

 AI Agent 007: Tooling up for Success

 In the specialized domain of domain-specific question answering, AI Agent 007 - armed with a
 Language Model and a toolbox of specific tools, strives to adeptly address user queries. The
 plan hinges on a meticulous analysis of the domain-specific query, selecting tools that best
 match the unique context, specifying precise tool arguments, and sequencing tool execution
 intelligently. This context-aware approach is vital for providing accurate and relevant answers
 within specialized domains, enhancing user satisfaction, and potentially yielding substantial
 financial returns. Just as the automated bot message assists in general customer support, AI
 Agent 007's strategy is tailored to excel in the intricacies of domain-specific question
 answering.

 Introduction

 DevRev is dedicated to bridging the gap between developers and their customers (or "Revs")
 by developing intelligent systems that can handle the routine tasks associated with a product's
 lifecycle and reduce the need for manual intervention.

 One of DevRev's ongoing projects is to create a user-friendly interface for an AI system capable
 of answering queries and performing operations on customer data. The goal is to enable
 customers to interact with DevRev using natural language. This involves understanding user
 queries, mapping them to a combination of existing capabilities within our AI agent, determining
 the necessary arguments, and executing the tasks to provide a final output.

 Problem Statement

 Task(s)

 A Language model L has a set of tools T, and a user query Q is given. To answer query Q, we
 need to use existing tools. You need to output the subset of tools to be used to answer the
 query, the arguments that these tools should be called with, and how to compose the tools to
 answer the query. The query is conversational, like so

 Unset

 user_message: "Hello!"
 agent_message: "Hello, how can I help you today?"
 user_message: "Can you tell me my P0 issues?",
 agent_message: "Sure, here is the list... ",
 user_message: "Okay, can you change this list to show only those that are

 in triage stage?",
 agent_message: "Sure, this is the updated list ... ",

 Note:
 The set of tools T is dynamic, and new tools can be added, and existing ones could be
 modified or removed and the agent needs to be able to handle it gracefully.

 To begin with, you have following set of tools available to answer the query:

 Tool Description ArgumentName Argument
 Description

 ArgumentType ArgumentValue
 Example

 works_list Returns a list of work
 items matching the
 request

 applies_to_part Filters for work
 belonging to any of
 the provided parts

 array of strings Example:
 ["FEAT-123",
 "ENH-123",
 "PROD-123",
 "CAPL-123"]

 created_by Filters for work
 created by any of
 these users

 array of strings Example:
 ["DEVU-123"]

 issue.priority Filters for issues with
 any of the provided
 priorities. Allowed
 values: p0, p1, p2,
 p3

 array of strings

 issue.rev_orgs Filters for issues with
 any of the provided
 Rev organizations

 array of strings Example:
 ["REV-123"]

 limit The maximum
 number of works to
 return. The default is
 '50'

 integer (int32)

 owned_by Filters for work
 owned by any of
 these users

 array of strings Example:
 ["DEVU-123"]

 stage.name Filters for records in
 the provided stage(s)
 by name

 array of strings

 ticket.needs_respon
 se

 Filters for tickets that
 need a response

 boolean

 ticket.rev_org Filters for tickets
 associated with any
 of the provided Rev
 organizations

 array of strings Example:
 ["REV-123"]

 ticket.severity Filters for tickets with
 any of the provided
 severities. Allowed

 array of strings

 values: blocker, high,
 low, medium

 ticket.source_chann
 el

 Filters for tickets with
 any of the provided
 source channels

 array of strings

 type Filters for work of the
 provided types.
 Allowed values:
 issue, ticket, task

 array of strings

 summarize_objects Summarizes a list of
 objects. The logic of
 how to summarize a
 particular object type
 is an internal
 implementation
 detail.

 objects List of objects to
 summarize

 array of objects

 prioritize_objects Returns a list of
 objects sorted by
 priority. The logic of
 what constitutes
 priority for a given
 object is an internal
 implementation
 detail.

 objects A list of objects to be
 prioritized

 array of objects

 add_work_items_to_
 sprint

 Adds the given work
 items to the sprint

 work_ids A list of work item
 IDs to be added to
 the sprint.

 array of strings

 sprint_id The ID of the sprint
 to which the work
 items should be
 added

 str

 get_sprint_id Returns the ID of the
 current sprint

 get_similar_work_ite
 ms

 Returns a list of work
 items that are similar
 to the given work
 item

 work_id The ID of the work
 item for which you
 want to find similar
 items

 string

 search_object_by_na
 me

 Given a search
 string, returns the id
 of a matching object
 in the system of
 record. If multiple
 matches are found, it
 returns the one
 where the
 confidence is
 highest.

 query The search string,
 could be for example
 customer’s name,
 part name, user
 name.

 string

 create_actionable_ta
 sks_from_text

 Given a text, extracts
 actionable insights,
 and creates tasks for
 them, which are kind
 of a work item.

 text The text from which
 the actionable
 insights need to be
 created.

 string

 who_am_i Returns the ID of the
 current user

 Unset

 The table below is a sample from the dataset containing queries and the tools to use in order to
 answer the query. The output should be a list of JSONs conforming following jsonschema:

 {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "tool_name": { "type": "string" },
 "arguments": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "argument_name": { "type": "string" },
 "argument_value": { "type": "string" }
 },
 "required": ["argument_name", "argument_value"]
 }
 }
 },
 "required": ["tool_name", "arguments"]
 }
 }

 To reference the value of the ith tool in the chain, use $$PREV[i] as argument value. i =
 0, 1, .. j-1; j = current tool’s index in the array
 If the query could not be answered with the given set of tools, output an empty list instead.

 Unset

 Unset

 Unset

 Query Output

 Summarize issues similar to
 don:core:dvrv-us-1:devo/0:issue/1

 [
 {
 "tool_name": "get_similar_work_items",
 "arguments": [
 {
 "argument_name": "work_id",
 "argument_value": "don:core:dvrv-us-1:devo/0:issue/1"

 }
]

 },
 {
 "tool_name": "summarize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[0]"

 }
]

 }
]

 What is the meaning of life?

 []

 Prioritize my P0 issues and add
 them to the current sprint

 [
 {
 "tool_name": "whoami",
 "arguments": []

 },
 {
 "tool_name": "works_list",
 "arguments": [
 {
 "argument_name": "issue.priority",

 Unset

 "argument_value": "p0"
 },
 {
 "argument_name": "owned_by",
 "argument_value": "$$PREV[0]"

 }
]

 },
 {
 "tool_name": "prioritize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[1]"

 }
]

 },
 {
 "tool_name": "get_sprint_id",
 "arguments": []

 },
 {
 "tool_name": "add_work_items_to_sprint",
 "arguments": [
 {
 "argument_name": "work_ids",
 "argument_value": "$$PREV[2]"

 },
 {
 "argument_name": "sprint_id",
 "argument_value": "$$PREV[3]"

 }
]

 }
]

 Summarize high severity tickets
 from the customer
 UltimateCustomer

 [
 {
 "tool_name": "search_object_by_name",
 "arguments": [
 {
 "argument_name": "query",
 "argument_value": "UltimateCustomer"

 }

 Unset

]
 },
 {
 "tool_name": "works_list",
 "arguments": [
 {
 "argument_name": "ticket.rev_org",
 "argument_value": "$$PREV[0]"

 }
]

 },
 {
 "tool_name": "summarize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[1]"

 }
]

 }
]

 What are my all issues in the triage
 stage under part FEAT-123?
 Summarize them.

 [
 {
 "tool_name": "whoami",
 "arguments": []

 },
 {
 "tool_name": "works_list",
 "arguments": [
 {
 "argument_name": "stage.name",
 "argument_value": "triage"

 },
 {
 "argument_name": "applies_to_part",
 "argument_value": "FEAT-123"

 },
 {
 "argument_name": "owned_by",
 "argument_value": "$$PREV[0]"

 }
]

 },

 Unset

 {
 "tool_name": "summarize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[1]"

 }
]

 }
]

 List all high severity tickets coming
 in from slack from customer
 Cust123 and generate a summary
 of them. [

 {
 "tool_name": "search_object_by_name",
 "arguments": [
 {
 "argument_name": "query",
 "argument_value": "Cust123"

 }
]

 },
 {
 "tool_name": "works_list",
 "arguments": [
 {
 "argument_name": "ticket.rev_org",
 "argument_value": "$$PREV[0]"

 },
 {
 "argument_name": "ticket.severity",
 "argument_value": "high"

 },
 {
 "argument_name": "ticket.source_channel",
 "argument_value": "slack"

 }
]

 },
 {
 "tool_name": "summarize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[1]"

 Unset

 Unset

 }
]

 }
]

 Given a customer meeting
 transcript T , create action items
 and add them to my current sprint

 [
 {
 "tool_name": "create_actionable_tasks_from_text",
 "arguments": [
 {
 "argument_name": "text",
 "argument_value": "T"

 }
]

 },
 {
 "tool_name": "get_sprint_id",
 "arguments": []

 },
 {
 "tool_name": "add_work_items_to_sprint",
 "arguments": [
 {
 "argument_name": "work_ids",
 "argument_value": "$$PREV[0]"

 },
 {
 "argument_name": "sprint_id",
 "argument_value": "$$PREV[1]"

 }
]

 }
]

 Get all work items similar to
 TKT-123, summarize them, create
 issues from that summary, and
 prioritize them [

 {
 "tool_name": "get_similar_work_items",
 "arguments": [

 Extra/Bonus

 ● Not every user query could be potentially solved by taking composition of available
 functions, and might need some additional logic around combining the outputs of those
 functions, like mathematical operations, iterations, conditional logic etc.

 ● You would get bonus points if your solution can handle those cases/scenarios, rather
 than just being able to output the asked list of JSONs .

 Testing
 The provided code should compile , and you need to provide clear instructions on how to
 execute it. The output of the code given the query should be the JSON with schema defined
 above under Problem Statement section.

 NOTE : It should also be easy to add a new tool, and you need to provide clear instructions for
 that, and your code should be able to handle the addition of new tools .

 {
 "argument_name": "work_id",
 "argument_value": "TKT-123"

 }
]

 },
 {
 "tool_name": "create_actionable_tasks_from_text",
 "arguments": [
 {
 "argument_name": "text",
 "argument_value": "$$PREV[0]"

 }
]

 },
 {
 "tool_name": "prioritize_objects",
 "arguments": [
 {
 "argument_name": "objects",
 "argument_value": "$$PREV[1]"

 }
]

 }
]

 Deliverables
 - Code
 - Report on the experiments and research done to implement the solution .

 Report
 Apart from the above mentioned deliverables, you would also be required to submit the
 mid-term and end-term report which should necessarily include the following:

 - Literature review
 - Different techniques evaluated
 - Final technique being used, latency metric corresponding to it
 - Future work
 - References

 The tentative date for mid-term evaluation is 20th November 2023 . Final dates will be
 communicated soon.

 Scoring
 Final score would comprise of following components:

 - 25% - Midterm report
 - 75% - rest of the score would include

 - End term report
 - Code work
 - Presentation, QA round

 References
 - On the Tool Manipulation Capability of Open-source Large Language Models
 - ToolLLM (Facilitating large language models to master 16000+ real-world APIs)
 - ToolQA (A Dataset for LLM Question Answering with External Tools)
 - API-Bank: A Benchmark for Tool-Augmented LLMs
 - Gorilla: Large Language Model Connected with Massive APIs
 - ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated

 Cases
 - https://github.com/Significant-Gravitas/AutoGPT/
 - https://github.com/e2b-dev/awesome-ai-agents

