2027
2027 | 9 solar_2027_9
10 solar_2027_10 | 9%
1% | 8%
1% | 9%
1% | | solar
solar | 2027 | 10 solar_2027_10
11 solar_2027_11 | 1% | 1%
1% | 1% | | solar | 2027 | 12
solar_2027_12 | 0% | 0% | 0% | | solar | 2028 | 1 solar_2028_1 | 3% | 2% | 3% | | solar | 2028 | 2 solar_2028_2 | 2% | 1% | 2% | | solar | 2028 | 3 solar_2028_3 | 12% | 8% | 12% | | solar
solar | 2028
2028 | 4 solar_2028_4
5 solar_2028_5 | 10%
10% | 7%
8% | 10%
10% | | solar | 2028 | 6 solar_2028_6 | 20% | 15% | 20% | | solar | 2028 | 7 solar_2028_7 | 25% | 18% | 25% | | solar | 2028 | 8 solar_2028_8 | 17% | 13% | 17% | | solar | 2028 | 9 solar_2028_9 | 9% | 7% | 9% | | solar | 2028 | 10 solar_2028_10 | 1% | 1% | 1% | | solar
solar | 2028
2028 | 11 solar_2028_11
12 solar_2028_12 | 1%
0% | 1%
0% | 1%
0% | | solar | 2028 | 1 solar_2029_1 | 3% | 2% | 3% | | solar | 2029 | 2 solar_2029_2 | 2% | 1% | 2% | | solar | 2029 | 3 solar_2029_3 | 12% | 7% | 12% | | solar | 2029 | 4 solar_2029_4 | 10% | 6% | 10% | | solar | 2029 | 5 solar_2029_5 | 10% | 6% | 10% | | | | | | | | | solar | 2029 | 6 solar_2029_6 | 20% | 12% | 20% | |----------------|--------------|--------------------------------------|--------------|--------------|--------------| | solar | 2029 | 7 solar_2029_7 | 25% | 16% | 25% | | solar
solar | 2029
2029 | 8 solar_2029_8
9 solar_2029_9 | 17%
9% | 11%
6% | 17%
9% | | solar | 2029 | 10 solar_2029_10 | 1% | 1% | 1% | | solar
solar | 2029
2029 | 11 solar_2029_11
12 solar_2029_12 | 1%
0% | 1%
0% | 1%
0% | | solar | 2030 | 1 solar_2030_1 | 3% | 1% | 3% | | solar
solar | 2030
2030 | 2 solar_2030_2
3 solar_2030_3 | 2%
12% | 1%
6% | 2%
12% | | solar | 2030 | 4 solar_2030_4 | 10% | 5% | 10% | | solar
solar | 2030
2030 | 5 solar_2030_5
6 solar_2030_6 | 10%
20% | 5%
10% | 10%
20% | | solar | 2030 | 7 solar_2030_7 | 25% | 13% | 25% | | solar
solar | 2030
2030 | 8 solar_2030_8
9 solar_2030_9 | 17%
9% | 9%
5% | 17%
9% | | solar | 2030 | 9 solar_2030_9
10 solar_2030_10 | 5%
1% | 1% | 1% | | solar
solar | 2030 | 11 solar_2030_11
12 solar 2030 12 | 1% | 1% | 1%
0% | | psh | 2030
2020 | 12 solar_2030_12
1 psh_2020_1 | 0%
100% | 0%
100% | 100% | | psh | 2020 | 2 psh_2020_2 | 100% | 100% | 100% | | psh
psh | 2020
2020 | 3 psh_2020_3
4 psh_2020_4 | 100%
100% | 100%
100% | 100%
100% | | psh | 2020 | 5 psh_2020_5 | 100% | 100% | 100% | | psh
psh | 2020
2020 | 6 psh_2020_6
7 psh_2020_7 | 100%
100% | 100%
100% | 100%
100% | | psh | 2020 | 8 psh_2020_8 | 100% | 100% | 100% | | psh
psh | 2020
2020 | 9 psh_2020_9
10 psh_2020_10 | 100%
100% | 100%
100% | 100%
100% | | psh | 2020 | 11 psh_2020_11 | 100% | 100% | 100% | | psh
psh | 2020
2021 | 12 psh_2020_12
1 psh_2021_1 | 100%
100% | 100%
100% | 100%
100% | | psh | 2021 | 2 psh_2021_2 | 100% | 100% | 100% | | psh
psh | 2021
2021 | 3 psh_2021_3
4 psh_2021_4 | 100%
100% | 100%
100% | 100%
100% | | psh | 2021 | 5 psh_2021_5 | 100% | 100% | 100% | | psh | 2021 | 6 psh_2021_6 | 100% | 100% | 100%
100% | | psh
psh | 2021
2021 | 7 psh_2021_7
8 psh_2021_8 | 100%
100% | 100%
100% | 100% | | psh | 2021 | 9 psh_2021_9 | 100% | 100% | 100% | | psh
psh | 2021
2021 | 10 psh_2021_10
11 psh_2021_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2021 | 12 psh_2021_12 | 100% | 100% | 100% | | psh
psh | 2022
2022 | 1 psh_2022_1
2 psh_2022_2 | 100%
100% | 100%
100% | 100%
100% | | psh | 2022 | 3 psh_2022_3 | 100% | 100% | 100% | | psh
psh | 2022
2022 | 4 psh_2022_4
5 psh 2022 5 | 100%
100% | 100%
100% | 100%
100% | | psh | 2022 | 6 psh_2022_6 | 100% | 100% | 100% | | psh
psh | 2022
2022 | 7 psh_2022_7
8 psh_2022_8 | 100%
100% | 100%
100% | 100%
100% | | psh | 2022 | 9 psh_2022_9 | 100% | 100% | 100% | | psh | 2022 | 10 psh_2022_10 | 100% | 100% | 100% | | psh
psh | 2022
2022 | 11 psh_2022_11
12 psh_2022_12 | 100%
100% | 100%
100% | 100%
100% | | psh | 2023 | 1 psh_2023_1 | 100% | 100% | 100% | | psh
psh | 2023
2023 | 2 psh_2023_2
3 psh_2023_3 | 100%
100% | 100%
100% | 100%
100% | | psh | 2023 | 4 psh_2023_4 | 100% | 100% | 100% | | psh
psh | 2023
2023 | 5 psh_2023_5
6 psh_2023_6 | 100%
100% | 100%
100% | 100%
100% | | psh | 2023 | 7 psh_2023_7 | 100% | 100% | 100% | | psh
psh | 2023
2023 | 8 psh_2023_8
9 psh_2023_9 | 100%
100% | 100%
100% | 100%
100% | | psh | 2023 | 10 psh_2023_10 | 100% | 100% | 100% | | psh
psh | 2023
2023 | 11 psh_2023_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2023 | 12 psh_2023_12
1 psh_2024_1 | 100% | 100% | 100% | | psh | 2024 | 2 psh_2024_2 | 100% | 100% | 100% | | psh
psh | 2024
2024 | 3 psh_2024_3
4 psh_2024_4 | 100%
100% | 100%
100% | 100%
100% | | psh | 2024 | 5 psh_2024_5 | 100% | 100% | 100% | | psh
psh | 2024
2024 | 6 psh_2024_6
7 psh_2024_7 | 100%
100% | 100%
100% | 100%
100% | | psh | 2024 | 8 psh_2024_8 | 100% | 100% | 100% | | psh
psh | 2024 | 9 psh_2024_9
10 psh_2024_10 | 100%
100% | 100%
100% | 100%
100% | | psh | 2024 | 11 psh_2024_11 | 100% | 100% | 100% | | psh
psh | 2024 | 12 psh_2024_12
1 psh_2025_1 | 100% | 100%
100% | 100% | | psh | 2025 | 2 psh_2025_2 | 100% | 100% | 100% | | psh
psh | 2025
2025 | 3 psh_2025_3
4 psh_2025_4 | 100%
100% | 100%
100% | 100%
100% | | psh | 2025 | 5 psh_2025_5 | 100% | 100% | 100% | | psh | 2025
2025 | 6 psh_2025_6
7 psh_2025_7 | 100%
100% | 100%
100% | 100%
100% | | psh
psh | 2025 | 7 psh_2025_7
8 psh_2025_8 | 100% | 100% | 100% | | psh | 2025
2025 | 9 psh_2025_9 | 100%
100% | 100%
100% | 100%
100% | | psh
psh | 2025 | 10 psh_2025_10
11 psh_2025_11 | 100% | 100% | 100% | | psh | 2025 | 12 psh_2025_12 | 100% | 100% | 100% | | psh
psh | 2026
2026 | 1 psh_2026_1
2 psh_2026_2 | 100%
100% | 100%
100% | 100%
100% | | psh | 2026 | 3 psh_2026_3 | 100% | 100% | 100% | | psh
psh | 2026
2026 | 4 psh_2026_4
5 psh_2026_5 | 100%
100% | 100%
100% | 100%
100% | | psh | 2026 | 6 psh_2026_6 | 100% | 100% | 100% | | psh
psh | 2026
2026 | 7 psh_2026_7
8 psh_2026_8 | 100%
100% | 100%
100% | 100%
100% | | psh | 2026 | 9 psh_2026_9 | 100% | 100% | 100% | | psh
psh | 2026
2026 | 10 psh_2026_10
11 psh_2026_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2026 | 12 psh_2026_12 | 100% | 100% | 100% | | psh
psh | 2027
2027 | 1 psh_2027_1
2 psh_2027_2 | 100%
100% | 100%
100% | 100%
100% | | psh | 2027 | 3 psh_2027_3 | 100% | 100% | 100% | | psh
psh | 2027
2027 | 4 psh_2027_4
5 psh_2027_5 | 100%
100% | 100%
100% | 100%
100% | | psh | 2027 | 6 psh_2027_6 | 100% | 100% | 100% | | psh
psh | 2027
2027 | 7 psh_2027_7
8 psh_2027_8 | 100%
100% | 100%
100% | 100%
100% | | psh | 2027 | 9 psh_2027_9 | 100% | 100% | 100% | | psh
psh | 2027
2027 | 10 psh_2027_10
11 psh_2027_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2027 | 12 psh_2027_12 | 100% | 100% | 100% | | psh | 2028 | 1 psh_2028_1 | 100% | 100% | 100% | | psh
psh | 2028
2028 | 2 psh_2028_2
3 psh_2028_3 | 100%
100% | 100%
100% | 100%
100% | | psh | 2028 | 4 psh_2028_4 | 100% | 100% | 100% | | psh
psh | 2028
2028 | 5 psh_2028_5
6 psh_2028_6 | 100%
100% | 100%
100% | 100%
100% | | psh | 2028 | 7 psh_2028_7 | 100% | 100% | 100% | | psh | 2028 | 8 psh_2028_8 | 100% | 100% | 100% | | | | | | | | | psh | 2028 | 9 psh_2028_9 | 100% | 100% | 100% | |--------------------|--------------|--|--------------|--------------|--------------| | psh
psh | 2028
2028 | 10 psh_2028_10
11 psh_2028_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2028 | 12 psh_2028_12 | 100% | 100% | 100% | | psh | 2029 | 1 psh_2029_1 | 100% | 100% | 100% | | psh
psh | 2029
2029 | 2 psh_2029_2
3 psh_2029_3 | 100%
100% | 100%
100% | 100%
100% | | psh | 2029 | 4 psh_2029_4 | 100% | 100% | 100% | | psh | 2029 | 5 psh_2029_5 | 100% | 100% | 100% | | psh
psh | 2029
2029 | 6 psh_2029_6
7 psh_2029_7 | 100%
100% | 100%
100% | 100%
100% | | psh | 2029 | 8 psh_2029_8 | 100% | 100% | 100% | | psh | 2029 | 9 psh_2029_9 | 100% | 100% | 100% | | psh
psh | 2029
2029 | 10 psh_2029_10
11 psh 2029 11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2029 | 12 psh_2029_12 | 100% | 100% | 100% | | psh | 2030 | 1 psh_2030_1 | 100% | 100% | 100% | | psh
psh | 2030
2030 | 2 psh_2030_2
3 psh 2030 3 | 100%
100% | 100%
100% | 100%
100% | | psh | 2030 | 4 psh_2030_4 | 100% | 100% | 100% | | psh | 2030 | 5 psh_2030_5 | 100% | 100% | 100% | | psh
psh | 2030
2030 | 6 psh_2030_6
7 psh_2030_7 | 100%
100% | 100%
100% | 100%
100% | | psh | 2030 | 8 psh_2030_8 | 100% | 100% | 100% | | psh | 2030 | 9 psh_2030_9 | 100% | 100% | 100% | | psh
psh | 2030
2030 | 10 psh_2030_10
11 psh_2030_11 | 100%
100% | 100%
100% | 100%
100% | | psh | 2030 | 12 psh_2030_12 | 100% | 100% | 100% | | unknown | 2020 | 1 unknown_2020_1 | 0% | 0% | 0% | | unknown
unknown | 2020
2020 | 2 unknown_2020_2
3 unknown_2020_3 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2020 | 4 unknown_2020_4 | 0% | 0% | 0% | | unknown | 2020 | 5 unknown_2020_5 | 0% | 0% | 0% | | unknown
unknown | 2020
2020 | 6 unknown_2020_6
7 unknown_2020_7 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2020 | 8 unknown_2020_8 | 0% | 0% | 0% | | unknown | 2020 | 9 unknown_2020_9 | 0% | 0% | 0% | | unknown
unknown | 2020
2020 | 10 unknown_2020_10
11 unknown_2020_11 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2020 | 12 unknown_2020_12 | 0% | 0% | 0% | | unknown | 2021 | 1 unknown_2021_1 | 0% | 0% | 0% | | unknown
unknown | 2021
2021 | 2 unknown_2021_2
3 unknown_2021_3 | 0%
0% | 0%
0% | 0%
0% | | unknown
unknown | 2021 | 3
unknown_2021_3
4 unknown_2021_4 | 0% | 0% | 0% | | unknown | 2021 | 5 unknown_2021_5 | 0% | 0% | 0% | | unknown
unknown | 2021
2021 | 6 unknown_2021_6
7 unknown 2021 7 | 0%
0% | 0%
0% | 0%
0% | | unknown
unknown | 2021
2021 | 7 unknown_2021_7
8 unknown_2021_8 | 0%
0% | 0%
0% | 0% | | unknown | 2021 | 9 unknown_2021_9 | 0% | 0% | 0% | | unknown | 2021 | 10 unknown_2021_10 | 0% | 0% | 0% | | unknown
unknown | 2021
2021 | 11 unknown_2021_11
12 unknown_2021_12 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2022 | 1 unknown_2022_1 | 0% | 0% | 0% | | unknown | 2022 | 2 unknown_2022_2 | 0% | 0% | 0% | | unknown
unknown | 2022
2022 | 3 unknown_2022_3
4 unknown_2022_4 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2022 | 5 unknown_2022_5 | 0% | 0% | 0% | | unknown | 2022 | 6 unknown_2022_6 | 0% | 0% | 0% | | unknown
unknown | 2022
2022 | 7 unknown_2022_7
8 unknown_2022_8 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2022 | 9 unknown_2022_9 | 0% | 0% | 0% | | unknown | 2022 | 10 unknown_2022_10 | 0% | 0% | 0% | | unknown
unknown | 2022
2022 | 11 unknown_2022_11
12 unknown_2022_12 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2023 | 1 unknown_2023_1 | 0% | 0% | 0% | | unknown | 2023 | 2 unknown_2023_2 | 0% | 0% | 0% | | unknown
unknown | 2023
2023 | 3 unknown_2023_3
4 unknown_2023_4 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2023 | 5 unknown_2023_5 | 0% | 0% | 0% | | unknown | 2023 | 6 unknown_2023_6 | 0% | 0% | 0% | | unknown
unknown | 2023
2023 | 7 unknown_2023_7
8 unknown 2023 8 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2023 | 9 unknown_2023_9 | 0% | 0% | 0% | | unknown | 2023 | 10 unknown_2023_10 | 0% | 0% | 0% | | unknown
unknown | 2023
2023 | 11 unknown_2023_11 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2023 | 12 unknown_2023_12
1 unknown_2024_1 | 0% | 0% | 0% | | unknown | 2024 | 2 unknown_2024_2 | 0% | 0% | 0% | | unknown | 2024 | 3 unknown_2024_3
4 unknown_2024_4 | 0% | 0% | 0% | | unknown
unknown | 2024
2024 | 5 unknown_2024_5 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2024 | 6 unknown_2024_6 | 0% | 0% | 0% | | unknown
unknown | 2024
2024 | 7 unknown_2024_7
8 unknown_2024_8 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2024 | 9 unknown_2024_9 | 0% | 0% | 0% | | unknown | 2024 | 10 unknown_2024_10 | 0% | 0% | 0% | | unknown
unknown | 2024
2024 | 11 unknown_2024_11
12 unknown_2024_12 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2025 | 1 unknown_2025_1 | 0% | 0% | 0% | | unknown | 2025 | 2 unknown_2025_2 | 0% | 0% | 0% | | unknown
unknown | 2025
2025 | 3 unknown_2025_3
4 unknown_2025_4 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2025 | 5 unknown_2025_5 | 0% | 0% | 0% | | unknown | 2025 | 6 unknown_2025_6
7 unknown_2025_7 | 0% | 0% | 0% | | unknown
unknown | 2025
2025 | 7 unknown_2025_7
8 unknown_2025_8 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2025 | 9 unknown_2025_9 | 0% | 0% | 0% | | unknown | 2025 | 10 unknown_2025_10 | 0% | 0% | 0% | | unknown
unknown | 2025
2025 | 11 unknown_2025_11
12 unknown_2025_12 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2026 | 1 unknown_2026_1 | 0% | 0% | 0% | | unknown
unknown | 2026
2026 | 2 unknown_2026_2
3 unknown 2026 3 | 0%
0% | 0%
0% | 0%
0% | | unknown
unknown | 2026 | 3 unknown_2026_3
4 unknown_2026_4 | 0% | 0% | 0% | | unknown | 2026 | 5 unknown_2026_5 | 0% | 0% | 0% | | unknown
unknown | 2026
2026 | 6 unknown_2026_6
7 unknown 2026 7 | 0%
0% | 0%
0% | 0%
0% | | unknown
unknown | 2026 | 7 unknown_2026_7
8 unknown_2026_8 | 0% | 0% | 0% | | unknown | 2026 | 9 unknown_2026_9 | 0% | 0% | 0% | | unknown | 2026 | 10 unknown_2026_10 | 0% | 0%
0% | 0% | | unknown
unknown | 2026
2026 | 11 unknown_2026_11
12 unknown_2026_12 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2027 | 1 unknown_2027_1 | 0% | 0% | 0% | | unknown | 2027 | 2 unknown_2027_2 | 0% | 0% | 0% | | unknown
unknown | 2027
2027 | 3 unknown_2027_3
4 unknown_2027_4 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2027 | 5 unknown_2027_5 | 0% | 0% | 0% | | unknown | 2027 | 6 unknown_2027_6 | 0% | 0% | 0% | | unknown
unknown | 2027
2027 | 7 unknown_2027_7
8 unknown 2027 8 | 0%
0% | 0%
0% | 0%
0% | | unknown | 2027 | 9 unknown_2027_9 | 0% | 0% | 0% | | unknown | 2027 | 10 unknown_2027_10 | 0% | 0% | 0% | | unknown | 2027 | 11 unknown_2027_11 | 0% | 0% | 0% | | | | | | | | | unknown | 2027 | 12 unknown_2027_12 | 0% | 0% | 0% | | |--|--|---|---------------------------------|---------------------------------|---------------------------------|--| | unknown | 2028 | 1 unknown_2028_1 | 0% | 0% | 0% | | | unknown | 2028 | 2 unknown_2028_2 | 0% | 0% | 0% | | | unknown
unknown | 2028
2028 | 3 unknown_2028_3
4 unknown_2028_4 | 0%
0% | 0%
0% | 0%
0% | | | unknown | 2028 | 4 unknown_2028_4
5 unknown_2028_5 | 0% | 0% | 0% | | | unknown | 2028 | 6 unknown_2028_6 | 0% | 0% | 0% | | | unknown | 2028 | 7 unknown_2028_7 | 0% | 0% | 0% | | | unknown
unknown | 2028
2028 | 8 unknown_2028_8 | 0%
0% | 0%
0% | 0%
0% | | | unknown | 2028 | 9 unknown_2028_9
10 unknown 2028 10 | 0% | 0% | 0% | | | unknown | 2028 | 11 unknown_2028_11 | 0% | 0% | 0% | | | unknown | 2028 | 12 unknown_2028_12 | 0% | 0% | 0% | | | unknown | 2029 | 1 unknown_2029_1 | 0% | 0% | 0% | | | unknown
unknown | 2029
2029 | 2 unknown_2029_2
3 unknown_2029_3 | 0%
0% | 0%
0% | 0%
0% | | | unknown | 2029 | 4 unknown_2029_4 | 0% | 0% | 0% | | | unknown | 2029 | 5 unknown_2029_5 | 0% | 0% | 0% | | | unknown | 2029 | 6 unknown_2029_6 | 0% | 0% | 0% | | | unknown
unknown | 2029
2029 | 7 unknown_2029_7
8 unknown_2029_8 | 0%
0% | 0%
0% | 0%
0% | | | unknown | 2029 | 9 unknown_2029_9 | 0% | 0% | 0% | | | unknown | 2029 | 10 unknown_2029_10 | 0% | 0% | 0% | | | unknown | 2029 | 11 unknown_2029_11 | 0% | 0% | 0% | | | unknown
unknown | 2029
2030 | 12 unknown_2029_12
1 unknown 2030 1 | 0%
0% | 0%
0% | 0%
0% | | | unknown | 2030 | 2 unknown_2030_2 | 0% | 0% | 0% | | | unknown | 2030 | 3 unknown_2030_3 | 0% | 0% | 0% | | | unknown | 2030 | 4 unknown_2030_4 | 0% | 0% | 0% | | | unknown
unknown | 2030
2030 | 5 unknown_2030_5
6 unknown 2030 6 | 0%
0% | 0%
0% | 0%
0% | | | unknown
unknown | 2030 | 6 unknown_2030_6
7 unknown_2030_7 | 0% | 0% | 0% | | | unknown | 2030 | 8 unknown_2030_8 | 0% | 0% | 0% | | | unknown | 2030 | 9 unknown_2030_9 | 0% | 0% | 0% | | | unknown | 2030
2030 | 10 unknown_2030_10
11 unknown 2030 11 | 0%
0% | 0%
0% | 0%
0% | | | unknown
unknown | 2030 | 11 unknown_2030_11
12 unknown 2030 12 | 0% | 0% | 0% | | | wind_high_cf | 2020 | 1 wind_high_cf_2020_1 | 18% | 18% | 18% | | | wind_high_cf | 2020 | 2 wind_high_cf_2020_2 | 15% | 15% | 15% | | | wind_high_cf | 2020 | 3 wind_high_cf_2020_3 | 36% | 35% | 36% | | | wind_high_cf
wind high cf | 2020
2020 | 4 wind_high_cf_2020_4
5 wind high cf 2020 5 | 32%
32% | 31%
31% | 32%
32% | | | wind_high_cf | 2020 | 6 wind_high_cf_2020_6 | 42% | 42% | 42% | | | wind_high_cf | 2020 | 7 wind_high_cf_2020_7 | 29% | 29% | 29% | | | wind_high_cf | 2020 | 8 wind_high_cf_2020_8 | 27% | 26% | 27% | | | wind_high_cf
wind_high_cf | 2020
2020 | 9 wind_high_cf_2020_9
10 wind_high_cf_2020_10 | 19%
10% | 19%
10% | 19%
10% | | | wind_high_cf | 2020 | 11 wind_high_cf_2020_11 | 15% | 15% | 15% | | | wind_high_cf | 2020 | 12 wind_high_cf_2020_12 | 17% | 16% | 17% | | | wind_high_cf | 2021 | 1 wind_high_cf_2021_1 | 18% | 18% | 18% | | | wind_high_cf
wind_high_cf | 2021
2021 | 2 wind_high_cf_2021_2
3 wind_high_cf_2021_3 | 15%
36% | 15%
35% | 15%
36% | | | wind_high_cf | 2021 | 4 wind_high_cf_2021_4 | 32% | 31% | 32% | | | wind_high_cf | 2021 | 5 wind_high_cf_2021_5 | 32% | 31% | 32% | | | wind_high_cf | 2021 | 6 wind_high_cf_2021_6 | 42% | 42% | 42% | | | wind_high_cf
wind_high_cf | 2021
2021 | 7 wind_high_cf_2021_7
8 wind_high_cf_2021_8 | 29%
27% | 29%
26% | 29%
27% | | | wind_high_cf | 2021 | 9 wind_high_cf_2021_9 | 19% | 19% | 19% | | | wind_high_cf | 2021 | 10 wind_high_cf_2021_10 | 10% | 10% | 10% | | | wind_high_cf
wind high cf | 2021
2021 | 11 wind_high_cf_2021_11
12 wind high cf 2021_12 | 15%
17% | 15%
16% | 15%
17% | | | wind_high_cf | 2021 | 1 wind_high_cf_2021_12 | 18% | 18% | 18% | | | wind_high_cf | 2022 | 2 wind_high_cf_2022_2 | 15% | 15% | 15% | | | wind_high_cf | 2022 | 3 wind_high_cf_2022_3 | 36% | 35% | 36% | | | wind_high_cf | 2022
2022 | 4 wind_high_cf_2022_4 | 32%
32% | 31%
31% | 32%
32% | | | wind_high_cf
wind high cf | 2022 | 5 wind_high_cf_2022_5
6 wind high cf 2022_6 | 42% | 42% | 42% | | | wind_high_cf | 2022 | 7 wind_high_cf_2022_7 | 29% | 29% | 29% | | | wind_high_cf | 2022 | 8 wind_high_cf_2022_8 | 27% | 26% | 27% | | | wind_high_cf
wind_high_cf | 2022
2022 | 9 wind_high_cf_2022_9
10 wind_high_cf_2022_10 | 19%
10% | 19%
10% | 19%
10% | | | wind_nigh_cf
wind_high_cf | 2022 | 10 Wind_nigh_cr_2022_10
11 wind_high_cf_2022_11 | 15% | 15% | 15% | | | wind_high_cf | 2022 | 12 wind_high_cf_2022_12 | 17% | 16% | 17% | | | wind_high_cf | 2023 | 1 wind_high_cf_2023_1 | 18% | 18% | 18% | | | wind_high_cf
wind_high_cf | 2023
2023 | 2 wind_high_cf_2023_2
3 wind_high_cf_2023_3 | 15%
36% | 15%
35% | 15%
36% | | | wind_nigh_cf
wind_high_cf | 2023 | 4 wind_high_cf_2023_4 | 32% | 31% | 32% | | | wind_high_cf | 2023 | 5 wind_high_cf_2023_5 | 32% | 31% | 32% | | | wind_high_cf | 2023 | 6 wind_high_cf_2023_6 | 42% | 42% | 42% | | |
wind_high_cf
wind_high_cf | 2023
2023 | 7 wind_high_cf_2023_7
8 wind_high_cf_2023_8 | 29%
27% | 29%
26% | 29%
27% | | | wind_high_cf | 2023 | 9 wind_high_cf_2023_9 | 19% | 19% | 19% | | | wind_high_cf | 2023 | 10 wind_high_cf_2023_10 | 10% | 10% | 10% | | | wind_high_cf | 2023 | 11 wind_high_cf_2023_11 | 15% | 15% | 15% | | | wind_high_cf
wind high cf | 2023
2024 | 12 wind_high_cf_2023_12
1 wind_high_cf_2024_1 | 17%
21% | 16%
20% | 17%
21% | | | wind_high_cf | 2024 | 2 wind_high_cf_2024_2 | 18% | 17% | 18% | | | wind_high_cf | 2024 | 3 wind_high_cf_2024_3 | 41% | 41% | 41% | | | wind_high_cf | 2024 | 4 wind_high_cf_2024_4 | 37% | 36% | 37% | | | wind_high_cf
wind_high_cf | 2024
2024 | 5 wind_high_cf_2024_5
6 wind_high_cf_2024_6 | 37%
49% | 36%
48% | 37%
49% | | | wind_high_cf | 2024 | 7 wind_high_cf_2024_7 | 34% | 33% | 34% | | | wind_high_cf | 2024 | 8 wind_high_cf_2024_8 | 31% | 30% | 31% | | | wind_high_cf | 2024
2024 | 9 wind_high_cf_2024_9
10 wind_high_cf_2024_10 | 22%
12% | 22%
12% | 22%
12% | | | wind_high_cf
wind_high_cf | 2024 | 10 wind_high_cf_2024_10
11 wind_high_cf_2024_11 | 12%
18% | 12%
17% | 12%
18% | | | wind_high_cf | 2024 | 12 wind_high_cf_2024_12 | 19% | 19% | 19% | | | wind_high_cf | 2025 | 1 wind_high_cf_2025_1 | 23% | 23% | 23% | | | wind_high_cf | 2025 | 2 wind_high_cf_2025_2 | 20%
47% | 20% | 20% | | | wind_high_cf
wind_high_cf | 2025
2025 | 3 wind_high_cf_2025_3
4 wind_high_cf_2025_4 | 47% | 46%
41% | 47%
42% | | | | 2025 | 5 wind_high_cf_2025_5 | 42% | 41% | 42% | | | wind_high_cf | 2025 | | 55% | 54% | 55% | | | wind_high_cf | 2025 | 6 wind_high_cf_2025_6 | | | | | | wind_high_cf
wind_high_cf | 2025
2025 | 7 wind_high_cf_2025_7 | 38% | 38% | 38% | | | wind_high_cf
wind_high_cf
wind_high_cf | 2025
2025
2025 | 7 wind_high_cf_2025_7
8 wind_high_cf_2025_8 | 38%
35% | 38%
34% | 38%
35% | | | wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf | 2025
2025
2025
2025
2025
2025 | 7 wind_high_cf_2025_7
8 wind_high_cf_2025_8
9 wind_high_cf_2025_9
10 wind_high_cf_2025_10 | 38%
35%
25%
13% | 38%
34%
25%
13% | 38%
35%
25%
13% | | | wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf | 2025
2025
2025
2025
2025
2025
2025 | 7 wind_high_cf_2025_7
8 wind_high_cf_2025_8
9 wind_high_cf_2025_9
10 wind_high_cf_2025_10
11 wind_high_cf_2025_11 | 38%
35%
25%
13%
20% | 38%
34%
25%
13%
20% | 38%
35%
25%
13%
20% | | | wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf
wind_high_cf | 2025
2025
2025
2025
2025
2025 | 7 wind_high_cf_2025_7
8 wind_high_cf_2025_8
9 wind_high_cf_2025_9
10 wind_high_cf_2025_10 | 38%
35%
25%
13% | 38%
34%
25%
13% | 38%
35%
25%
13% | | Interest Value Accretion Accreti - 1 January - 2 February - 3 March - 4 April - 5 May - 6 June - 7 July - 8 August - 9 September - 10 October - 11 November - 12 December | | ı | Interconnec
tion | | | | | | | | | | Proposed
On-line | Impact
Study or | Facilities
Study
(FAS) or | Interconn | |--------------|--|------------------------|---|----------------|--|----------------------|--------------------|------------------|------------|--|--------------|--|--------------------|------------------------------------|----------------------------| | | | Request
Receive | | Study | | | | | | | | Date Current
(as filed On-line | Phase I
Cluster | Phase II Optional
Cluster Study | Agreeme
nt | | Queue Po | os Project Name
Z TULE WIND | Date
5/12/2004 | Queue Date Application 5/24/2004 ACTIVE | | Type-1 Type-2
F Wind Turbine | Fuel-1
Wind Turk | | MW-1 MV
193.8 | V-2 N | MW Total Full Capac County State
193.8 Partial Del SAN DIEGC CA | Utility | Station or with IR) Date Feasibility Boulevard 9/1/2007 ########## Waived | | Study (OS)
Complete None | Status
Executed | | 7. | LAKE ELSINORE ADVANCED PUMPED STORAGE PROJECT | 4/26/2005 | 6/21/2005 ACTIVE | Serial LGI | F Storage | Pumped-9 | Storage hyd | 500 | | 500 Full Capac RIVERSIDE CA | SDGE | Proposed ######## Waived Windhub's #################################### | Complete | Re-Study None | Executed | | 9. | VOYAGER WIND
VOYAGER WIND 2 | 2/15/2006
8/8/2006 | 3/1/2006 ACTIVE
8/8/2006 ACTIVE | | F Wind Turbine
F Wind Turbine | Wind Turk | | 220
500 | | 220 Full Capac KERN CA
500 Full Capac KERN CA | SCE | Windhub! ######## Waived
Windhub! ####### ####### Required | | Complete None
Complete None | Executed
Executed | | 1504 | S SANDSTORM WIND POWER
ENERGIA SIERRA JUAREZ WIND | | 10/23/2006 ACTIVE
12/22/2006 ACTIVE | | F Wind Turbine
F Wind Turbine | Wind Turk | | 150
256 | | 150 Full Capac RIVERSIDE CA
256 Full Capac BAJA CALII MX | SCE
SDGE | Devers-Vis ######## ####### Waived
East Count 6/1/2009 ######## Required | | Complete None
Complete None | Executed
Executed | | 159A
27 | AMERICAN KINGS SOLAR | 11/1/2007 | 11/1/2007 ACTIVE | TC | Photovoltaic | Solar | bine | 123 | | 123 Full Capac KINGS CA | PGAE | Henrietta: 6/1/2012 ####### NA | | Complete NA | Executed | | 29-
36- | DRACKER SOLAR ALMASOL | 1/15/2008
5/6/2008 | 1/16/2008 ACTIVE
5/12/2008 ACTIVE | TC
TC | Photovoltaic
Photovolti Storage | Solar
Solar | Battery | 485
500 | 250 | 485 Full Capac RIVERSIDE CA
500 Full Capac RIVERSIDE CA | SCE | Colorado F 6/1/2012 ####### NA
Red Bluff S ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 42 | 1 SLOTH | 5/30/2008 | 5/30/2008 ACTIVE | TC | Steam Turbine | Solar | | 49.5 | | 49.5 Full Capac RIVERSIDE CA | SCE | Red Bluff 5 2/1/2012 ####### NA | Complete | Complete NA | Executed | | 50
55 | 6 ROSAMOND WEST SOLAR
2 ORD MOUNTAIN | 7/30/2009
10/2/2009 | 7/31/2009 ACTIVE
2/1/2010 ACTIVE | C01
C02 | Photovoltaic
Photovolta Storage | Solar
Solar | Battery | 300
60 | 60 | 300 Full Capac KERN CA
60 Energy On SAN BERN, CA | SCE | Whirlwind ######## 7/1/2022 NA
Calcite Sut 3/1/2012 9/6/2022 NA | | Complete NA
Complete NA | Executed
Executed | | 57
60 | BLYTHE MESA SOLAR | 1/29/2010 | 2/1/2010 ACTIVE
2/1/2010 ACTIVE | C02
C02 | Photovoltaic
Photovoltaic | Solar
Solar | | 224
150 | | 224 Full Capac RIVERSIDE CA
150 Full Capac KERN CA | SCE
SCE | Colorado F ######## NA
Whirlwind 7/1/2013 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 643AE | DESERT HARVEST | 7/30/2010 | 7/31/2010 ACTIVE | C03 | Photovolti Storage | Solar | Battery | 150 | 35 | 150 Full Capac RIVERSIDE CA | SCE | Red Bluff 5 1/1/2014 ####### NA | Complete | Complete NA | Executed | | 653F
72 | APPARENT FIRST HYBRID LASSEN LODGE HYDROELECTRIC | 10/7/2010
3/31/2011 | 10/13/2010 ACTIVE
3/31/2011 ACTIVE | SGIP-TC
C04 | Photovolti Storage
Hydro | Solar
Water | Battery | 12
4.5 | 12.1 | 12 Full Capac YOLO CA
4.5 Energy On TEHAMA CA | PGAE | Woodland 5/1/2012 ####### NA
Vota - Sou ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 72 | LOTUS SOLAR FARM | 3/31/2011 | 3/31/2011 ACTIVE | C04 | Photovoltaic | Solar | | 50 | | 50 Full Capac MADERA CA | PGAE | Borden Su 7/1/2014 ####### NA | Complete | Complete NA | Executed | | 74 | 4 REDWOOD SOLAR FARM
9 WRIGHT SOLAR | 3/31/2011
3/31/2011 | 3/31/2011 ACTIVE
3/31/2011 ACTIVE | C04
C04 | Photovoltaic
Photovoltaic | Solar
Solar | | 90
200 | | 90 Full Capac KERN CA
200 Full Capac MERCED CA | PGAE | Lamont Su 7/1/2014 ######## NA
Los Banos- 1/6/2014 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 78 | RUGGED SOLAR FARM
B BLUE HORNET SOLAR | 3/30/2011
3/31/2011 | 3/31/2011 ACTIVE
3/31/2011 ACTIVE | C04
C04 | Photovoltaic
Photovoltaic | Solar
Solar | | 71.88
100 | | 71.88 Energy On SAN DIEG(CA
100 Full Capac IMPERIAL CA | SDGE
SDGE | Boulevard ######## NA
Imperial V ######## NA | | Complete NA
Complete NA | Executed
Executed | | 89 | 7 SORREL I SOLAR FARM | 4/2/2012 | 4/2/2012 ACTIVE | C05 | Photovoltaic | Solar | | 200 | | 200 Full Capac SAN BERN, CA | SCE | Calcite Sut ######## 8/1/2022 NA | | Complete NA | Executed | | 94 | NORTHERN ORCHARD SOLAR FIFTH STANDARD SOLAR | 4/23/2013
4/29/2013 | 4/30/2013 ACTIVE
4/30/2013 ACTIVE | C06 | Photovoltaic
Photovoltaic | Solar
Solar | | 100
150 | | 100 Full Capac KERN CA
150 Full Capac FRESNO CA | PGAE | Midway- V ######## NA
Gates Sub: 7/1/2016 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 95 | ALGONQUIN POWER SANGER 2 | 4/30/2013 | 4/30/2013 ACTIVE | C06 | Combined Cycle | Natural G | as | 60 | | 60 Full Capac FRESNO CA | PGAE | Sanger Co: 5/1/2014 ####### NA | Complete | Complete NA | Executed | | 96
96 | 5 JAVA SOLAR
8 PALOMAR ENERGY CENTER 2 | 4/30/2013
4/30/2013 | 4/30/2013 ACTIVE
4/30/2013 ACTIVE | C06 | Photovoltaic
Combined Cycle | Solar
Natural G | as | 13.5
35 | | 13.5 Full Capac KINGS CA
35 Full Capac SAN DIEG(CA | PGAE
SDGE | Henrietta- ######## NA
Palomar E 3/1/2015 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 100 | LASSEN LODGE HYDROELECTRIC 2
D DYER SUMMIT WIND REPOWER | 5/1/2013 | 4/30/2013 ACTIVE
4/30/2014 ACTIVE | C06
C07 | Hydro
Wind Turbine | Water
Wind Turk | | 0.5 | | 0.5 Energy On TEHAMA CA | PGAE | Volta-Sout ######## ####### NA
Vasco-Her ######## ######## NA | | Complete NA | Executed | | 101
101 | 1 COLINAS DE
ORO | 4/28/2014
4/28/2014 | 4/30/2014 ACTIVE
4/30/2014 ACTIVE | C07 | Storage | Battery | bine | 46.1
30 | | 44.8 Full Capac SAN JOAQ CA
30 Full Capac ALAMEDA CA | PGAE | Tesla Subs ######## 3/1/2021 NA | | Complete NA
Complete NA | Executed
Executed | | 102
102 | 7 BLACKBRIAR
B LITTLE BEAR SOLAR 1 | 5/1/2014
4/30/2014 | 4/30/2014 ACTIVE
4/30/2014 ACTIVE | C07 | Storage
Photovoltaic | Battery
Solar | | 20
20 | | 20 Full Capac FRESNO CA
20 Full Capac FRESNO CA | PGAE | Gates Sub: 6/1/2016 ######## NA
Mendota | | Complete NA
Complete NA | Executed
Executed | | 102 | LITTLE BEAR SOLAR 2 | 4/30/2014 | 4/30/2014 ACTIVE | C07 | Photovoltaic | Solar | | 20 | | 20 Full Capac FRESNO CA | PGAE | Mendota: 9/1/2018 9/1/2020 NA | | Complete NA | Executed | | 103
103 | SOUTH LAKE SOLAR MUSTANG 2 | 4/30/2014
4/30/2014 | 4/30/2014 ACTIVE
4/30/2014 ACTIVE | C07 | Photovolti Storage
Photovolti Storage | Solar
Solar | Battery
Battery | 15
153.4 | 5
150 | 20 Energy On FRESNO CA
153.4 Full Capac KINGS CA | PGAE | Schindler- ######## NA
Mustang S ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 104 | CHULA VISTA ENERGY CENTER 2 | 4/30/2014 | 4/30/2014 ACTIVE | C07 | Storage | Battery | | 50 | | 50 Energy On SAN DIEGC CA | SDGE | Otay Subsi ######## ####### NA | Complete | Complete NA | In Progress | | 104
104 | 7 NORTH JOHNSON ENERGY CENTER
8 ESCONDIDO ENERGY CENTER 2 | 4/30/2014
4/30/2014 | 4/30/2014 ACTIVE
4/30/2014 ACTIVE | C07 | Storage
Storage | Battery
Battery | | 50
50 | | 50 Energy On SAN DIEG(CA
50 Energy On SAN DIEG(CA | SDGE
SDGE | El Cajon St. ######## ####### NA
Escondido ######## ####### NA | | Complete NA
Complete NA | In Progress
In Progress | | 106
106 | WHITE WING RANCH SOLAR 4 ARES NEVADA | 4/30/2014
4/30/2014 | 4/30/2014 ACTIVE
4/30/2014 ACTIVE | C07 | Photovoltaic
Storage | Solar
Gravity via | a Pail | 200
44 | | 200 Energy On YUMA AZ
44 Full Capac NYE NV | SDGE | Hoodoo W ######### NA
Gamebird 1/1/2017 ######## NA | | Complete NA
Complete NA | In Progress
Executed | | 107 | GASKELL WEST | 4/30/2014 | 4/30/2014 ACTIVE | C07 | Photovoltaic | Solar | a KdII | 128.1 | | 128.07 Full Capac KERN CA | SCE | Whirlwind ######## ####### NA | Complete | Complete NA | Executed | | 107
109 | WILLOW SPRINGS SOLAR 3
6 ALTAMONT MIDWAY LTD | 4/30/2014
2/24/2015 | 4/30/2014 ACTIVE
4/13/2015 ACTIVE | C07
FT | Photovoltaic
Wind Turbine | Solar
Wind Turk | bine | 50
5 | | 50 Full Capac KERN CA
5 Energy On ALAMEDA CA | SCE
PGAE | Whirlwind ######## ####### NA
Altamont ######## ####### None | | Complete NA
NA NA | Executed
Executed | | 109 | BEAR CANYON ENERGY STORAGE | 4/29/2015 | 4/30/2015 ACTIVE | C08 | Storage | Battery | | 13.25 | | 13 Full Capac LAKE CA | PGAE | Geysers #1 1/1/2018 9/1/2021 NA | Complete | Complete NA | Executed | | 110
110 | CENTRAL 40
FOUNTAIN WIND | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Wind Turbine | Solar
Wind Turk | bine | 40
206 | | 40 Full Capac STANISLAL CA
200 Full Capac SHASTA CA | PGAE | Miller #1 1 8/1/2017 ######## NA
Pit1-Cotto ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 110 | NORTH CENTRAL VALLEY | 4/30/2015 | 4/30/2015 ACTIVE | C08 | Storage | Battery | | 150 | | 132 Full Capac SAN JOAQ CA | PGAE | Belotta Su 6/1/2021 4/1/2022 NA | Complete | Complete NA | Executed | | 111
111 | | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Storage
Storage | Battery
Battery | | 200
10 | | 200 Full Capac CONTRA C CA
10 Full Capac TUOLUMN CA | PGAE | Pittsburgh 6/1/2018 5/1/2021 NA
Melones-C ############### NA | | Complete NA
Complete NA | Executed
Executed | | 111
112 | AQUAMARINE WESTSIDE CHESTNUT WESTSIDE | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 254
152 | | 250 Full Capac KINGS CA
150 Full Capac KINGS CA | PGAE
PGAE | Gates Sub: ######## ####### NA Gates Sub: ######## ######## NA | | Complete NA
Complete NA | Executed
Executed | | 112 | 7 LITTLE BEAR 3 | 4/28/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic | Solar | | 20.44 | | 20 Full Capac FRESNO CA | PGAE | Mendota: 8/1/2020 8/1/2020 NA | | Complete NA | Executed | | 112
112 | | 4/28/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 103.1
204 | | 100 Full Capac FRESNO CA
200 Full Capac FRESNO CA | PGAE | Mendota: ######## 8/1/2020 NA
Tranquility ############# NA | | Complete NA
Complete NA | Executed
Executed | | 113 | S SCARLET | 4/29/2015 | 4/30/2015 ACTIVE | C08 | Photovolti Storage | Solar | Battery | 417.9 | 420 | 400 Full Capac FRESNO CA | PGAE | Tranquillit ######## ####### NA | Complete | Complete NA | Executed | | 113
113 | WESTLANDS ALMOND WESTLANDS SOLAR BLUE | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 20
252 | | 20 Energy On KINGS CA
250 Full Capac KINGS CA | PGAE | Kent SW S ######## NA Gates Sub: ######## NA | | Complete NA
Complete NA | Executed
Executed | | 114 | 1 ALAMO SPRINGS SOLAR 1 | 4/30/2015 | 4/30/2015 ACTIVE | C08 | Photovoltaic | Solar | | 80 | | 80 Full Capac KERN CA | PGAE | Arco Subst ######## ####### NA | Complete | Complete NA | Executed | | 114
115 | 3 LAKE ALPAUGH BATTERY STORAGE
7 ALAMO SPRINGS SOLAR 2 | 4/29/2015
4/22/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Storage
Photovoltaic | Battery
Solar | | 10
50 | | 10 Full Capac TULARE CA
50 Full Capac KERN CA | PGAE | Corcoran-(######## ####### NA
Arco Subst ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 115
116 | SLATE
BIG ROCK SOLAR FARM | 4/29/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovolti Storage | Solar
Solar | Battery | 308.5
200 | 308.7 | 300 Full Capac KINGS CA
200 Full Capac IMPERIAL CA | PGAE
SDGE | Mustang S ######## NA
Imperial V 6/1/2020 ######## NA | Complete | Complete NA | Executed | | 116 | 9 FALLBROOK ENERGY STORAGE | 4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Storage | Battery | | 70 | | 69.6 Full Capac SAN DIEG(CA | SDGE | Avocado S 2/1/2020 ####### NA | | Complete NA
Complete NA | Executed
Executed | | 117
117 | GATEWAY ENERGY STORAGE MCFARLAND SOLAR | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Storage
Photovoltaic | Battery
Solar | | 250
500 | | 250 Full Capac SAN DIEG(CA
500 Full Capac YUMA AZ | SDGE
SDGE | Otay Mesa 9/1/2018 1/1/2020 NA
Hoodoo W ################################ | | Complete NA
Complete NA | Executed
In Progress | | 117 | LA CONTE ENERGY STORAGE | 4/29/2015 | 4/30/2015 ACTIVE | C08 | Storage | Battery | | 125 | | 125 Energy On IMPERIAL CA | SDGE | Imperial V 9/1/2018 ####### NA | Complete | Complete NA | In Progress | | 118
119 | 9 SUN STREAMS SOLAR 2
1 VALLEY CENTER RENEWABLE | 4/28/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 150
120 | | 150 Full Capac MARICOP, AZ
120 Full Capac SAN DIEG(CA | SDGE
SDGE | Hassayam ######### NA Valley Cen ######## ######## NA | | Complete NA
Complete NA | In Progress
In Progress | | 119 | | 4/29/2015 | 4/30/2015 ACTIVE | C08 | Photovolti Storage | Solar | Battery | 359.6 | 365 | 350 Full Capac RIVERSIDE CA | SCE | Colorado F ######### NA | | Complete NA | Executed | | 119
119 | ARLINGTON QUARTZITE SOLAR 8 | 4/30/2015
4/28/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 409.9
150 | | 409.9 Full Capac RIVERSIDE CA
150 Full Capac RIVERSIDE CA | SCE
SCE | Colorado F 7/1/2021 7/1/2023 NA
Colorado F ######### ####### NA | | Complete NA
Complete NA | Executed
Executed | | 120
120 | VICTORY PASS SOLAR 4 PEAK VALLEY SOLAR FARM | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovolti Storage | Solar
Solar | Battery | 200
200 | 200 | 200 Full Capac RIVERSIDE CA
200 Partial Del SAN BERN, CA | SCE
SCE | Red Bluff S ######## NA
Kramer Su 6/1/2020 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 120 | 7 SIENNA SOLAR FARM | 4/30/2015 | 4/30/2015 ACTIVE | C08 | Photovoltaic | Solar | , | 200 | | 200 Full Capac SAN BERN, CA | SCE | Calcite Sut 6/1/2020 ####### NA | Complete | Complete NA | Executed | | 120
121 | ANTELOPE SOLAR 2
1 ROSAMOND SOUTH EAST | 4/30/2015
4/30/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Storage Photovolt
Photovoltaic | Battery
Solar | Solar | 200
101.7 | 450 | 650 Full Capac LOS ANGE CA
101.7 Full Capac KERN CA | SCE
SCE | Antelope ! ######## NA
Whirlwind ######## NA | | Complete NA
Complete NA | Executed
Executed | | 121 | GOLDEN FIELDS SOLAR | 4/30/2015 | 4/30/2015 ACTIVE | C08 | Photovoltaic | Solar | | 101.7 | | 101.7 Full Capac KERN CA | SCE | Whirlwind ######## ####### NA | Complete | Complete NA | Executed | | 121
121 | RABBITBRUSH SOLAR WILLOW SPRINGS SOLAR 4 | 4/28/2015
4/28/2015 | 4/30/2015 ACTIVE
4/30/2015 ACTIVE | C08 | Photovoltaic
Photovoltaic | Solar
Solar | | 153.7
102 | | 153.73 Full Capac KERN CA
75 Full Capac KERN CA | SCE
SCE | Whirlwind ######## ####### NA Whirlwind ######## ######## NA | | Complete NA
Complete NA | Executed
Executed | | 121 | NEVADA MOHAVE SOLAR | 4/28/2015 | 4/30/2015 ACTIVE | C08 | Photovoltaic | Solar | | 400 | | 400 Energy On CLARK NV | SCE | Jointly-ow ######## ####### NA
Hoodoo W ######## ######## NA | Complete | Complete NA | In Progress | | 122
122 | AGUA CALIENTE SOLAR
2
AMERICAN KINGS 9 | 3/1/2016
4/22/2016 | 3/8/2016 ACTIVE
5/2/2016 ACTIVE | ISP
C09 | Photovoltaic
Photovoltaic | Solar
Solar | | 20
310.7 | | 20 Energy On MARICOP: AZ
300 Energy On KINGS CA | SDGE
PGAE | Mustang S ######## ####### NA | Complete | Complete NA | In Progress | | 122
123 | CINCO
HUDSON SOLAR 1 | 4/27/2016
4/21/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Storage Photovolti
Photovolti Storage | | Solar
Battery | 10.45
86.64 | 53.2
99 | 60 Energy On FRESNO CA | PGAE | Five Point: 6/1/2019 ######## NA
Panoche S ######## ####### NA | | Complete NA
Complete NA | Executed | | 123 | MEDEIROS SOLAR | 5/3/2016 | 5/2/2016 ACTIVE | C09 | Photovoltaic | Solar | DULLET Y | 28.35 | 33 | 85 Energy On FRESNO CA
26.5 Energy On MERCED CA | PGAE | Los Banos 8/1/2019 8/1/2019 NA | Complete | Complete NA | In Progress | | 124
124 | PLUOT POMEGRANATE | 5/3/2016
5/3/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Photovoltaic
Photovoltaic | Solar
Solar | | 254
254 | | 246.4 Energy On KINGS CA
249.7 Energy On KINGS CA | PGAE | Gates 230 4/5/2023 4/5/2023 NA
Gates Sub: 4/6/2022 4/5/2023 NA | | Complete NA
Complete NA | In Progress
In Progress | | 124 | PROXIMA SOLAR | 4/30/2016 | 5/2/2016 ACTIVE | C09 | Photovolti Storage | Solar | Battery | 220 | 104.5 | 300 Full Capac STANISLAL CA | PGAE | Quinto-We ######## ####### NA | Complete | Complete NA | Executed | | 125
126 | NORTHERN ORCHARD SOLAR 2
NORTHERN ORCHARD SOLAR 3 | 4/27/2016
4/27/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09 | Photovoltaic
Photovoltaic | Solar
Solar | | 133.6
102 | | 130 Energy On KERN CA
100 Energy On KERN CA | PGAE
PGAE | Midway - 1 ######## ####### NA
Midway - 1 ######## ####### NA | Complete | Complete NA
Complete NA | In Progress
In Progress | | 126
127 | CAPETOWN HYBRID CORBY | 4/29/2016
4/27/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Wind Turbine
Storage | Wind Turk
Battery | bine | 135.3
313.5 | | 125 Energy On HUMBOLE CA
300 Full Capac SOLANO CA | PGAE | Bridgeville ######## NA
Vaca-Dixor ######## 6/1/2022 NA | Complete | Complete NA
Complete NA | Executed
In Progress | | 127 | CASCADE ENERGY STORAGE | 5/2/2016 | 5/2/2016 ACTIVE | C09 | Storage | Battery | | 25.2 | | 25 Full Capac SAN JOAQ CA | PGAE | Weber Sut ######## ####### NA | Complete | Complete NA | Executed | | 127
127 | KOLA MULQUEENEY RANCH WIND | 4/26/2016
5/2/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Storage
Wind Turbine | Battery
Wind Turk | bine | 418
114 | | 418 Full Capac ALAMEDA CA
20 Full Capac ALAMEDA CA | PGAE | Tesla Subs ######## NA Tesla 230 3/1/2020 ######## NA | | Complete NA
Complete NA | Executed
Executed | | 128 | WALKER RIDGE | 5/23/2016 | 5/2/2016 ACTIVE | C09 | Wind Turbine | Wind Turk | bine | 144.9 | 200 | 140.9 Partial Del LAKE CA | PGAE | Cortina-M 2/1/2019 ####### NA | Complete | Complete NA | Executed | | 129
129 | SIGNAL PEAK | 4/28/2016
4/28/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09 | Storage Photovolt
Photovoltaic | Solar Solar | Solar | 20
400 | 300 | 300 Full Capac MARICOP, AZ
400 Energy On YUMA AZ | SDGE
SDGE | Hassayam ################################### | | Complete NA
Complete NA | Executed
In Progress | | 129
130 | MARVEL SOL CATCHER BESS | 4/26/2016
5/3/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Storage
Storage | Battery
Battery | | 405.9
220 | | 400 Full Capac RIVERSIDE CA
213.5 Energy On RIVERSIDE CA | SCE | Devers Sul 4/1/2022 1/1/2023 NA
Red Bluff 2 ################################## | | Complete NA
Complete NA | Executed
In Progress | | 130 | CALCITE SOLAR 1 | 4/22/2016 | 5/2/2016 ACTIVE | C09 | Photovolti Storage | Solar | Battery | 102.9 | 20.7 | 100 Energy On SAN BERN, CA | SCE | Calcite 23(8/1/2020 ####### NA | Complete | Complete NA | In Progress | | 131
131 | | 4/28/2016
4/28/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Photovolti Storage
Photovolti Storage | Solar
Solar | Battery
Battery | 156
197.6 | 72
96 | 144 Full Capac SAN BERN, CA
182 Full Capac SAN BERN, CA | SCE
SCE | Coolwater ######### NA Kramer Su ######## ######## NA | | Complete NA
Complete NA | Executed
Executed | | 131 | DAGGETT SOLAR 3 | 4/28/2016 | 5/2/2016 ACTIVE | C09 | Photovolti Storage | Solar | Battery | 324.5 | 150 | 300 Full Capac SAN BERN, CA | SCE | Kramer Su ######## ####### NA | Complete | Complete NA | Executed | | 131
132 | 9 WILLY 9
2 SOLAR STAR 3 | 4/25/2016
4/25/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09 | Photovoltaic
Storage Photovolt | Solar
Battery | Solar | 259.8
24.95 | 25 | 250 Full Capac KERN CA
24 Full Capac KERN CA | SCE
SCE | Whirlwind ######## NA Whirlwind ######## NA | | Complete NA
Complete NA | Executed
Executed | | 132 | SOLAR STAR 4 | 4/25/2016 | 5/2/2016 ACTIVE | C09 | Storage Photovolt | Battery | Solar | 24.95 | 25.05 | 24 Full Capac KERN CA | SCE | Whirlwind ######## ####### NA | Complete | Complete NA | Executed | | 132
132 | | 4/27/2016
4/27/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09 | Photovoltaic
Photovoltaic | Solar
Solar | | 311.4
208 | | 300 Full Capac KERN CA
200 Energy On KERN CA | SCE | Windhub! ######## 6/1/2022 NA
Vincent Su ######## 6/1/2022 NA | | Complete NA
Complete NA | In Progress
In Progress | | 132
132 | 7 CYCLONE SOLAR
9 TROPICO SOLAR | 4/29/2016
4/29/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Photovoltaic
Photovolti Storage | Solar
Solar | Battery | 57.95
112.3 | 40 | 56.87 Full Capac KERN CA
110 Full Capac KERN CA | SCE
SCE | Whirlwind 7/1/2019 ####### NA
Whirlwind ######## ####### NA | Complete | Complete NA
Complete NA | In Progress
Executed | | 133 | CLOVER ENERGY STORAGE PLANT | 5/2/2016 | 5/2/2016 ACTIVE | C09 | Storage | Battery | pattery | 300 | 40 | 120 Full Capac LOS ANGE CA | SCE | Antelope : 6/1/2019 ####### NA | Complete | Complete NA | Executed | | 133
133 | | 5/2/2016
4/27/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Photovoltaic
Photovoltaic | Solar
Solar | | 106.9
380.1 | | 105.2 Full Capac KERN CA
375 Full Capac CLARK NV | SCE | Pastoria St 9/1/2019 ######## NA
Mohave St ################################### | | Complete NA
Complete NA | Executed
In Progress | | 133 | TECHREN SOLAR | 4/29/2016 | 5/2/2016 ACTIVE | C09 | Photovoltaic | Solar | | 300 | | 300 Full Capac CLARK NV | SCE | SCE owner ######## ####### NA | Complete | Complete NA | Executed | | 134
134 | | 4/26/2016
5/2/2016 | 5/2/2016 ACTIVE
5/2/2016 ACTIVE | C09
C09 | Photovoltaic
Wind Turbine | Solar
Wind Turk | bine | 254.1
310 | | 250 Full Capac CLARK NV
303 Partial Del CLARK NV | GWT | Crazy Eyes ######## ####### NA
Sloan Cany ######## ####### NA | | Complete NA
Complete NA | Executed
Executed | | 134 | ARAMIS POWER PLANT | 4/28/2017 | 5/1/2017 ACTIVE | C10 | Photovolti Storage | Solar | Battery | 101.4 | 101.3 | 100 Full Capac ALAMEDA CA | PGAE | Cayetano! ######## ####### NA | Complete | Complete NA | Executed | | 135
135 | 4 EAST-BAY-WIND | 5/1/2017
4/25/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic
Wind Turbine | Solar
Wind Turk | | 20.32
153 | | 20 Full Capac STANISLAL CA
150 Full Capac ALAMEDA CA | PGAE
PGAE | Crow Cree ############### NA Tesla Subs #################################### | Complete | Complete NA
Complete NA | In Progress | | 136
136 | SAND HILL C WEST FORD FLAT ENERGY STORAGE | 4/29/2017
4/28/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Wind Turbine | Wind Turk
Battery | | 84.25
26.25 | | 80.8 Full Capac ALAMEDA CA
25 Full Capac LAKE CA | PGAE | Delta Swits ######### NA
Fulton Sut 1/1/2020 ######## NA | Complete | Complete NA | Executed | | 136 | WILBUR ENERGY STORAGE | 5/1/2017 | 5/1/2017 ACTIVE | C10 | Storage
Storage | Battery | | 94.5 | | 91.3 Full Capac CONTRA C CA | PGAE | Contra Co: ######## ####### NA | Complete | Complete NA
Complete NA | | | 137-
137- | ELKHORN ENERGY STORAGE
GONZAGA WIND FARM | 5/1/2017
4/27/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Storage
Wind Turbine | Battery
Wind Turk | hine | 189
80 | | 182.5 Full Capac MONTERE CA
76.35 Energy On MERCED CA | PGAE
PGAE | Moss Lanc ######## ####### NA
Los Banos #################################### | | Complete NA
Complete NA | Executed
Executed | | 137 | HEARTLAND 1 | 4/26/2017 | 5/1/2017 ACTIVE | C10 | Photovoltaic | Solar | w.176 | 156 | | 150 Energy On FRESNO CA | PGAE | Tranquility 9/1/2021 ####### NA | Complete | Complete NA | In Progress | | 138
138 | D HEARTLAND 2
2 LAS CAMAS 1 | 4/26/2017
4/29/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic
Photovoltaic | Solar
Solar | | 156.1
102.5 | | 150 Energy On FRESNO CA
100 Full Capac MERCED CA | PGAE | Tranquility 9/1/2021 9/1/2021 NA
Los Banos #################################### | | Complete NA
Complete NA | In Progress | | 138 | VANGUARD SOLAR BESS | 4/29/2017 | 5/1/2017 ACTIVE | C10 | Storage Photovolt | Battery | Solar | 47 | 153.32 | 150 Full Capac FRESNO CA | PGAE | Mustang S 7/1/2020 ####### NA | Complete | Complete NA | | | 138
139 | | 5/1/2017
4/29/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic
Photovoltaic | Solar
Solar | | 128.2
205.1 | | 125 Full Capac FRESNO CA
200 Full Capac FRESNO CA | PGAE
PGAE | Gates Sub: ######## ####### NA Tranquility ################### NA | | Complete NA
Complete NA | | | 139
139 | WARRIORS SOLAR 4 DRIFTWOOD STELLA | 4/28/2017
4/29/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic
Photovoltaic | Solar
Solar | | 40.69
207.4 | | 40 Full Capac FRESNO CA
200 Full Capac KERN CA |
PGAE | Crescent S ######## ####### NA
Midway St ######## ######## NA | | Complete NA
Complete NA | In Progress | | 139 | 7 SANDRINI SOL 1 | 4/29/2017 | 5/1/2017 ACTIVE | C10 | Photovoltaic | Solar | | 104.2 | | 100 Full Capac KERN CA | PGAE | Wheeler R ######## ####### NA | Complete | Complete NA | In Progress | | 139 | SANDRINI SOL 2 | 4/29/2017 | 5/1/2017 ACTIVE | C10 | Photovoltaic | Solar | | 205.1 | | 200 Full Capac KERN CA | PGAE | Wheeler R ######## NA | Complete | Complete NA | In Progress | | 1402 | ATLAS SOLAR | 4/28/2017 | 5/1/2017 ACTIVE | C10 | Storage Photovolt: Battery | Solar 1920 | 0 3200 | 2200 Full Capac LA DA7 A7 | DCRT | Delaney-C ######## ######## NA | Complete Complete NA | |--------------|--|------------------------|--|------------|--|----------------------------------|----------|--|--------------|--|--| | 1402 | HARQUAHALA FLATS
ATHOS POWER PLANT | 5/1/2017
4/28/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | | Battery 450
450 | 0 450 | 3200 Full Capac LA PAZ AZ
450 Full Capac MARICOP) AZ
450 Full Capac RIVERSIDE CA | DCRT
SCE | Colorado F ################################### | Complete Complete NA
Complete Complete NA
Complete Complete NA | | 1405 | MESAVILLE SOLAR | 5/1/2017 | 5/1/2017 ACTIVE | C10 | Photovolti Storage Solar | Battery 476.3 | 3 229.9 | 675 Full Capac RIVERSIDE CA | SCE | Colorado F 9/1/2021 ####### NA | Complete Complete NA | | 1414 | BALDY MESA
HIGH 5 SOLAR | 4/29/2017
4/28/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic Solar | Solar 110
100 | 0 | 100 Full Capac SAN BERN, CA
100 Full Capac SAN BERN, CA | SCE | Roadway S ################################### | Complete Complete NA
Complete Complete NA | | 1415
1419 | RUBITA
CAMINO SOLAR | 4/28/2017
4/27/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic Solar
Photovolti Storage Solar | 102.2
Battery 44.88 | | 100 Full Capac SAN BERN, CA
54.28 Full Capac KERN CA | SCE
SCE | Kramer-Im ######## ####### NA Whirlwind ######## NA | Complete Complete NA
Complete Complete NA | | 1424
1427 | SAGEBRUSH SOLAR 4
DARLINGTON BALLEY SOLAR ENERGY 1 | 4/28/2017
5/1/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Photovoltaic Solar | 524
Battery 125 | | 500 Energy On KERN CA
125 Full Capac MARICOP/ AZ | SCE
SDGE | Windhub! ######## ####### NA
Hassayam ######## ####### NA | Complete Complete NA | | | MAVERICK
MOUNT LAGUNA WIND 2 | 4/27/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Storage Battery Wind Turbine Wind Turbi | 10 | 0 | 10 Full Capac SAN DIEG(CA
400 Full Capac SAN DIEG(CA | SDGE
SDGE | Miramar G ######## ####### NA
Suncrest-C 6/1/2020 6/1/2020 NA | Complete Complete NA
Complete Complete NA | | | ROSEBUD
STARLIGHT SOLAR | 4/27/2017
5/1/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Storage Battery | 10 | D | 10 Full Capac SAN DIEG(CA | SDGE
SDGE | Kearny 69 ################### NA
Boulevard 6/1/2020 ######### NA | Complete Complete NA | | 1434 | TOP GUN ENERGY STORAGE | 4/28/2017 | 5/1/2017 ACTIVE | C10 | Photovoltaic Solar
Storage Battery | 30 | D | 20 Full Capac SAN DIEG(CA
30 Full Capac SAN DIEG(CA | SDGE | Mirmar GT ######## ####### NA | Complete Complete NA
Complete Complete NA | | 1435 | VIKTORIA SOLAR
WESTSIDE CANAL ENERGY CENTER | 4/24/2017
5/1/2017 | 5/1/2017 ACTIVE
5/1/2017 ACTIVE | C10
C10 | Storage Photovolti Battery | Battery 250
Solar 400 | 0 25 | 250 Full Capac YUMA AZ
425 Full Capac IMPERIAL CA | SDGE
SDGE | Hoodoo W ######## ######## NA
Imperial V ######## ######## NA | Complete Complete NA
Complete Complete NA | | 1439
1440 | WIND WALL MONOLITH 1
WIND WALL MONOLITH 2 | 4/30/2018
4/30/2018 | 4/17/2018 ACTIVE
4/17/2018 ACTIVE | FT
FT | Wind Turbine Wind Turbi
Wind Turbine Wind Turbi | ine 3.7 | 7 | 4.96 Energy On KERN CA
3.7 Energy On KERN CA | SCE
SCE | Vincent Su ######### ######### Offered
Vincent Su ################################### | NA NA NA
NA NA NA | | | KERNRIDGE EXPANSION
AJO POWER BANK | 2/20/2018
4/5/2018 | 5/17/2018 ACTIVE
4/16/2018 ACTIVE | C11 | Photovoltaic Solar
Storage Battery | 26.5
124.3 | | 0 Energy On KERN CA
120 Full Capac SANTA CL/ CA | PGAE
PGAE | Kern Ridge ############## NA
Llagas-Gilr #################################### | NA
Complete NA | | 1443
1444 | ANGELA
BEAUCHAMP SOLAR | 4/13/2018
4/4/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Photovoltaic Solar
Photovoltaic Solar | 141.:
150 | | 40 Full Capac TULARE CA
150 Full Capac COLUSA CA | PGAE
PGAE | Olive Swit: ######## ####### NA Cortina Su ######## ######## NA | Complete NA
Complete NA | | 1454
1455 | HUMMINGBIRD ENERGY STORAGE JANUS | 4/9/2018
4/12/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Storage Battery Storage Photovolti Battery | Solar 15 | | 75 Full Capac SANTA CL/ CA
80 Full Capac COLUSA CA | PGAE
PGAE | Metcalf 11 ######## ####### NA Cortina Su ######## ######## NA | Complete NA
Complete NA | | 1456 | LAS CAMAS 3
MILPA POWER BANK | 4/10/2018
4/9/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Photovoltaic Solar
Storage Battery | 102.5 | | 100 Full Capac MERCED CA
3 Full Capac SANTA CL/ CA | PGAE
PGAE | Los Banos ######## ######## NA
Los Estero ########################## | Complete NA
Complete NA | | 1459
1460 | MULQUEENEY RANCH WIND 2
PINTO PASS | 4/12/2018
4/12/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11 | Wind Turbine Wind Turbi
Storage Battery | | 5 | 60 Full Capac ALAMEDA CA
20 Full Capac CONTRA C CA | PGAE
PGAE | Tesla Subs #################################### | Complete NA
Complete NA | | 1461 | RECLAIMED WIND
SOLANO 4 WIND | 4/4/2018 | 4/16/2018 ACTIVE | C11 | Wind Turbine Wind Turbi | ine 112.2 | 2 | 90.7 Full Capac ALAMEDA CA | PGAE
PGAE | Kelso - Tes ################################### | Complete NA | | 1453 | CABALLERO STORAGE | 4/13/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11 | Wind Turbine Wind Turbi
Storage Battery | 106.2 | 2 | 90.8 Full Capac SOLANO CA
99.7 Full Capac SAN LUIS (CA | PGAE | Mesa Subs ######## ####### NA | Complete NA
Complete NA | | 1472
1479 | DALLAS ENERGY STORAGE
KEY STORAGE 1 | 4/11/2018
4/11/2018 | 4/18/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Storage Battery
Storage Battery | 500
309.3 | 3 | 400 Full Capac MONTERE CA
300 Full Capac FRESNO CA | PGAE
PGAE | Moss Lanc ######## ######## NA Gates Sub ######## ########### NA | Complete Complete NA
Complete NA | | 1491 | PANOCHE ENERGY CENTER C11
TEPONA OFF-SHORE WIND | 4/14/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Gas Turbine Natural Gas
Wind Turbine Wind Turbi | ine 161.9 | 9 | 63 Full Capac FRESNO CA
156 Full Capac HUMBOLE CA | PGAE
PGAE | Panoche S 7/1/2020 7/1/2020 NA
Humboldt ######## ####### NA | Complete NA
Complete NA | | 1492
1493 | WINDCHARGER ESS
AZALEA | 4/12/2018
4/16/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Storage Battery
Photovoltaic Solar | 150
61.3 | | 150 Full Capac SOLANO CA
60 Full Capac KERN CA | PGAE
PGAE | Birds Land ######## NA Arco Subst ######## NA | Complete NA
Complete NA | | 1495
1496 | CHALAN SOLAR
DESCENDANT RANCH 1 | 4/13/2018
4/11/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | | Solar 25.3
Solar 510 | | 64.9 Full Capac KERN CA
500 Full Capac COLUSA CA | PGAE
PGAE | Arco Subst ######## ####### NA Delevan St ######## ######## NA | Complete NA
Complete NA | | | JASMINE
PROSPECT ENERGY STORAGE | | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11 | Photovoltaic Solar
Storage Battery | 71.16 | 5 | 70 Full Capac KERN CA
49.9 Full Capac SACRAMEI CA | PGAE
PGAE | Lakeview : ################################### | Complete NA
Complete NA | | 1510
1516 | BELLEFIELD SOLAR FARM REXFORD SOLAR FARM | 4/16/2018
4/16/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Photovolti Storage Solar | Battery 500
Battery 300 | 500 | 500 Full Capac KERN CA
300 Full Capac TULARE CA | SCE | Windhub: #################### NA Vestal Sub ################################### | Complete NA
Complete NA | | 1518 | SANBORN SOLAR 2 | 4/13/2018 | 4/16/2018 ACTIVE | C11 | Photovoltaic Solar | 518.5 | 5 | 500 Full Capac FORKE CA
500 Full Capac KERN CA
100 Full Capac SAN BERN CA | SCE | Windhub: #################################### | Complete NA | | 1522 | BALDY MESA 2
ARIDA SOLAR FARM | 4/16/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11 | | 110.9
Solar 370 | 370 | 370 Full Capac CLARK NV | SCE | Mohave Si ######## ####### NA | Complete NA
Complete NA | | 1524
1526 | SUNVALE SOLAR FARM
QUARTZITE SOLAR 11 | 4/16/2018
4/11/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11 | Storage Photovolti Battery | Solar 600
Solar 46.05 | | 600 Full Capac CLARK NV
150 Full Capac RIVERSIDE CA | SCE
SCE | Eldorado S ######## ####### NA
Colorado F ######## ######## NA | Complete NA
Complete NA | | | WINDY WASH SOLAR
CENTENNIAL FLATS | | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Photovoltaic Solar
Photovolti Storage Solar | Battery 514.6 | | 79 Full Capac RIVERSIDE CA
500 Full Capac LA PAZ AZ | SCE
DCRT | Devers Sul ######## 2/1/2023 NA
Delaney-C ######### ######## NA | Complete NA
Complete NA | | 1531
1532 | BATERIA DEL SUR
KETTLE SOLAR ONE |
4/16/2018
4/16/2018 | 4/16/2018 ACTIVE
4/16/2018 ACTIVE | C11
C11 | Storage Battery | 350
Battery 90 | | 350 Full Capac TBD MX
90 Full Capac SAN DIEG(CA | SDGE
SDGE | Imperial V 5/1/2022 ####### NA
New Switc ######## ####### NA | Complete NA
Complete NA | | 1534 | VULCAN CAMPTONVILLE BIOPOWER1 | 4/11/2018
3/4/2019 | 4/16/2018 ACTIVE
4/5/2019 ACTIVE | C11
ISP | | Solar 28.8 | 8 225 | 250 Full Capac MARICOP/ AZ
5 Full Capac YUBA CA | SDGE
PGAE | Hassayam 5/1/2021 ######## NA
COLGATE- ######## ######## NA | Complete NA
NA | | | | 11/19/2018
3/5/2019 | 4/5/2019 ACTIVE
5/7/2019 ACTIVE | ISP
ISP | Storage Battery Storage Battery | 40.5
782.1 | 5 | 40 Full Capac SONOMA CA
750 Full Capac MONTERE CA | PGAE
PGAE | Geysers #: ################################## | NA
Complete Complete NA | | 1540 | PLANO STORAGE
BRIGHT STAR HYBRID | 3/5/2019
4/5/2019 | 5/7/2019 ACTIVE
4/15/2019 ACTIVE | ISP
C12 | Storage Battery | 365
Solar 356.8 | 5 | 350 Full Capac MONTERE CA | PGAE
PGAE | Moss Lanc #################################### | Complete Complete NA
NA | | 1542 | CAPETOWN 2 HYBRID | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Storage Wind Turk Battery | Wind Turb 50.88 | B 54.6 | 350 Full Capac SAN JOAQ CA
100 Full Capac HUMBOLE CA | PGAE | Bridgeville ######## ####### NA | NA | | 1545 | BEAUCHAMP 2 SOLAR
MARESTE BESS | 4/4/2019
4/12/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery | Battery 150
100.4 | 4 | 150 Full Capac COLUSA CA
100 Full Capac ALAMEDA NN | PGAE
PGAE | Cortina Su ######## ######## NA Grant East #################################### | NA
NA | | 1546
1548 | TATTON STORAGE 1
LORINER STORAGE | 4/14/2019
4/6/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 30.58
30.48 | | 30 Full Capac MENDOCI CA
30 Full Capac SANTA CL/ CA | PGAE
PGAE | Elk-Gualal: ######## ####### NA
Morgan Hi ######## ######## NA | NA
NA | | | MIRANDA ESS
TANAGER STORAGE | 4/4/2019
4/2/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 200
200 | | 200 Full Capac SANTA CL/ CA
200 Full Capac SANTA CL/ CA | PGAE | Los Estero ######## ####### NA Los Estero ######## ######## NA | NA
NA | | 1552
1553 | CORMORANT STORAGE
JEWELFLOWER STORAGE | 4/2/2019
4/5/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 250
354.9 | | 250 Full Capac SAN FRAN CA
350 Full Capac SANTA CL/ CA | PGAE
PGAE | Martin Sut ######## ####### NA Metcalf Su ################################### | NA
NA | | 1554
1555 | HERCULIS
STEEL CITY ENERGY STORAGE | 4/5/2019
4/4/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 101.2 | | 100 Full Capac ALAMEDA CA
1311 Full Capac CONTRA C CA | PGAE
PGAE | Oakland J- ######## ####### NA
Pittsburg 5 4/1/2022 4/1/2022 NA | NA
NA | | | SPINDRIFT HYBRID SOLAR
NOOSA ENERGY STORAGE | 4/6/2019
4/15/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 101.7 | 7 101.73 | 100 Full Capac SUTTER CA
100 Full Capac SAN JOAQ CA | PGAE
PGAE | Rio Oso Su ######## NA
Ripon Sub ######## ####### NA | NA
NA | | 1558 | HYDASPES | 4/4/2019 | 4/15/2018 ACTIVE | C12 | Storage Photovolti Battery | Solar 41.44 | 4 40.562 | 40 Full Capac STANISLAL CA | PGAE | Miller#1T ######## ####### NA | NA. | | | TEMPEST GENERATION
TESOSTER | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 61.26 | 5 244.26 | 1500 Full Capac HUMBOLE CA
240 Full Capac SAN JOAQ NN | PGAE
PGAE | Round Mo ######## ######## NA
Tesla-Web ######## ######### NA | NA
NA | | 1564
1565 | TRIM BESS
DYNAMO SOLAR | 4/8/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Photovoltaic Solar | 100.4 | D | 100 Full Capac SANTA CL/ NN
30 Full Capac NAPA CA | PGAE
PGAE | Trimble Su ######## ####### NA Tulucay Su ######## NA | NA
NA | | 1566
1568 | TYRE AIR STATION 1 | 4/4/2019
4/16/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Battery 55.73
Battery 21.05 | | 55 Full Capac SAN JOAQ CA
40 Full Capac KINGS NN | PGAE | Valley Spri ######## ####### NA
Henrietta- ######## ####### NA | NA
NA | | | OSO ROJO POPPY
BOYCE SOLAR HYBRID | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Photovoltaic Solar
Photovolta Storage Solar | 184.5
Battery 27.5 | | 190 Full Capac FRESNO CA
23 Full Capac FRESNO CA | PGAE
PGAE | Gates Sub: ######## ####### NA Jayne Sub: ######## ########################### | NA
NA | | 1574
1578 | BIG DUCK STORAGE
JOURNEY STORAGE | 4/15/2019
4/5/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 462
354.5 | 2 | 400 Full Capac FRESNO CA
350 Full Capac KINGS CA | PGAE
PGAE | Panoche S 7/1/2022 7/1/2022 NA
Henrietta: ################################### | NA
NA | | 1581 | PINEBROOK SOLAR HYBRID ENERGY CENTER
SUGARLOAF HYBRID SOLAR | 4/1/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12 | Storage Photovolti Battery | Solar 1533
Battery 152.8 | 7 1537 | 1500 Full Capac FRESNO CA
150 Full Capac FRESNO CA | PGAE
PGAE | Los Banos: ######## ######## NA Panoche S ######## ######## NA | NA
NA | | | RIVIERA SOLAR | 12/27/2018 | 4/15/2019 ACTIVE | C12 | Photovoltaic Solar | 75 | 5 | 75 Full Capac MADERA CA | PGAE | Wilson-Or ######## ####### NA | NA | | 1586
1587 | ARCTURUS
KINGSROAD HYBRID SOLAR | 4/4/2019
4/16/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery | Solar 152.3
Solar 101.8 | 8 101.78 | 150 Full Capac KERN CA
100 Full Capac KERN CA | PGAE
PGAE | Arco Subst #################################### | NA
NA | | | NIMITZ 2 GENERATION
CARTHAGE | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Battery 55.9 | 9 55.8 | 1500 Full Capac SAN LUIS (CA
55 Full Capac KERN CA | PGAE
PGAE | Diablo Car 4/1/2026 4/1/2026 NA
Midway-Ti ######## ######## NA | NA
NA | | | OATFIELD HYBRID SOLAR
PELICANS JAW HYBRID SOLAR | 4/9/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolt: Battery | Battery 500
Solar 500 | 500 | 500 Full Capac KINGS CA
500 Full Capac KINGS CA | PGAE
PGAE | Gates-Terr ################################### | NA
NA | | | GRAND LAKE HYBRID SOLAR
OSO ROJO PEONY | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery
Photovoltaic Solar | Solar 250
358.9 | | 250 Full Capac KINGS CA
350 Full Capac KERN CA | PGAE
PGAE | Gates-Mid ######## ####### NA
Midway 2: ######## ######## NA | NA
NA | | | BUTTONBUSH SOLAR HYBRID ENERGY CENTER
OSO ROJO GOLF COURSE | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery
Photovoltaic Solar | Solar 818
139.7 | | 800 Full Capac KERN CA
138 Full Capac KERN CA | PGAE
PGAE | Midway St. ######## ####### NA
Midway-W ######## ####### NA | NA
NA | | 1598
1599 | AGUA AMARGA WIND
LION ROCK OFFSHORE WIND | 4/12/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Wind Turbine Wind Turbi
Wind Turbine Wind Turbi | | | 400 Full Capac SAN LUIS (CA
605 Full Capac SAN LUIS (CA | PGAE
PGAE | SOLARSS S ######## ####### NA
Morro Bay 4/1/2026 4/1/2026 NA | NA
NA | | | SEAWOLF GENERATION
FAMILIA HYBRID SOLAR | 4/8/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Wind Turk Battery | Wind Turk 319.4
Battery 202.5 | 4 1568 | 1500 Full Capac SAN LUIS (CA
200 Full Capac MARICOP) CA | PGAE
PGAE | Midway-D ######## ####### NA
Midway-N ######## ######## NA | NA
NA | | | RIGAL
ARATINA SOLAR FARM | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery | Solar 20:
Solar 20: | 3 203 | 200 Full Capac KERN CA
200 Full Capac KERN CA
200 Full Capac KERN CA | SCE
SCE | Inyokern-F #################################### | NA
NA
NA | | 1605 | AKATINA SOLAK FAKM CAYENNE ENERGY STORAGE AVOCET STORAGE | 4/16/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery | Solar 200
102.:
200 | 1 | 100 Full Capac LOS ANGE CA | SCE
SCE | Chino Sub ################################### | NA
NA
NA | | | HINSON BESS | 4/10/2019 | 4/15/2019 ACTIVE | C12 | Storage Battery Storage Battery | 308.1 | 1 | 200 Full Capac LOS ANGE CA
300 Full Capac LOS ANGE CA | SCE | Hinson Su ######## ####### NA | NA | | 1611 | SUPERBA STORAGE 1 COMMERCE ENERGY STORAGE | 4/9/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12 | Storage Battery Storage Battery | 305
250 | 0 | 300 Full Capac ORANGE CA
250 Full Capac LOS ANGE CA | SCE | Johanna S ################## NA
Laguna Be 1/1/2023 1/1/2023 NA | NA
NA | | 1613 | SPEEDWAY ESS
TRESTLES ENERGY STORAGE | 4/16/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 200
433.8 | В | 200 Full Capac LOS ANGE CA
400 Full Capac LOS ANGE CA | SCE
SCE | Rio Hondo ######## ######## NA
Rio Hondo ######## ######## NA | NA
NA | | | KESTREL STORAGE
HIGHWIND ENERGY CENTER | 4/13/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | 200
Wind Turb 28.38 | 8 64.8 | 200 Full Capac LOS ANGE CA
115 Full Capac KERN CA | SCE
SCE | Walnut Su ######## ####### NA
Highwind: ######## ####### NA | NA
NA | | 1617 | SEGS EXPANSION HYBRID
DORADUS | 4/5/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery | Solar 73.26
Solar 203 | | 150 Full Capac SAN BERN, CA
200 Full Capac KERN CA | SCE
SCE | Kramer Su ################################### | NA
NA | | | GOLDBACK SOLAR CENTER
ROCKY HILL SOLAR | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 500
Battery 100 | | 500 Full Capac VENTURA
CA
100 Full Capac TULARE CA | SCE
SCE | Moorpark 6/1/2023 6/1/2023 NA
Rector Sub ######### ######## NA | NA
NA | | | YELLOW HAY HYBRID SOLAR
BARRENSPRING | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Photovolti Storage Solar | Battery 200
Solar 64.1 | 200 | 200 Full Capac TULARE CA
240 Full Capac TULARE C(NN | SCE
SCE | Magunder ######## ####### NA
Springville ################################### | NA
NA | | 1625
1626 | ANGELENO SOLAR FARM SAGEBRUSH 6 HYBRID | 3/31/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery | Solar 1150
Battery 116 | 0 1150 | 1150 Full Capac LOS ANGE CA
200 Full Capac KERN CA | SCE
SCE | Vincent Su 6/1/2023 6/1/2023 NA
Vincent Su ################################### | NA
NA
NA | | 1628 | FORT TEJON SOLAR | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Photovolti Storage Solar | Battery 310.2 | 2 306.26 | 300 Full Capac LOS ANGE CA | SCE | Vincent Su ######## ####### NA | NA | | 1629
1631 | HUMIDOR STORAGE 1
GLENFELIZ SOLAR FARM | 4/1/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12 | | 305
Solar 500 | 500 | 300 Full Capac LOS ANGE CA
500 Full Capac KERN CA | SCE | Vincent Su ################################### | NA
NA | | | SANBORN HYBRID 3
YEAGER HYBRID SOLAR | 4/15/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Photovolti Storage Solar | Solar 671.6
Battery 406.6 | 6 406.56 | 1500 Full Capac KERN CA
400 Full Capac KERN CA | SCE
SCE | Windhub: ######## NA
Windhub: ######## NA | NA
NA | | | CALYPSO SOLAR
SOLO | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 200
Solar 518.4 | | 400 Full Capac RIVERSIDE CA
500 Full Capac RIVERSIDE CA | SCE
SCE | Colorado F ######### ######## NA Colorado F ################################### | NA
NA | | 1640
1641 | SUNNYNOOK SOLAR CENTER
RAMPA | 4/12/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Battery 514.4 | 4 514.35 | 500 Full Capac RIVERSIDE CA
100 Full Capac SAN BERN. CA | SCE
SCE | Devers-Sai 6/1/2023 6/1/2023 NA
Etiwanda ! ################################### | NA
NA | | | OBERON
LYCAN SOLAR | 4/2/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Photovolti Battery | Solar 518.4
Battery 400 | 4 518.4 | 500 Full Capac RIVERSIDE CA
400 Full Capac RIVERSIDE CA | SCE
SCE | Red Bluff S ######### ######## NA Red Bluff S ################################## | NA
NA | | | SAN BERNARDINO BESS | 4/10/2019 | 4/15/2019 ACTIVE | C12 | Storage Battery | 308. | 1 | 300 Full Capac SAN BERN, CA | SCE | San Bernai ######## ####### NA | NA | | 1645
1646 | MENIFEE POWER BANK DOUBLE BUTTE STORAGE | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Storage Battery
Storage Battery | 725
507.6 | 5 | 705 Full Capac RIVERSIDE CA
500 Full Capac RIVERSIDE CA | SCE
SCE | Valley Sub ################################### | NA
NA | | 1648 | ANGORA SOLAR FARM
BULLHEAD SOLAR | 4/5/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12 | Photovolti Storage Solar | Solar 700
Battery 400 | 200 | 700 Full Capac CLARK NV
400 Full Capac CLARK NV | SCE | Mohave Si ################ NA
Mohave Si ######### NA | NA
NA | | 1649
1650 | BONANZA SOLAR
ROUGH HAT HYBRID SOLAR | 4/15/2019 | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | Photovolti Storage Solar | Solar 150
Battery 204 | 4 200 | 300 Full Capac CLARK/NY NV
200 Full Capac NYE NV | GWT
GWT | Innovatior ######## ####### NA Trout Cany ######## ######## NA | NA
NA | | 1653
1654 | SLOAN ENERGY CENTER
YELLOW PINE 3 | | 4/15/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 118.6
Battery 26 | | 448 Full Capac CLARK NN
250 Full Capac CLARK NV | GWT
GWT | Sloan Cany ######## ####### NA Trout Cany ######## ######## NA | NA
NA | | 1655
1656 | BONANZA PEAK SOLAR FARM
GYPSY ESS | 4/12/2019 | 4/12/2019 ACTIVE
4/15/2019 ACTIVE | C12
C12 | | Solar 200
200 | 0 441 | 400 Full Capac CLARK ANI NV
200 Full Capac SAN DIEG(CA | GWT
SDGE | Trout Can, ######## ####### NA Bay-Bouler ######## NA | NA
NA | | | SANDPIPER STORAGE | | 4/15/2019 ACTIVE | C12 | Storage Battery | 200 | | 200 Full Capac ORANGE CA | SDGE | Capistranc ######### NA | NA. | | | | | | | | | | | | | | Executed In Progress In Progress Executed Executed In Progress Executed Executed | 1658 CARDINAL STORAGE | 4/1/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 200 | | 200 Full Capac IMPERIAL CA | SDGE | Imperial V ######## ####### NA | NA | |---|-----------|------------------|-----|-------------------|---------------------|-------|--------|------------------------------|------|----------------------------------|-----| | 1660 ENERGIA SIERRA JUAREZ WIND 3 | 3/29/2019 | 4/15/2019 ACTIVE | C12 | Wind Turbine | Wind Turbine | 352.5 | | 300 Full Capac TIJUANA MX | SDGE | ECO Subst ######## ####### NA | NA | | 1661 OBSIDIAN WIND | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Wind Turbine | Wind Turbine | 300 | | 300 Full Capac BAJA CALII MX | SDGE | ECO Subst ######## ####### NA | NA | | 1662 VENTASSO ENERGY STORAGE | 4/6/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 50.77 | | 50 Full Capac SAN DIEG(CA | SDGE | El Cajon St. ######## ####### NA | NA. | | 1663 HOODINI | 4/13/2019 | 4/15/2019 ACTIVE | C12 | Storage Photo | volt: Battery Solar | 112.6 | 459.54 | 450 Full Capac YUMA COI NN | SDGE | Hoodoo W ######## ####### NA | NA. | | 1664 TERMOELECTRICA DE MEXICALI STORAGE | 3/29/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 500 | | 500 Full Capac SONORA MX | SDGE | Imperial V ######## ####### NA | NA. | | 1665 KINGSLEY SOLAR FARM | 4/1/2019 | 4/15/2019 ACTIVE | C12 | Storage Photo | volt: Battery Solar | 360 | 360 | 360 Full Capac IMPERIAL CA | SDGE | Imperial V 6/1/2023 6/1/2023 NA | NA | | 1666 SALTON SOLAR | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Storage Photo | volt: Battery Solar | 210.6 | 421.2 | 400 Full Capac IMPERIAL CA | SDGE | Imperial V ######## ####### NA | NA | | 1667 WISTARIA RANCH SOLAR 2 | 4/12/2019 | 4/15/2019 ACTIVE | C12 | Photovolt: Storag | e Solar Battery | 153.7 | 52.13 | 150 Full Capac IMPERIAL CA | SDGE | Imperial V ######## ####### NA | NA. | | 1668 SUFFOLK STORAGE | 4/12/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 51 | | 50 Full Capac SAN DIEG(CA | SDGE | Mesa Heig ######## ####### NA | NA. | | 1669 POME BESS | 4/13/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 101.5 | | 100 Full Capac SAN DIEG(NN | SDGE | Pomerado ######## ####### NA | NA. | | 1670 PEREGRINE STORAGE | 4/1/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 200 | | 200 Full Capac SAN DIEG(CA | SDGE | Silvergate ######## ####### NA | NA. | | 1671 MARINE DEPOT | 4/16/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 26.6 | | 25 Full Capac SAN DEIG(NN | SDGE | Point Lom ######## ####### NA | NA. | | 1672 BOULDER OAKS HYBRID | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Wind Turb Storag | e Wind Turb Battery | 205.8 | 205 | 400 Full Capac SAN DIEG(CA | SDGE | ECO-Migu: ######## ####### NA | NA. | | 1673 NIGHTHAWK STORAGE | 4/2/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 300 | | 300 Full Capac SAN DIEG(CA | SDGE | Sycamore ######## ####### NA | NA | | 1674 SV ENERGY STORAGE FACILITY | 4/12/2019 | 4/15/2019 ACTIVE | C12 | Storage | Pumped-Storage hyd | 500 | | 500 Full Capac SAN DIEG(CA | SDGE | Sycamore 4/1/2026 4/1/2026 NA | NA | | 1675 RESAVA ENERGY STORAGE | 4/5/2019 | 4/15/2019 ACTIVE | C12 | Storage | Battery | 122 | | 120 Full Capac SAN DIEG(CA | SDGE | Valley Cen ######## ####### NA | NA. | | N/A Project not in queue | | | | | | | | | | | | | TBD To be determined | CSP Category RESOLVE Resource Southern_PGE_Wind Carrizo_Wind Southern_PGE_Wind Central_Valley_North_Los_Banos_Wind Southern_PGE_Wind Kern_Greater_Carrizo_Wind Southern_PGE_Wind Westlands_Ex_Wind Southern_CA_Desert_SoutheGreater_Imperial_Wind Southern_CA_Desert_South (SCADSNV_Wind Southern_CA_Desert_Southesouthern_California_Desert_Ex_Wind Southern_CA_Desert_Southern_Nevada_Wind Greater_Kramer_Wind Greater_Kramer_Wind Greater_Kramer_Wind Kramer_Inyokern_Ex_Wind Sacramento_River_Wind Humboldt_Wind Sacramento_River_Wind Northern_California_Ex_Wind Sacramento_River_Wind Sacramento_River_Wind Solano subzone Wind Sacramento_River_Wind Solano_Wind Tehachapi_Wind Tehachapi_Wind Wyoming_Wind Wyoming_Wind New_Mexico_Wind New_Mexico_Wind NW_Ext_Tx_Wind NW_Ext_Tx_Wind SW_Ext_Tx_Wind SW_Ext_Tx_Wind Humboldt_Bay_Offshore_WiCape_Mendocino_Offshore_Wind Humboldt_Bay_Offshore_WiDel_Norte_Offshore_Wind Humboldt Bay Offshore WiHumboldt Bay Offshore Wind Diablo_Canyon_Offshore_W Diablo_Canyon_Offshore_Wind_Ext_Tx Diablo_Canyon_Offshore_W Diablo_Canyon_Offshore_Wind Diablo_Canyon_Offshore_W Morro_Bay_Offshore_Wind Southern PGE Solar Carrizo Solar Southern_PGE_Solar Central_Valley_North_Los_Banos_Solar Southern PGE Solar Kern Greater Carrizo Solar Southern_PGE_Solar Westlands_Ex_Solar Southern_PGE_Solar Westlands_Solar Southern_CA_Desert_South@Greater_Imperial_Solar Southern CA Desert South@Riverside Palm Springs Solar Southern_CA_Desert_SoutheSCADSNV_Solar Southern CA Desert South Southern California Desert Ex Solar Southern CA Desert SoutheSouthern Nevada Solar Southern_CA_Desert_SoutheMountain_Pass_El_Dorado_Solar Southern_CA_Desert_South(Arizona_Solar Greater_Kramer_Solar Inyokern_North_Kramer_Solar Greater_Kramer_Solar Kramer_Inyokern_Ex_Solar Greater Kramer Solar North Victor Solar Sacramento_River_Solar Northern_California_Ex_Solar Sacramento_River_Solar Sacramento_River_Solar Sacramento River Solar Solano Solar Sacramento_River_Solar Solano_subzone_Solar Tehachapi Solar Tehachapi Solar Tehachapi_Ex_Solar # Standard LSE Plan [NAME OF FILING ENTITY] 2020 INTEGRATED RESOURCE PLAN [DATE] # **Table of Contents** | l. | Executive Summary | 3 | |------
--|----| | II. | Study Design | 3 | | a. | Objectives | 6 | | b | . Methodology | 6 | | | i. Modeling Tool(s) | 6 | | | ii. Modeling Approach | 7 | | III. | Study Results | 7 | | a. | Conforming and Alternative Portfolios | 7 | | b | Preferred Conforming Portfolios | 7 | | C. | GHG Emissions Results | 8 | | d | Local Air Pollutant Minimization and Disadvantaged Communities | 8 | | | i. Local Air Pollutants | 8 | | | ii. Focus on Disadvantaged Communities | 8 | | e. | Cost and Rate Analysis | 9 | | f. | System Reliability Analysis | 10 | | g | . Hydro Generation Risk Management | 13 | | h. | Long-Duration Storage Development | 13 | | i. | Out-of-State Wind Development | 13 | | j. | Transmission Development | 13 | | IV. | Action Plan | 14 | | a. | Proposed Activities | 14 | | b | Procurement Activities | 14 | | C. | Potential Barriers | 15 | | d | . Commission Direction or Actions | 15 | | e. | Diablo Canyon Power Plant Replacement | 15 | | V. | Lessons Learned | 15 | | Glo | ssary of Terms | 16 | ## How to use this template: - All LSEs required to file a Standard LSE Plan must use this template, as well as the accompanying Resource Data Template and Clean System Power calculator provided by staff. - All LSEs filing a Non-Standard Plan may use this template. If Non-Standard LSE Plan filers choose to submit this template, they do not have to submit the Clean System Power calculator tool, the Resource Data Template, or address any of the requirements based on contracted or planned resource information. - Instructions are provided in italics under each section. Delete all instructions before submitting the form, but preserve the numbered section headings. - Complete each section. If the section is not applicable to the LSE, simply indicate "Not applicable" and provide a brief explanation. - Definitions are provided in the Glossary of Terms at the end of this template. # I. Executive Summary Use this section to provide an overview of the process used by the LSE to develop its plan and summarize the LSE's findings, including a brief overview of the LSE's Preferred Conforming Portfolio and Action Plan. # II. Study Design Use this section to describe how the LSE approached the process of developing its LSE Plan. ## **Load Assignments for Each LSE** IOUs and CCAs should use the "mid Baseline mid AAEE" version of Form 1.1c of the California Energy Commission's (CEC) 2019 IEPR demand forecast for planning purposes across the IRP planning horizon (i.e., until 2030, for the purposes of 2020 IRP Filings), unless a different load forecast has been approved through an ALJ Ruling finalizing load forecasts and GHG benchmarks. ESPs should utilize load forecasts confidentially communicated to each ESP individually by Commission staff. Staff will aggregate any ESP submittals to protect confidentiality. LSEs may provide their own load or load modifier shapes in the Clean System Power (CSP) calculator, but, for "Conforming Portfolios," the total annual energy volumes for both load and load modifiers must remain consistent with their assigned forecast. If using their own shapes, LSEs must provide detailed explanations as to how their load or load modifier shapes were developed, including data sources. If LSEs to not provide their own specific shapes, they will be automatically assigned the default hourly shapes in the CSP calculator, which reflects the 2019 IEPR "mid Baseline mid AAEE" hourly forecast for the CAISO system average. LSEs are not be permitted to use an annual load forecast (MWh) that differs from the one assigned to it in IRP. ## **Required and Optional Portfolios** Each LSE must produce and submit at least two "Conforming Portfolios:" one that addresses the LSE's proportional share of the 46 MMT GHG target, and another that addresses the LSE's proportional share of a 38 MMT target. A Conforming Portfolio is one that utilizes the LSE's assigned load forecast and is consistent with the Commission-adopted Reference System Portfolio according to the following criteria: - For the 46 MMT conforming portfolio, achieves emissions equal to the LSE's 46 MMT 2030 GHG Emissions Benchmark. - For the 38 MMT conforming portfolio, achieves emissions equal to or less than the LSE's 38 MMT 2030 GHG Emissions Benchmark. - LSEs should use their individual load assignment as indicated above - Uses inputs and assumptions consistent with those used by staff to develop the Reference System Portfolio, with the following exceptions based on updated information: - If the LSE has better capital cost and financing information that more accurately reflects its situation, the LSE is free to use those inputs and/or assumptions. For example, an LSE may have its own view of future resource levelized costs and it is free to use this information to develop its portfolio. LSEs should clearly identify, and provide an explanation for, instances where it used its own assumption in lieu of the default used by staff to develop the RSP. - Baseline resources An LSE may have progressed with the development of resources since the formation of the baseline used in the Reference System Portfolio. The LSE is free to determine which of its resources are in its baseline when developing its portfolio, based on their latest information. - Completing all three filing items (Resource Data Template, CSP calculator, and Narrative template) according to completeness definition which has been provided in the "Filing Requirements Standards" document. For a more comprehensive definition of a conforming portfolio refer to the "Filing Requirements Overview" document. LSEs may study and report multiple Conforming Portfolios for each 2030 GHG target. LSEs are required to select two "Preferred Conforming Portfolios" among all Conforming Portfolios developed and submitted. One Preferred Conforming Portfolio that achieves emissions equal to the LSE's share of the 46 MMT GHG target, and a second Preferred Conforming Portfolio that achieves emissions equal to or less than the LSE's share of the 38 MMT GHG target. LSEs should justify the selections for each GHG target, including why the portfolio is consistent with all state goals and is the best representation for how the LSE plans to meet state goals. LSEs that submit a Preferred Conforming Portfolio that achieves less than its share of the 38 MMT target must also explain whether and how that portfolio might operate differently, from a reliability perspective, depending on whether other LSEs procure in a manner consistent with a 46 MMT or 38 MMT target. LSEs may also study and report additional "Alternative Portfolios" developed from different assumptions (including different annual levels of load modifiers) from the Reference System Plan. LSEs may propose to meet their load and GHG requirements with both supply-side and demand-side investments and must explain how these resources meet or beat their assigned load levels and GHG target. For all Alternative Portfolios developed, any deviations from the Conforming Portfolio must be explained and justified. If the LSE uses different annual levels of load modifiers as part of any Alternative Portfolio the LSE should report that information using the standard IEPR filing form templates¹ associated with that information. All Alternative and Conforming Portfolios must use the same assigned load forecast as a starting point, but Alternative Portfolios can use demand-side resources such as energy efficiency or electrification to deviate from the annual levels of load modifiers assigned to them for their Conforming Portfolios. CCAs are permitted, in the Action Plan section of this template, to also describe a procurement strategy certified by their governing board if it differs from the one associated with their Preferred Conforming Portfolio. IOUs should assume no procurement on behalf of non-bundled customers would be needed unless specifically required by the Commission. Additionally, each LSE should account for the costs and benefits of any resources subject to the cost allocation mechanism (CAM) in its Conforming Portfolios. In estimating its share of resources subject to the CAM, including for the purposes of entry into the Resource Data Template and Clean System Power calculator, each LSE should refer to the most recent year-ahead CAM resource list available on the Commission's Resource Adequacy Compliance Materials webpage. The year-ahead CAM list reflects the contract start and end dates of Commission approved CAM resources. The list itemizes the resource adequacy capacity value by month for each IOU service territory. In developing its Conforming Portfolios, each LSE should assume its future resource adequacy obligations are reduced by its proportional share of the resource adequacy capacity value reflected in the year-ahead CAM list, and then use the same methodology for estimating other costs and benefits associated with those resources. An LSE's proportional share is determined by its year-ahead share of the total coincident peak load for each IOU service territory, as assigned in the Commission's annual resource adequacy process. The LSE's proportional share of that resource is assumed static through the IRP planning horizon, but it will be updated each IRP cycle based on the current proportional share assignment from the Commission's annual resource adequacy process. LSEs should not make assumptions or predictions on what resources may be procured on behalf of all load and subject to the CAM in the future. ## **GHG Emissions Benchmark** LSEs have been assigned a new 2030 GHG Emissions Benchmark based on the results of the Reference System Portfolio, specifically the 2030 GHG planning target adopted by the Commission for the electric sector, calculated using the same methodology from the previous IRP cycle, and as established by the California Air Resources Board (CARB) 2018 Staff Report, "Senate Bill 350 Integrated
Resource Planning ¹ Forms used for the 2019 IEPR cycle are available here: https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2019-iepr; see the October 2018 Webinar on Forms and Instructions to Collect Electricity Demand Forecast and Electricity Resource Plan Data from Load-Serving Entities Electricity Sector Greenhouse Gas Planning Targets."² LSE GHG Benchmarks were assigned via ALJ Ruling on April 15, 2020 and are posted on the IRP website. Because the IEPR does not include load forecasts for individual ESPs, each ESP is required to calculate its own confidential GHG Emissions Benchmark based on its 2030 load share within the host IOU's territory. For any ESP that serves load in more than one IOU service territory, that ESP should add up the separate GHG Emissions Benchmarks calculated based on its share of direct access load for each IOU service territory to result in a single benchmark. The CSP calculator includes a table for performing this calculation in the tab titled "ESP GHG Benchmark." LSEs filing a Standard LSE Plan should use the CSP methodology and calculator for estimating their GHG emissions across the IRP planning horizon. It is important to note that neither emissions from, nor demand met by, Behind-the-Meter Combined Heat and Power (BTM CHP) resources are included in the CSP calculator. While individual LSEs are not required to plan to reduce BTM CHP emissions, these emissions nevertheless count towards the electric sector emissions total and are included in LSE GHG Benchmarks. Commission staff plans to account for 5.5 MMT of BTM CHP emissions when calculating electric sector emissions of the aggregated LSE portfolios during the development of the Preferred System Plan. When calculating emissions in the CSP calculator, LSEs should achieve GHG emissions results that are slightly below their GHG benchmarks to leave room in the system for BTM CHP emissions that will be added during the portfolio aggregation process. The CSP calculator tab titled "Benchmarks Net BTM CHP" contains the LSE-specific benchmarks that LSEs should use for planning when using the CSP calculator. LSEs should use this worksheet to look up the maximum GHG emissions that its portfolio in the calculator can achieve. # a. Objectives Provide a description of the LSE's objectives for the analytical work it is documenting in the IRP. # b. Methodology ## i. Modeling Tool(s) Name all modeling software used by LSE to develop its IRP, if any, and include the vendor and version number. Provide an explanation of differences between the LSE's modeling tool and RESOLVE, and an explanation of how those differences should be considered during evaluation of the LSE's portfolio(s). ² Available at https://ww3.arb.ca.gov/cc/sb350/staffreport_sb350_irp.pdf. ## ii. Modeling Approach Describe the LSE's overall approach to developing the scenarios it evaluated, and explain why each scenario was considered. Also describe any calculations, including post-processing calculations, used to generate metrics for portfolio analysis. # III. Study Results Use this section to present the results of the analytical work described in Section 2: Study Design. # a. Conforming and Alternative Portfolios Provide a list of all Conforming Portfolios and Alternative Portfolios developed. The portfolios should clearly identify and distinguish between the following: - Existing resources that the LSE owns or contracts with, consistent with definitions provided in the Resource Data Template. - Existing resources that the LSE plans to contract with in the future. - New resources that the LSE plans to invest in. For new resources, LSEs should provide a description in table form of how those planned resources compare to the mix of new resources identified in the Reference System Portfolio and comment on the significance of the variances, if any. LSEs should report all contracted and planned resources for each plan filed in the Resource Data Template and provide a narrative summary of those reported resources in this section. For the Alternative Portfolios, deviations from the Conforming Portfolio need to be explained and justified. # b. Preferred Conforming Portfolios Provide a detailed description of the two Conforming Portfolios, one for the 46 MMT GHG target and another for the 38 MMT GHG target for which the LSE seeks Commission approval or certification. LSE should justify the portfolio selections for each GHG target. Explain the reasons for the LSE's preference and how its selections are consistent with each relevant statutory and administrative requirement (refer to PU Code Section 454.52(a)(1)). In providing its rationale, the LSE should assume that other LSEs procure in a manner consistent with the Reference System Plan. If the LSE submits a portfolio that achieves emissions reductions less than its 38 MMT benchmark, the LSE should explain and justify its selection of that portfolio, and explain whether and how that portfolio might operate differently, from a reliability perspective, depending on whether other LSEs procure in a manner consistent with a 46 MMT or 38 MMT target. If the LSE has a preference, it should also state in its Narrative Template which Preferred Conforming Portfolio it prefers as a blueprint for its own procurement, and justify that choice. ## c. GHG Emissions Results Use the CSP calculator to estimate the GHG emissions associated with each portfolio and report those results in this section. There are two versions of the CSP calculator, one for the 46 MMT GHG target and another for the 38 MMT GHG target. LSEs should use the associated version for each GHG target for their reporting. If the LSE submits the a conforming portfolio that achieves less than its 38 MMT benchmark, it should estimate emissions for that portfolio using the 38 MMT version. If an LSE uses a custom hourly load shape or GHG-free production profile in the CSP calculator for any portfolio, it must provide a detailed explanation as to how its load shape or production profile was developed, including the source of the data used. ## d. Local Air Pollutant Minimization and Disadvantaged Communities #### i. Local Air Pollutants Use the CSP calculator to estimate the NOx, PM2.5, and SO2 emissions associated with the LSE's Preferred Conforming Portfolios and report those results in this section. If the LSE's only contribution to air pollutants are a result from reliance on system power, then the LSE should provide explanation in the Action Plan Section of its plan of how it plans to reduce reliance on system power. ## ii. Focus on Disadvantaged Communities Use this section to describe and provide quantitative evidence to support how the LSE's Preferred Conforming Portfolios minimizes local air pollutants with early priority on disadvantaged communities. The LSE must provide a description of which disadvantaged communities, if any, it serves. LSEs must also specify customers served in disadvantaged communities along with total disadvantaged population number served as a percentage of total number of customers served. Finally, LSEs must specify what current and planned LSE activities/programs, if any, address disadvantaged communities, and describe how the LSE's actions and engagement have changed over time. Please also describe any analysis or activities targeted at identifying feasible procurement opportunities to reduce reliance on fossil-fueled power plants, particularly those that are located within disadvantaged communities. For purposes of IRP, a disadvantaged community is defined as any community statewide scoring in the top 25 percent statewide or in one of the 22 census tracts within the top five percent of communities with the highest pollution burden that do not have an overall score, using the most recent version (CalEnviroScreen 3.0) of the California Environmental Protection Agency's CalEnviroScreen tool. ## e. Cost and Rate Analysis Describe and provide quantitative information to reflect how the LSE anticipates that its Preferred Conforming Portfolios will affect the costs for its customers. For this analysis, assume other LSEs procure resources in a manner consistent with the Reference System Plan. ## **Requirements for IOUs Only** Data must be provided showing the forecasted revenue requirement and system average rate for bundled customers for all portfolios developed by the IOU. The costs should be forecasted consistently with the categories covered by each IOU in its general rate case. The data should reflect the IOU's assigned load forecast (for the conforming portfolio), and revenue requirements for each portfolio should be broken down by the following categories: - Transmission - Distribution (e.g. includes costs from distribution upgrades driven by customer-generation) - DSM Programs (e.g. includes costs of energy-efficiency, demand response, and other programs) - Generation (e.g. includes costs of utility-owned generation, bilateral contracts, renewables contracts, and storage contracts, net of revenue from EDU allowances) - Other (e.g. includes nuclear decommissioning, DWR bonds, public purpose programs, and other miscellaneous) In presenting revenue requirement data, IOUs should clearly distinguish between current (baseline) projected revenue requirement broken down by the categories above, and the incremental projected revenue requirement broken down by the same categories. For each new resource portfolio that the IOU is showing results for in its Plan report all assumptions used such as cost escalation rate, inflation rate, levelization period, discount rate, taxes, financing, etc. IOUs should complete the following tables, adhering as closely as possible to the units and categories listed. If the IOU is unable to report data in this exact format, it is permitted to deviate but must
provide an explanation. System Average Rates Associated with Preferred Conforming Portfolio (2019 \$) | | 2020 | 2021 | 2022 | 2023 |
2030 | |--------------|------|------|------|------|----------| | ¢/kWh | | | | | | | Rev. Req. \$ | | | | | | Revenue Requirements and System Average Bundled Rates for Preferred Conforming Portfolio (2019 \$) | Line No. | Cost Category | 2020 |
2030 | |----------------------|---|------|----------| | 1 | Distribution | | | | 2 | Transmission | | | | 3 | Generation | | | | 4 | Demand Side Programs | | | | 5 | Other | | | | 6 (sum
lines 1-5) | Baseline Revenue
Requirement | | | | 7 | System Sales (GWh) | | | | 8 | Bundled Sales (GWh) | | | | 9 | System Average Delivery
Rate (¢/kWh) | | | | 10 | Bundled Generation Rate
(¢/kWh) | | | | 11 | System Average Bundled
Rate (¢/kWh) | | | #### **Requirements for All LSEs** All LSEs should consider cost and rate impacts on their customers when planning and submitting their individual IRPs, and, at a minimum, include a narrative description of their approach in support of this requirement. #### f. System Reliability Analysis Use this section to describe how the LSE's Preferred Conforming Portfolios contribute its fair share to system reliability and renewables integration. Whether the LSE's portfolios contribute its fair share or not will not be judged based solely on the content of this section. System reliability and adequate renewables integration cannot be conclusively assessed until all LSEs' portfolios are combined and CPUC staff conducts LOLE studies on that aggregation. However, requiring the LSE to report a quantitative summary of the effective capacity in its portfolios is a useful means to track the LSE's progress in contributing to reliability, in advance of a more conclusive assessment by CPUC staff after aggregating all LSEs' portfolios. To that end, the LSE shall include its "System Reliability Progress Tracking Table" from the LSE's Resource Data Template dashboard here, except for the row containing peak demand, as that data is based on confidential 2021 resource adequacy peak demand allocations (more detail below). This row can be omitted from this (public) Narrative Template, but must be included in the (confidential) Resource Data Template. The amount of effective capacity in the System Reliability Progress Tracking Table will be auto-calculated based on the portfolio the LSE enters into the Resource Data Template. Following the instructions in the Resource Data Template, the LSE shall enter its confidential 2021 resource adequacy peak demand allocation for September in MW. The Resource Data Template will automatically calculate the LSE's share of peak in MW for all years by prorating the forecasted CAISO managed coincident peak demand (net of non-CPUC jurisdictional demand) using the ratio of the LSE's 2021 resource adequacy peak demand allocation to the 2021 CAISO managed coincident peak demand (net of non-CPUC jurisdictional demand). Because the resource adequacy peak demand allocations are confidential, the LSE need only include that information in its confidential version of the Resource Data Template. The row containing peak demand may be redacted from the System Reliability Progress Tracking Table inserted in this section of the Narrative Template, as described earlier. An example table is provided below; note that the confidential load-related rows are excised, and the table only displays procurement. Please provide one table per Preferred Conforming Portfolio. | System Reliability Progress Tracking Table (NQC MW) for month of September by contract status, 46 MMT portfolio | ELCC type | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | |---|------------------|------|------|------|------|------|------|------|------|------|------|------| | online | wind_low_cf | - | - | - | - | - | - | - | - | - | - | - | | online | wind_high_cf | - | - | - | - | - | - | - | - | - | - | - | | online | biomass | - | - | - | - | - | - | - | - | - | - | - | | online | cogen | - | - | - | - | - | - | - | - | - | - | - | | online | geothermal | - | - | - | - | - | - | - | - | - | - | - | | online | hydro | - | - | - | - | - | - | - | - | - | - | - | | online | thermal | - | - | - | - | - | - | - | - | - | - | - | | online | battery | - | - | - | - | - | - | - | - | - | - | - | | online | nuclear | - | - | - | - | - | - | - | - | - | - | - | | online | solar | - | - | - | - | - | - | - | - | - | - | - | | online | psh | - | - | - | - | - | - | - | - | - | - | - | | online | unknown | - | - | - | - | - | - | - | - | - | - | - | | development | wind_low_cf | - | - | - | - | - | - | - | - | - | - | - | | development | wind_high_cf | - | - | - | - | - | - | - | - | - | - | - | | development | biomass | - | - | - | - | - | - | - | - | - | - | - | | development | cogen | - | - | - | - | - | - | - | - | - | - | - | | development | geothermal | - | - | - | - | - | - | - | - | - | - | - | | development | hydro | - | - | - | - | - | - | - | - | - | - | - | | development | thermal | - | - | - | - | - | - | - | - | - | - | - | | development | battery | - | - | - | - | - | - | - | - | - | - | - | | development | nuclear | - | - | - | - | - | - | - | - | - | - | - | | development | solar | - | - | - | - | - | - | - | - | - | - | - | | development | psh | - | - | - | - | - | - | - | - | - | - | - | | development | unknown | - | - | - | - | - | - | - | - | - | - | - | | review | wind_low_cf | - | - | - | - | - | - | - | - | - | - | - | | review | wind_high_cf | - | - | - | - | - | - | - | - | - | - | - | | review | biomass | - | - | - | - | - | - | - | - | - | - | - | | review | cogen | - | - | - | - | - | - | - | - | - | - | - | | review | geothermal | - | - | - | - | - | - | - | - | - | - | - | | review
review | hydro
thermal | - | - | - | - | - | - | - | - | - | - | - | | review | battery | - | | - | - | - | | - | - | - | - | - | | review | nuclear | - | - | - | - | - | - | - | - | - | - | - | | review | solar | | - | - | - | - | - | - | - | - | - | - | | review | psh | | - | - | - | - | _ | - | | - | - | - | | review | unknown | - | - | - | - | - | - | - | | - | - | - | | planned existing | wind low cf | _ | | - | - | - | - | - | - | - | - | - | | planned existing | wind_high_cf | - | - | - | - | - | - | - | - | - | - | - | | planned existing | biomass | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | cogen | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | geothermal | - | - | - | - | - | - | - | - | - | - | | | planned_existing | hydro | - | - | - | - | - | - | - | - | - | - | | | planned_existing | thermal | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | battery | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | nuclear | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | solar | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | psh | - | - | - | - | - | - | - | - | - | - | - | | planned_existing | unknown | - | - | - | - | - | - | - | - | - | - | - | | planned_new | wind_low_cf | - | - | - | - | - | - | - | - | - | - | - | | planned_new | wind_high_cf | - | - | - | - | - | - | - | - | - | - | - | | planned_new | biomass | - | - | - | - | - | - | - | - | - | - | - | | planned_new | cogen | - | - | - | - | - | - | - | - | - | - | - | | planned_new | geothermal | - | - | - | - | - | - | - | - | - | - | - | | planned_new | hydro | - | - | - | - | - | - | - | - | - | - | - | | planned_new | thermal | - | - | - | - | - | - | - | - | - | - | - | | planned_new | battery | - | - | - | - | - | - | - | - | - | - | - | | planned_new | nuclear | - | - | - | - | - | - | - | - | - | - | - | | planned_new | solar | - | - | - | - | - | - | - | - | - | - | - | | planned_new | psh | - | - | - | - | - | - | - | - | - | - | - | | planned_new | unknown | - | - | - | - | - | - | - | - | - | - | - | In this section, the LSE shall also provide an explanation of any capacity shortages relative to its share of CAISO managed coincident peak demand. The LSE shall explain how it plans to address shortages in the Action Plan section of this document, below. #### g. Hydro Generation Risk Management Provide a narrative analysis and discussion of the risk that in-state drought poses to the LSE's Preferred Conforming Portfolios, including the controls and strategies the LSE has in place to manage such risk. Using quantitative analysis, identify whether and how the LSE's Preferred Conforming Portfolios differ from the Reference System Portfolio in terms of the amount of hydro generation proposed, and the level of risk thus incurred. Describe the degree to which the LSE's expected costs, GHG emissions, and reliability are dependent on in-state hydro availability, and the controls such as hedging strategies or contingency plans. #### h. Long-Duration Storage Development Use this section to discuss the activities the LSE is pursuing or intends to pursue to support the development of pumped storage, or other long-duration storage with similar attributes to meet medium- and long-term needs. The LSE should discuss the potential it sees and the efforts it has undertaken or will undertake. #### i. Out-of-State Wind Development Use this section to discuss the activities the LSE is pursuing or intends to pursue to support the development of out-of-state wind resources out to 2030. The LSE should discuss the potential it sees and the efforts it has undertaken or will undertake. #### j. Transmission Development Provide commentary that supports resource location information provided in the Resource Data Template. Such commentary may be important to transmission planning, given the following: • Busbar mapping methodology³ criteria include consideration of commercial interest. This interest can be
inferred from LSEs' plans, as well as interconnection queues. LSEs can identify which resources in their plans have been contracted since the IRP baseline was formed, and should therefore be included in the baseline for modeling in the transmission planning process. Further, LSEs can identify which resources, whilst not yet contracted, have specific locations intended. The details of these resources should be included in the Resource Data 13 Available for "Modeling Assumptions for the 2020-2021 Transmission Planning Process" at: https://www.cpuc.ca.gov/General.aspx?id=6442464144 Template, specifically by identifying the interconnection queue position. This section of the Narrative Template should summarize the data, and in the case of resources which do not yet have an interconnection queue position, provide as specific location as appropriate for the LSE's stage of planning. Transmission upgrades may be cost-effective ways for LSEs to access new resources. The principles for aggregating LSEs' plans⁴ include generally avoiding exceeding transmission capability limits⁵ where possible, unless LSEs demonstrate that they are actively planning for upgrades and can justify the costs, timeline, and risks. #### IV. Action Plan Use this section to demonstrate to the Commission and to stakeholders how feasible the LSE's planning strategy is, what barriers it envisions to implementing its plan, and what actions the Commission should consider in order to facilitate plan implementation. #### a. Proposed Activities Describe all the activities the LSE proposes to undertake across resource types in order to implement its Preferred Conforming Portfolios, including any proposed procurement-related activities as required by Commission decision. Describe how each planned resource identified in the Study Results section corresponds to proposed activities. For each new resource identified, provide a narrative description of procurement plans, potential barriers, and resource viability, consistent with what is reported in the Resource Data Template. Additionally, use this section to describe planned activities to conduct outreach and seek input from any disadvantaged communities that could be impacted by procurement resulting from the implementation of the LSE's Plan. Please also include LSE's activities to minimize criteria air pollutants with priority on disadvantaged communities and LSE's activities targeted at identifying feasible procurement opportunities to reduce reliance on fossil-fueled power plants, particularly those located within disadvantaged communities. #### b. Procurement Activities Identify when and how the LSE proposes to undertake resource procurement that it has identified in its Preferred Conforming Portfolios. Describe the type of solicitation(s), when the solicitation(s) is ⁴ Available In section 8 of the November 2019 "Ruling Seeking Comment on Proposed Reference System Portfolio and Related Policy Actions" at: https://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcure mentGeneration/irp/2018/2019 RSP Ruling.pdf ⁵ Available in the "2019-20 Inputs and Assumptions" at: ftp://ftp.cpuc.ca.gov/energy/modeling/Inputs%20%20Assumptions%202019-2020%20CPUC%20IRP%202020-02-27.pdf expected to take place, the desired online dates of projects requested, and other relevant procurement planning information. #### c. Potential Barriers Identify key market, regulatory, financial, or other resource viability barriers or risks associated with the resources coming online as identified in the LSE's Preferred Conforming Portfolios. Include an analysis of key risks associated with potential retirement of existing resources on which the LSE intends to rely in the future. #### d. Commission Direction or Actions If applicable, describe any direction that the LSE seeks from the Commission, including consideration in the IRP Procurement Track, new spending authorizations, changes to existing authorizations, or changes to existing programmatic goals or budgets. Draw clear connections between any requested direction and the study results, proposed activities, and barrier analysis presented above. #### e. Diablo Canyon Power Plant Replacement All LSEs should describe how their plans assist in replacing the flexible baseload and/or firm low-emissions energy characteristic of Diablo Canyon when it retires in 2024 and 2025. Because the Diablo Canyon power plant (DCPP) is a system resource adequacy resource within the balancing area of the CAISO, all LSEs are required to provide narrative description explaining which specific resources are planned to be procured to serve their load in the absence of DCPP. Consistent with decision D.19-04-040, those LSEs will have to demonstrate that new resources are suitable substitutes and are able to maintain system reliability without increasing GHG emissions (i.e., renewable energy credits alone do not satisfy this requirement, nor do natural gas resources). #### V. Lessons Learned Document any suggested changes to the IRP process for consideration by the Commission. Explain how the change would facilitate the ability of the Commission and LSEs to achieve state policy goals. #### **Glossary of Terms** **Alternative Portfolio:** LSEs are permitted to submit "Alternative Portfolios" developed from scenarios using different assumptions from those used in the Reference System Plan. Any deviations from the "Conforming Portfolio" must be explained and justified. **Approve (Plan)**: the CPUC's obligation to approve an LSE's integrated resource plan derives from Public Utilities Code Section 454.52(b)(2) and the procurement planning process described in Public Utilities Code Section 454.5, in addition to the CPUC obligation to ensure safe and reliable service at just and reasonable rates under Public Utilities Code Section 451. **Balancing Authority Area (CAISO):** the collection of generation, transmission, and loads within the metered boundaries of the Balancing Authority. The Balancing Authority maintains load-resource balance within this area. **Baseline resources:** Those resources assumed to be fixed as a capacity expansion model input, as opposed to Candidate resources, which are selected by the model and are incremental to the Baseline. Baseline resources are existing (already online) or owned or contracted to come online within the planning horizon. Existing resources with announced retirements are excluded from the Baseline for the applicable years. Being "contracted" refers to a resource holding signed contract/s with an LSE/s for much of its energy and capacity, as applicable, for a significant portion of its useful life. The contracts refer to those approved by the CPUC and/or the LSE's governing board, as applicable. These criteria indicate the resource is relatively certain to come online. Baseline resources that are not online at the time of modeling may have a failure rate applied to their nameplate capacity to allow for the risk of them failing to come online. **Candidate resource:** those resources, such as renewables, energy storage, natural gas generation, and demand response, available for selection in IRP capacity expansion modeling, incremental to the Baseline resources. **Capacity Expansion Model:** a capacity expansion model is a computer model that simulates generation and transmission investment to meet forecast electric load over many years, usually with the objective of minimizing the total cost of owning and operating the electrical system. Capacity expansion models can also be configured to only allow solutions that meet specific requirements, such as providing a minimum amount of capacity to ensure the reliability of the system or maintaining greenhouse gas emissions below an established level. **Certify (a Community Choice Aggregator Plan)**: Public Utilities Code 454.52(b)(3) requires the CPUC to certify the integrated resource plans of CCAs. "Certify" requires a formal act of the Commission to determine that the CCA's Plan complies with the requirements of the statute and the process established via Public Utilities Code 454.51(a). In addition, the Commission must review the CCA Plans to determine any potential impacts on public utility bundled customers under Public Utilities Code Sections 451 and 454, among others. **Clean System Power (CSP, formerly "Clean Net Short") methodology**: the methodology used to estimate GHG emissions associated with an LSE's Portfolio based on how the LSE will expect to rely on system power on an hourly basis. **Community Choice Aggregator**: a governmental entity formed by a city or county to procure electricity for its residents, businesses, and municipal facilities. **Conforming Portfolio**: the LSE portfolio that conforms to IRP Planning Standards, the 2030 LSE-specific GHG Emissions Benchmark, use of the LSE's assigned load forecast, use of inputs and assumptions matching those used in developing the Reference System Portfolio, as well as other IRP requirements including the filing of a complete Narrative Template, a Resource Data Template and Clean System Power Calculator. **Effective Load Carrying Capacity**: a percentage that expresses how well a resource is able avoid loss-of-load events (considering availability and use limitations). The percentage is relative to a reference resource, for example a resource that is always available with no use limitations. It is calculated via probabilistic reliability modeling, and yields a single percentage value for a given resource or grouping of resources. **Electric Service Provider**: an entity that offers electric service to a retail or end-use customer, but which does not fall within the definition of an electrical corporation under Public Utilities Code Section 218. Filing Entity: an entity required by statute to file an integrated resource plan with CPUC. **Future**: a
set of assumptions about future conditions, such as load or gas prices. **GHG Benchmark (or LSE-specific 2030 GHG Benchmark)**: the mass-based GHG emission planning targets calculated by staff for each LSE based on the methodology established by the California Air Resources Board and required for use in LSE Portfolio development in IRP. **GHG Planning Price:** the systemwide marginal GHG abatement cost associated with achieving a specific electric sector 2030 GHG planning target. **Integrated Resources Planning Standards (Planning Standards)**: the set of CPUC IRP rules, guidelines, formulas and metrics that LSEs must include in their LSE Plans. **Integrated Resource Planning (IRP) process**: integrated resource planning process; the repeating cycle through which integrated resource plans are prepared, submitted, and reviewed by the CPUC **Long term**: more than 5 years unless otherwise specified. **Load Serving Entity**: an electrical corporation, electric service provider, community choice aggregator, or electric cooperative. **Load Serving Entity (LSE) Plan**: an LSE's integrated resource plan; the full set of documents and information submitted by an LSE to the CPUC as part of the IRP process. **Load Serving Entity (LSE) Portfolio**: a set of supply- and/or demand-side resources with certain attributes that together serve the LSE's assigned load over the IRP planning horizon. **Loss of Load Expectation (LOLE):** a metric that quantifies the expected frequency of loss-of-load events per year. Loss-of-load is any instance where available generating capacity is insufficient to serve electric demand. If one or more instances of loss-of-load occurring within the same day regardless of duration are counted as one loss-of-load event, then the LOLE metric can be compared to a reference point such as the industry probabilistic reliability standard of "one expected day in 10 years," i.e. an LOLE of 0.1. **Net Qualifying Capacity:** Qualifying Capacity reduced, as applicable, based on: (1) testing and verification; (2) application of performance criteria; and (3) deliverability restrictions. The Net Qualifying Capacity determination shall be made by the California ISO pursuant to the provisions of this California ISO Tariff and the applicable Business Practice Manual. **Non-modeled costs**: embedded fixed costs in today's energy system (e.g., existing distribution revenue requirement, existing transmission revenue requirement, and energy efficiency program cost). **Nonstandard LSE Plan**: type of integrated resource plan that an LSE may be eligible to file if it serves load outside the CAISO balancing authority area. **Optimization**: an exercise undertaken in the CPUC's Integrated Resource Planning (IRP) process using a capacity expansion model to identify a least-cost portfolio of electricity resources for meeting specific policy constraints, such as GHG reduction or RPS targets, while maintaining reliability given a set of assumptions about the future. Optimization in IRP considers resources assumed to be online over the planning horizon (baseline resources), some of which the model may choose not to retain, and additional resources (candidate resources) that the model is able to select to meet future grid needs. **Planned resource:** any resource included in an LSE portfolio, whether already online or not, that is yet to be procured. Relating this to capacity expansion modeling terms, planned resources can be baseline resources (needing contract renewal, or currently owned/contracted by another LSE), candidate resources, or possibly resources that were not considered by the modeling, e.g., due to the passage of time between the modeling taking place and LSEs developing their plans. Planned resources can be specific (e.g., with a CAISO ID) or generic, with only the type, size and some geographic information identified. **Qualifying capacity**: the maximum amount of Resource Adequacy Benefits a generating facility could provide before an assessment of its net qualifying capacity. **Preferred Conforming Portfolio**: the conforming portfolio preferred by an LSE as the most suitable to its own needs; submitted to CPUC for review as one element of the LSE's overall IRP plan. **Preferred System Plan:** the Commission's integrated resource plan composed of both the aggregation of LSE portfolios (i.e., Preferred System Portfolio) and the set of actions necessary to implement that portfolio (i.e., Preferred System Action Plan). **Preferred System Portfolio:** the combined portfolios of individual LSEs within the CAISO, aggregated, reviewed and possibly modified by Commission staff as a proposal to the Commission, and adopted by the Commission as most responsive to statutory requirements per Pub. Util. Code 454.51; part of the Preferred System Plan. **Reference System Plan:** the Commission's integrated resource plan that includes an optimal portfolio (Reference System Portfolio) of resources for serving load in the CAISO balancing authority area and meeting multiple state goals, including meeting GHG reduction and reliability targets at least cost. **Reference System Portfolio**: the multi-LSE portfolio identified by staff for Commission review and adopted/modified by the Commission as most responsive to statutory requirements per Pub. Util. Code 454.51; part of the Reference System Plan. **Short term**: 1 to 3 years (unless otherwise specified). **Staff**: CPUC Energy Division staff (unless otherwise specified). **Standard LSE Plan**: type of integrated resource plan that an LSE is required to file if it serves load within the CAISO balancing authority area (unless the LSE demonstrates exemption from the IRP process). ### **Deliverables** # Phase 1: CPUC IRP Compliance Filing - Analysis based on prescriptive assumptions - Narrative analysis, process, results, lessons learned - Resource Data conforming & "preferred" portfolios, if applicable - Clean System Power Calculator # Phase 2: Establish EBCE Organizational Goals - Additional analysis - Identify reliability needs - Define trade-offs between organizational objectives - Inform procurement recommendations - Develop path to expedited GHG reduction ## **Revised CPUC Requirements** 46 MMT and 38 MMT scenarios | LSE | 2030
Load
(GWh) | Share of
2030 load in
IOU territory | 2030 GHG emissions
benchmark – 46 MMT
scenario | 2030 GHG emissions
benchmark – 38 MMT
scenario | |---------------|-----------------------|---|--|--| | PG&E Bundled | 26,777 | 35.2% | 5.479 | 4.526 | | EBCE | 6,910 ¹ | 9.08% | 1.23 ² | 0.984 ² | | SCE Bundled | 54,393 | 63.49% | 9.687 | 8.003 | | SDG&E Bundled | 5,366 | 29.46 | 1.198 | 0.990 | ¹ Load represents CPUC approved load forecast as of 5/20/20. - Specific Input Requirements - Filing date: September 1, 2020 ² Reflects requirement after behind the meter Combined Heat & Power emissions are removed from target. # Scenario Analysis Will Evaluate... | Key Evaluation Metrics | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e. 0.984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e. 0.74 MMT | |---|--|---|---| | Carbon Free | - | ↓ GHGs | $\downarrow \downarrow GHGs$ | | Affordability (Cost) | - | ↑ cost | ↑↑ cost | | Resource Mix (incl. New build vs existing) | - | ↑ new build | 个个 new build
个 resource diversity | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | - | | ↓↓ reliance on
market
↑↑ impact of
intermittency | | Reliability | - | ↑ RA contribution | 个个 RA contribution | Arrows are indicative of observed (Scenario 2) and expected (Scenario 3) trends, relative to Scenario 1 ### **Developing Conforming Portfolios** CPUC compliance portfolios developed based on the CPUC's "Reference System Plan" #### Benefits: - Consistent with CPUC view of reliability - Conforms with CPUC requirements - Defensible: Tied to CPUC-expectations of resource availability (defensible) - Able to incorporate EBCE-views of availability & portfolio-fit #### **Limitations:** - Not directly tied to EBCE organizational goals - Final results & comparison across <u>all 3</u> <u>scenarios</u> will not be true "apples to apples" | | 2020 | 2022 | 2026 | 2030 | |------------------|---------|---------|---------|---------| | CAISO Load (GWh) | 205,907 | 204,065 | 205,132 | 206,953 | | EBCE Load (GWh) | 7,535 | 6,894 | 6,906 | 6,910 | | EBCE % of CAISO | 3.66% | 3.38% | 3.37% | 3.34% | # **Draft Conforming Portfolios** #### 46 MMT Scenario: EBCE = 1.23 MMT in 2030 | | % of | max | | | | | |--------------------------------|------|--------|----------|----------|--------|------| | | Pro- | allow- | Overall | EBCE Pro | o Rata | | | | Rata | ed | Portfoli | 0 | | | | Resource | | | 2020 | 2022 | 2026 | 2030 | | 2-hr Battery Storage | 125% | | 0 | 0 | 80 | 281 | | 4-hr Battery Storage | 125% | | 0 | 176 | 226 | 226 | | Pumped Storage (long-duration) | 75% | | 0 | 0 | 0 | 64 | | Large Hydro | 70% | 100 | 0 | 100 | 100 | 100 | | Imported Hydro | 70% | | 0 | 67 | 67 | 67 | | Biogas | 50% | | 0 | 0 | 0 | 5 | | Biomass | 50% | | 0 | 0 | 0 | 10 | | Geothermal | 100% | | 0 | 12 | 75 | 75 | | Small Hydro | 100% | 20 | 0 | 20 | 20 | 20 | | Shed DR | 50% | | 0 | 41 | 41 | 40 | | Candidate Wind Resources | 112% | | | | | | | Southern_CA_Desert_Southern_NV | | | 0 | 119 | 131 | 131 | | Sacramento_River_Wind | | | 0 | 58 | 58 | 58 | | Tehachapi_Wind | | | 0 | 119 | 131 | 131 | | Generic_CA_Wind | | | 0 | 0 | 0 | 23 | | New_Mexico_Wind | | | 0 | 60 | 65 | 65 | | Candidate Solar Resources | 113% | | | | | | | Southern_PGE_Solar | | | 0 | 168 | 493 | 493 | | Southern_CA_Desert_Southern_NV | | |
0 | 187 | 187 | 187 | | Tehachapi_Solar | | | 0 | 187 | 187 | 187 | | Generic_CA_Solar | _ | | 0 | 0 | 0 | 106 | #### **38 MMT Scenario: EBCE = .984 MMT in 2030** | | % of | max | | | | | |--------------------------------|------|--------|----------|---------|--------|------| | | Pro- | allow- | Overall | EBCE Pr | o Rata | | | | Rata | ed | Portfoli | 0 | | | | Resource | | | 2020 | 2022 | 2026 | 2030 | | 2-hr Battery Storage | 125% | | 0 | 0 | 80 | 224 | | 4-hr Battery Storage | 125% | | 0 | 176 | 294 | 318 | | Pumped Storage (long-duration) | 75% | | 0 | 0 | 0 | 80 | | Large Hydro | 74% | 100 | 0 | 100 | 100 | 100 | | Imported Hydro | 74% | | 0 | 71 | 71 | 71 | | Coal | 0% | | 0 | 0 | 0 | 0 | | Biogas | 50% | | 0 | 0 | 0 | 5 | | Biomass | 50% | | 0 | 0 | 0 | 10 | | Geothermal | 100% | | 0 | 0 | 78 | 78 | | Small Hydro | 100% | 20 | 0 | 20 | 20 | 20 | | Shed DR | 50% | | 0 | 41 | 41 | 40 | | Candidate Wind Resources | 115% | | | | | | | Southern_CA_Desert_Southern_NV | | | 0 | 125 | 152 | 152 | | Sacramento_River_Wind | | | 0 | 58 | 58 | 58 | | Tehachapi_Wind | | | 0 | 125 | 152 | 152 | | Generic_CA_Wind | | | 0 | 0 | 0 | 168 | | New_Mexico_Wind | | | 0 | 62 | 76 | 76 | | Candidate Solar Resources | 114% | | | | | | | Southern_PGE_Solar | | | 0 | 168 | 493 | 493 | | Southern_CA_Desert_Southern_NV | | | 0 | 205 | 205 | 205 | | Tehachapi_Solar | | | 0 | 205 | 205 | 205 | | Generic_CA_Solar | | | 0 | 0 | 0 | 118 | # **Draft Conforming Portfolios - Capacity** 46 MMT Scenario: EBCE = 1.23 MMT in 2030 Note: scales on Y-axes are different btw graphs # **Draft Conforming Portfolios – Energy Supply** 46 MMT Scenario: EBCE = 1.23 MMT in 2030 38 MMT Scenario: EBCE = .984 MMT in 2030 38 MMT requires more wind and less solar to reduce emissions from night-time energy purchases Reminder: ELCC (effective load carrying capability) is greater for wind than solar. If a wind resource and a solar resource are the same size, over time we expect to get more energy supply to match customer demand from the wind resource ### **Forecast: Costs & Revenues of Conforming Portfolios** #### **Revenues** #### **Total Costs per MWh Load (Levelized 10yr)** | | Supply Resources | Risk Premium | RA Contracts | Load | Net Cost | |--------------|------------------|--------------|--------------|--------|----------| | [A] - 38 MMT | \$ (3.5) | \$2.1 | \$5.3 | \$71.1 | \$75.0 | | [B] - 46 MMT | \$ (11.1) | \$2.6 | \$6.0 | \$76.2 | \$73.7 | ### **Forecast: Total Costs of Conforming Portfolios** 46 MMT Scenario: EBCE = 1.23 MMT in 2030 38 MMT Scenario: EBCE = .984 MMT in 2030 Declining prices in 38MMT scenario reduce both generation value and load costs. #### Total Costs (Levelized 10yr, \$M) | | Supply Resources | Risk Premium | RA Contracts | Load | Net Cost | |--------------|------------------|--------------|--------------|-------|----------| | [A] - 38 MMT | \$ (24) | \$14 | \$37 | \$489 | \$516 | | [B] - 46 MMT | \$ (77) | \$18 | \$41 | \$524 | \$507 | ### **Next Steps** EBCE IRP filing due to CPUC Sept 1, 2020 is required to be a formulaic response to very specific inputs and analytical methods that are set by the CPUC. As a result, there is little room to deviate to assess priorities like 1) emphasis on local development, 2) deeper levels of decarbonization, 3) use of different resource types. Staff recommends that EBCE proceed through a two-step process. Step 1 is to complete a compliance filing to the CPUC by September 1, 2020. Step 2 is to analyze a deeper decarbonization pathway (30 MMT by 2030) and engage Board and Community in discussion of costs of benefits of more aggressive pathway in fall 2020. Based on feedback, Board will review EBCE IRP procurement plans and approve procurement targets for next round of long term clean energy procurement. Based on the above, staff is requesting the following: - Board to delegate final CPUC compliance IRP approval authority to the CEO - Board to review and approve EBCE's next round of clean energy procurement based on a review of three decarbonization pathways (46, 38 and 30 MMT by 2030) ### **APPENDIX** # Scenario Analysis Evaluates... | Key Evaluation Metrics | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e74 MMT | |---|--|---------------------------------------|---| | Carbon Free | | | | | Affordability (Cost) | | | | | Resource Mix (incl. New build vs existing) | | | | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | | | | | Reliability | | | | ### **Clean Position** 46 MMT Scenario: EBCE = 1.23 MMT in 2030 38 MMT Scenario: EBCE = .984 MMT in 2030 Resource buildout over time increases clean generation within the portfolio ### Clean Position: Emissions from Market Purchases # Scenario Analysis Evaluates... | Key Evaluation Metrics | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e74 MMT | |---|--|---------------------------------------|---| | Carbon Free | | | | | Affordability (Cost) | | | | | Resource Mix (incl. New build vs existing) | | | | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | | | | | Reliability | | | | ### **Draft Conforming Portfolios - Resource Mix** ### New vs. Existing Capacity in 2030 | | • , | |----------------------------|------------------------------------| | New | Existing | | Uncontracted
Storage | Hydro
(large/imported/small) | | Uncontracted
Wind/Solar | Geothermal | | Shed DR | Biomass/Biogas | | | Contracted Wind,
Solar, storage | Note: scales on Y-axes are different btw graphs # Scenario Analysis Evaluates... | Key Evalua
Metrics | tion | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e74 MMT | |---|------|---|--|---| | Carbon Free | | | | | | Affordability (Cost) | | \$73.7/MWh demand Average over 2021-2030 | \$75 / MWh demand Average over 2021-2030 | | | Resource M
(incl. New build vs | | | | | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | | | | | | Reliability | | | | | # Scenario Analysis Evaluates... | Key Evaluation Metrics | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e74 MMT | |---|--|---------------------------------------|---| | Carbon Free | | | | | Affordability (Cost) | | | | | Resource Mix (incl. New build vs existing) | | | | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | | | | | Reliability | | | | # **Risk Mgmt: Annual Net Energy Position** ### **Risk Mgmt: 2030 Net Position w/out Short-Term Contracts** Implication: heavy reliance on solar has negative hedge value. Can reduce risk by incorporating more dispatchable resources during peak (battery and eventually green hydrogen in gas turbines). EAST BAY COMMUNITY ENERGY Lower amount of storage in 46MMT results in greater division between short and long positions ^{*}Positive means short ^{*}Peak Hours 4-9pm ### **Risk Mgmt: 2030 Net Position with Short-Term Contracts*** Note: scale on Y-axes differs from previous slide; indicates fewer hours of market exposure *Assumes that short-term contracts would be pursued in a way that does not change the hours of spot purchases, but reduces the MWh purchased on the spot market ### **Risk Mgmt: Transaction Tenors** ### **Average Delivered Energy per Year** 46 MMT Scenario: EBCE = 1.23 MMT in 2030 | Tenor | % or GWh | | |--------------|---------------|--| | Spot Market* | 13% 900 | | | Short-Term* | 26.5% 1,800 | | | Long-Term | 60.5% 4,150 | | 38 MMT Scenario: EBCE = .984 MMT in 2030 | Tenor | % or GWh | | |--------------|-------------|--| | Spot Market* | 11% 775 | | | Short-Term* | 24% 1,625 | | | Long-Term | 65% 4,500 | | Ratio represents an <u>estimate</u> for IRP purposes only. Any commercial application would be based on Risk Oversight Committee-reviewed & EBCE Board-approved Risk Framework. ^{*}Short-Term Contract & Spot Market %s are based on EBCE staff-applied ratio of 3:2 (short-term transactions : spot market purchases). # Scenario Analysis Evaluates... | Key Evaluation Metrics | Scenario 1:
46 MMT /
i.e. 1.23 MMT | Scenario 2:
38 MMT /
i.e984 MMT | Scenario 3:
EBCE aggressive
30 MMT
i.e74 MMT | |---|--|---------------------------------------|---| | Carbon Free | | | | | Affordability (Cost) | | | | | Resource Mix (incl. New build vs existing) | | | | | Risk Mgmt: Spot Market vs Short-Term vs Long-Term Contracts | | | | | Reliability | | | | ## **Reliability: Resource Adequacy Position** #### **Annual** RA position exceeds annual target because some months are "long" #### **System Peak Demand Month: September** 2028: Long-term resources provide ~2/3 of RA capacity in 38MMT portfolio due to lower market reliance 2027: Long-term resources provide ~1/2 of RA capacity in 46MMT portfolio ### Reliability: Portfolio Market Exposure Hours – Forced* ### Reliability: Portfolio Market Exposure Hours - Simulated*