Total	l No. (of Questions : 8] SEAT No. :								
P69	8	[Total No. of Pages : 5								
		[5869]-361								
S.E. (Artificial Intelligence and Data Science)										
DISCRETE MATHEMATICS										
T '	21/	(2019 Pattern) (Semester - III) (210241)								
		Hours] [Max. Marks: 70								
Instr		ns to the candidates:								
	1)	Solve Q 1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.								
	2)3)	Figures to the right indicate full marks. Neat diagrams must be drawn whenever necessary.								
	<i>4</i>)	Assume suitable data wherever necessary.								
	4)	Assume suitable data wherever necessary.								
<i>Q1</i>)	a)	The company has 10 members on its board of directors. In how many								
~ /	,	ways can they elect a president, a vice president, a secretary and a treasure.								
		[6]								
	1 \									
	b)	Find eighth term in the expansion of $(x+y)^{13}$. [6]								
	c)	A box contains 6 white and 5 black balls. Find number of ways 4 balls								
	- /	can be drawn from the box if [6]								
		i) Two must be white								
		ii) All of them must have same colour								
		ii) I iii o'i them must have same colour								
		OR								
Q 2)	a)	In how many ways can word the 'HOLIDAY' be arranged such that the								
Q2)	<i>a)</i>	letter I will always come to left of letter L. [6]								
		letter I will always come to lett of letter E.								
	b)	In how many ways can one distribute 10 apples among 4 children. [6]								
	c)	Use Binomial theorem to expand $(x^4 + 2)^3$. [6]								
	C)	Use Binomial incorem to expand $(x + 2)$.								
02)										
Q3)	a)	Is it possible to draw a simple graph with 4 vertices and 7 edges. Justify?								
		[7]								

P.T.O.

b) Define following terms with example

[5]

- i) Complete graph
- ii) Regular graph
- iii) Bipartite graph
- iv) Complete bipartite graph
- v) Paths and circuits
- c) The graphs G and H with vertex sets V(G) and V(H), are drawn below. Determine whether or not G and H drawn below are isomorphic. If they are isomorphic, give a function g: V(G)->V(H) that defines the isomorphism. If they are not explain why they are not. [5]

Q4) a) Determine which if the graph below represents Eulerian circuit, Eulerian path, Hamiltonian circuit and Hamiltonian path. Justify your answer [7]

[5869]-361

- A connected planar graph has nine vertices with degree 2, 2, 2, 3, 3, 3, 4, 4, 5 b) Find. [5]
 - number of edges
 - number of faces ii)
 - construct two such graphs
- c) Explain the following statement with example

"Every graph with chromatic number 2 is bipartite graph"

Construct Huffman tree **Q5**) a)

A	5
В	6
С	6
D	11
Е	20

- Explain b)
 - Cutset i)
 - Tree properties ii)
 - Prefix code iii)

[6]

Respondence of the state o

[5]

[6]

Give the stepwise construction of minimum spanning tree using Prims c) algorithm for the following graph. Obtain the total cost of minimum spanning tree. [6]

Using the labelling procedure to find maximum flow in the transport **Q6**) a) network in the following figure. Determine the corresponding minimum **[6]**

- Define with example. b)
 - Level and height of a tree. i)
 - ii) Binary search tree.
 - Spanning tree iii)
- Construct binary search tree by inserting integers in order 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24. [6]

 Find

 i) No. of internal nodes

 ii) Leaf nodes

 4 c)

- Let $R = \{0,60,120,180,240,300\}$ and * binary operation so that for a and **Q7**) a) b in R, a * b is overall angular rotation corresponding to successive rotations by a and by b. Show that (R,*) is a group. **[6]**
 - Following is the incomplete operation table of 4-element group. Complete b) the last two rows. [6]

*	P	a	b	С
e	e	a	b	С
a -	(a)	b	С	e
(b)				
c o				

Explain Algebraic system and properties of binary operations.

OR

- Explain the following terms with example **Q8**) a)
 - Ring with unity
 - Integral domain iii)
 - Field iv)
 - Consider the set Q of rational numbers and let a*b be the operation b) defined by a * b = a +A STANDARD STANDER STANDER STANDER STANDER STANDARD STAND
 - Find 3*4, i)
 - 2*(-5), ii)
 - iii)

Is (Q,*) a semigroup? Is it commutative?

Show that $(Zn,^{\oplus})$ is Abelian group. c)

[5]

[6]

