

Integrated Resource Plan Results

Stefanie Tanenhaus, Marie Fontenot, Doug Allen, Chris Eshleman

December 10, 2020

Draft – Do not distribute

Agenda

- IRP Overview and Objectives
- Modeling Approach
- Initial Results
- Summary & Next Steps

Overview of EBCE IRP Process

- Phased approach to meet compliance obligations and evaluate portfolios to meet a range of greenhouse gas (GHG) emissions targets for EBCE
- Phase 1: CPUC IRP Filing
 - Includes two GHG target scenarios that represent EBCE's share of a 46 million metric ton (MMT) and 38 MMT statewide electric sector target
 - Phase 1 deliverables submitted to CPUC in September
- Phase 2: EBCE IRP Analysis
 - Includes GHG target scenario that represents EBCE's share of a 30 MMT statewide electric sector target and explores cost of achieving net zero GHG emissions
 - Revises CPUC 46 and 38 MMT scenarios to align with EBCE assumptions
 - Phase 2 deliverables will provide EBCE Board of Directors with a set of options to create a 2030 Clean Energy Goal

Objectives

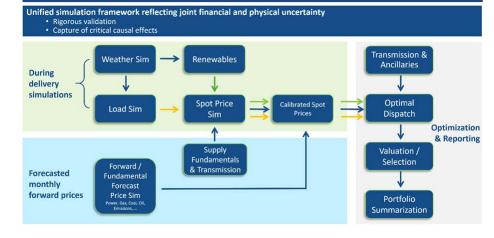
- Analyze range of GHG targets
- Meet CPUC compliance requirements
- Identify reliability needs of different portfolios
- Define trade-offs between organizational objectives
- Inform procurement recommendations
- Develop path to expedited GHG reduction

Summary of Select Scenario Results

Key Evaluation Metrics	Scenario 1: EBCE 46 MMT i.e. 1.22 MMT	Scenario 2: EBCE 38 MMT i.e. 0.98 MMT	Scenario 3: EBCE 30 MMT i.e. 0.73 MMT	Scenario 4: EBCE net 0 MMT						
Carbon Free (by 2030)	64%	72%	80%	100%						
Affordability (2030 cost in 2020\$)	\$608 MM (2020\$)	+3% (+\$17 MM)	+6% (+\$34 MM)	+14% (+\$85 MM)						
Resource Mix (2030) (incl. New build vs existing)	1.2 GW new RE PPAs (includes 100 MW BTM S+S) 1.5 GW/ 6 GWh new energy storage 100 MW existing NW hydro									
Risk Mgmt: Short-term vs Long-term Contracts	62% long-term in 2030 (~50% by 2025; ~55% avg. 2021-2030), remaining short-term									
Reliability	~70% of RA need met by long-term portfolio									

MODELING APPROACH

Modeling Approach


- 1. Develop portfolio of resources under long-term contracts
 - Optimized buildout of resources over time
 - Constraints applied to energy, resource specific availability and capacity limits
- 2. Perform production cost modeling on portfolios, which includes:
 - Short-term contracts
 - Emissions
 - Hourly spot purchases and sales
 - Ancillary services value

Modeling Tools

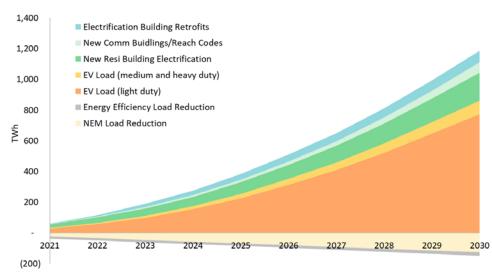
- EBCE contracted with Ascend analytics to perform portfolio optimization and production cost modeling using PowerSIMM
- PowerSIMM uses market data and long-term fundamentals to simulate load, renewables, and the CAISO spot market prices against which resources are dispatched and valued

PowerSIMM Model Diagram

EBCE Optimized Buildout Constraints

Optimization Constraints	 Selects long-term PPA resources up to target of ~60% of total delivered energy Yearly Long-Term RPS targets Meets yearly RA requirements, optimizing between PPA resources and market RA purchases
Resource Constraints	 No new resources until 2022 No 8hr storage before 2026 No in-state hydro available for long-term contracting Annual build limits for each resource Max capacity limits: Standalone Storage <4 hours – 800 MW Geothermal – 300 MW Imported Hydro – 100 MW
Other Notes	 Storage was given a \$50/kw-yr credit for sub-hourly dispatch value Short-term purchases layered on top of selected PPAs to achieve RPS, emissions, and spot exposure targets

Inputs & Assumptions


	CPUC	EBCE
Load	 CEC IEPR annual load forecast Modified C&I to Res split CEC IEPR hourly load modifiers 	 EBCE annual load forecast ~1TWh higher by 2030 (~13%) due to EBCE electrification goals EBCE hourly load shape
Resource Costs	CPUC assumptions	Ascend assumptions
Candidate Resource Types, Availability and Characteristics	 CPUC assumptions w/ EBCE-specific adjustments 	 Includes hybrid solar + storage Fixed storage durations Custom RE profiles Annual and total build limits Modified ELCC/QC assumptions
Risk Mgmt: Short-Term vs Long-Term Contracts	• 62% long-term (46 MMT), remaining short- term (mix of existing renewables, carbon free and system power)	• 62% long-term, remaining short-term

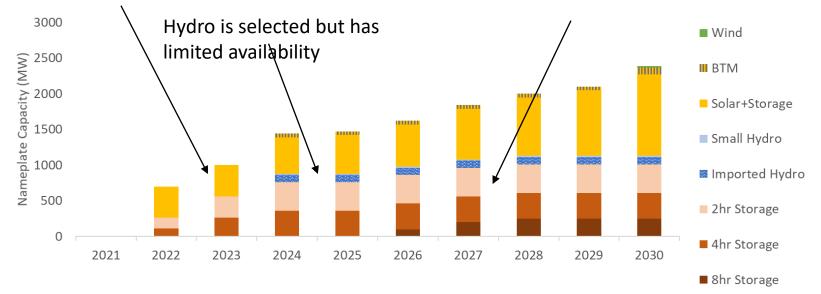
Load Assumptions


- Electrification growth (cumulative by 2030, approx.):
 - 190,000 light-duty EVs
 - 6,000 med and heavy-duty
 - 38,000 new residential and 900 new commercial all electric buildings
- Electrification growth offset somewhat by EE load reduction and NEM production

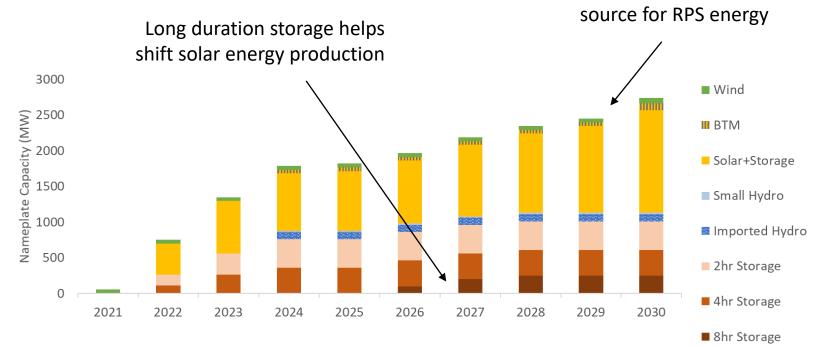
Load Modifier Forecast Assumptions

Resource Cost Assumptions

RESULTS

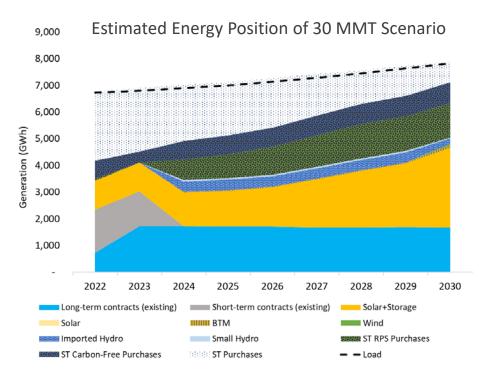


Resource Build (new)


Solar+ storage provides economical energy paired with RA value

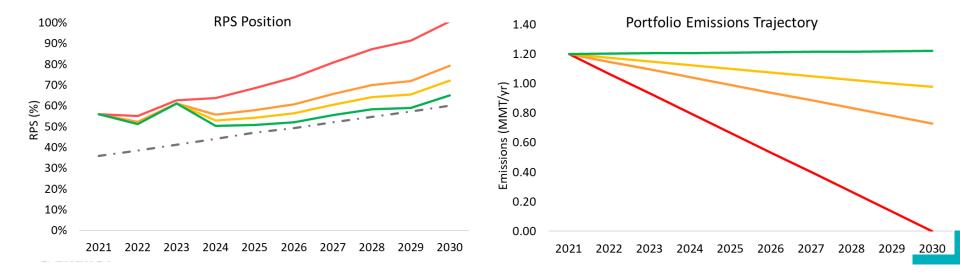
Standalone storage provides RA and energy arbitrage value

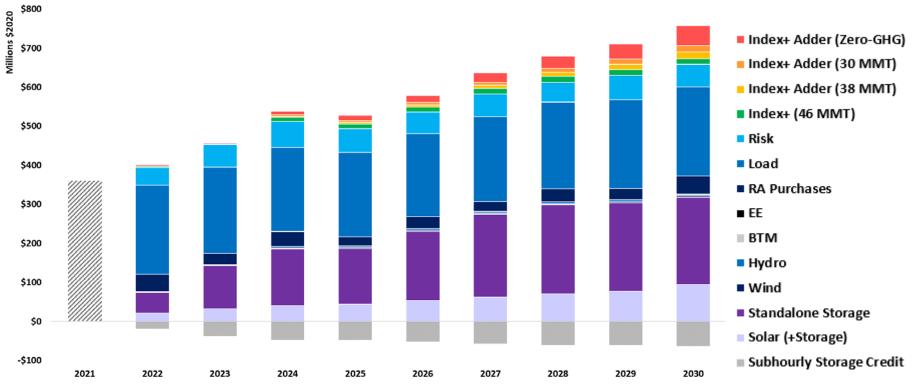
Resource Build (total)



Wind provides alternative

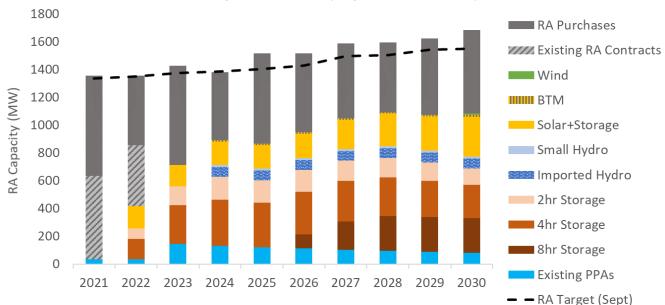
Energy Position


- Existing resources and solar + storage provide majority of long-term PPA energy
 - Long-term PPA energy sufficient to exceed RPS requirement in each year
- Short-term purchases are illustrative
 - Short-term carbon-free purchases assumed to fill remaining emissions requirements, up to 10% of load
 - Short-term RPS purchases assumed to fill remaining emissions requirements
 - Short-term brown purchases assumed to fill remaining need



RPS and GHG Position

- Overall RPS and long-term requirements surpassed by PPAs
- Portfolio GHG emissions come from spot purchases + short-term brown energy purchases
- Emissions follow target trajectories



Total Costs of Conforming Portfolios

Annual RA Position (September)

Summary

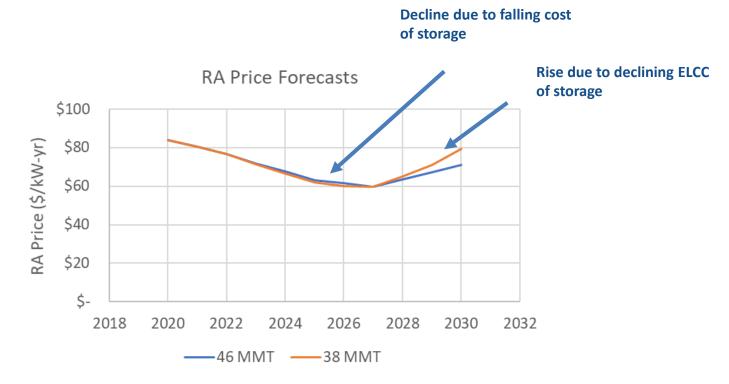
- Hybrid solar & storage and standalone storage make up majority of selected resources
 - Solar and storage primarily selected based on current price forecasts
 - Standalone storage provides RA value
 - Wind and geothermal become competitive if S+S prices are higher than expected
- Resource portfolio needs may change as a result of state policy or procurement requirements, storage performance and reliability value, or approaches to risk management
- The magnitude of increased costs to achieve more ambitious GHG reductions depends on risk management strategy, market dynamics, regulatory requirements and technology costs

APPENDIX

Assumptions: Resource Costs

- Solar/wind/storage resource costs are based on Level10 reports and Ascend knowledge of PPA current prices, followed by escalation with NREL ATB
 - Includes phaseout of ITC and PTC
- Geothermal is based on Ascend knowledge of current PPA prices, followed by CPUC escalation
- Hydro is based on Ascend knowledge of current PPA prices, followed by inflation
- Biogas assumed equivalent to biomass, following CPUC values

		Solar (North)	Hybrid Solar	Wind	Geo	thermal		Small Iydro	Large Hydro	Biogas				4hr Storage		RA
2021	\$25.95	\$21.96	\$ 25.95	\$47.88	\$	71.27	\$	50.00	\$ 39.14	\$120.91	\$	7.08	\$ 8.03	\$ 11.81	\$ 20.66	\$6.72
2022	\$25.90	\$21.91	\$ 25.90	\$47.85	\$	72.54	\$	51.00	\$ 40.05	\$122.75	\$	6.67	\$ 7.56	\$ 11.11	\$ 19.45	\$6.39
2023	\$27.87	\$23.58	\$ 27.87	\$51.50	\$	75.88	\$	52.02	\$ 40.77	\$126.20	\$	6.87	\$ 7.32	\$ 10.76	\$ 18.83	\$5.96
2024	\$29.84	\$25.25	\$ 29.84	\$55.14	\$	79.21	\$	53.06	\$ 41.15	\$129.64	\$	7.08	\$ 7.08	\$ 10.41	\$ 18.22	\$5.54
2025	\$31.81	\$26.91	\$ 31.81	\$58.79	\$	82.54	\$	54.12	\$ 41.56	\$133.08	\$	7.28	\$ 6.84	\$ 10.06	\$ 17.60	\$5.17
2026	\$33.78	\$28.58	\$ 33.78	\$62.44	\$	85.88	\$	55.20	\$ 41.94	\$136.53	\$	7.49	\$ 6.60	\$ 9.71	\$ 16.99	\$5.00
2027	\$33.78	\$28.59	\$ 33.78	\$62.24	\$	88.18	\$	56.31	\$ 42.29	\$139.67	\$	7.43	\$ 6.55	\$ 9.64	\$ 16.86	\$4.99
2028	\$33.79	\$28.59	\$ 33.79	\$62.04	\$	90.48	\$	57.43	\$ 44.76	\$142.81	\$	7.38	\$ 6.50	\$ 9.56	\$ 16.74	\$5.41
2029	\$33.79	\$28.60	\$ 33.79	\$61.84	\$	92.78	\$	58.58	\$ 45.11	\$145.96	\$	7.32	\$ 6.45	\$ 9.49	\$ 16.61	\$5.90
2030	\$33.80	\$28.60	\$ 33.80	\$61.64	\$	95.08	\$	59.75	\$ 45.71	\$149.10	\$	7.27	\$ 6.40	\$ 9.42	\$ 16.48	\$6.62
	EAST BAY															


(\$/kW*mo)

Assumptions: Yearly RA (ELCC) Values by Resource

	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Solar	14%	14%	14%	12%	10%	8%	8%	7%	6%	5%
Wind	15%	15%	15%	17%	20%	22%	22%	22%	22%	22%
2hr Storage	50%	49%	46%	41%	40%	39%	37%	35%	33%	30%
4hr Storage	100%	99%	92%	83%	80%	77%	73%	69%	65%	60%
8hr Storage	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Solar+Storage	54%	54%	51%	45%	42%	39%	37%	34%	32%	29%
Large Hydro	71%	71%	71%	71%	71%	71%	71%	71%	71%	71%
Small Hydro	71%	71%	71%	71%	71%	71%	71%	71%	71%	71%
Geothermal	83%	83%	83%	83%	83%	83%	83%	83%	83%	83%
Biogas	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%

Assumptions: RA Price Forecasts

Scenario Sensitivities- Key Takeaways

- Variations to annual and total resource build limits high-light trade-offs under different availability assumptions
 - If solar + storage is more limited, geothermal desirable in early years to provide RA value
 - If solar + storage is more limited, wind provides RPS energy
 - If large hydro is available, it displaces solar + storage procurement
- Sensitivities around load departure, market exposure and resource costs
 - Portfolio compositions are generally similar across sensitivities
 - Lower energy needs (due to load departure or high market exposure) reduce solar + storage and wind, delay hydro procurement
 - If solar + storage costs are high, wind is primary substitute to provide RPS energy

