Total	No	o. of Questions : 8]	9 SEA	AT No. :		
PA-			SEF	[Total No. of	Pages 2	
1 A-	114	5925] <u>-2</u> 56		[Total No. of	rages: 2	
S.E. (Computer/AI&DS) FUNDAMENTALS OF DATA STRUCTURES						
		(2019 Pattern) (Semester	· - III) (2102	242)		
Time	: 21/	/2 Hours]		IMax. M	<i>larks : 70</i>	
		ons to the candidates:		[1/20000 1/2	100 100 1 7 0	
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6	6, Q.7 or Q.8.			
	2)	Figures to the right indicate full marks.				
	3)	Neat diagrams must be drawn wherever ne				
4	4)	Make suitable assumption whenever neces	sary.	9		
				2		
<i>Q1</i>)	a)	Write oseudo 'Python' algorithm (ryour algorithm on the following number [10] 9, 17, 23,38,45,50,57,76,90,1	mbers stored	in array from	1 A[0] to	
	b)	Explain the quick sort algorithm. So itertion of your algorithm start from		•	ter every	
		27, 76, 17, 9, 57, 90, 45, 100, 79.	Si		[9]	
Q 2)	a)	Explain in brief the different search complexity of each of them?	hing techniq	ues. What is	the time	
	b)	Write an algorithm of selection sort a selection sort and show the contents		•	~~	
		81, 5, 27, -6, 61, 93, 4, 8, 104, 15			S [9]	

- Q3) a) What is linked list? Write a pseudo C++ code to sort the elements. [9]
 - b) What is doubly linked list? Explain the process of deletion of an element from doubly linked list with example. [9]

OR

Q4) a) Explain Generalized Linked List with example.

b) Write Pseudo C++ code for addition of two polynomials using singly linked list. [9]

[9]

Q 5)	a)	Write an algorithm for postfix evaluation with suitable example. [8]		
	b)	What is concept of recursion? Explain the use of stack in recursion with example. [9]		
		OR		
<i>Q6</i>)	a)	What is need to convert the infix expression into postfix; convert the ollowing expression into postfix expression $(a+b)*d+e/(f+a*d)+c$. [8]		
	b)	What is backtracking algorithm design strategy? How stack is useful in backtracking [9]		
Q7)	a)	Write pseudo C++ code to represent dequeue and perform the following		
		operations on dequeue: [8]		
		i) Create		
		ii) Insert		
	0	iii) Delete		
		iv) Display		
	b)	What is circular queue? Explain the advantages of circular queue area		
		linear queue. [9]		
		OR		
Q8)	a)	Define queue as an ADT. Write pseudo C++ code to represent queue.[8]		
	b)	Explain Array implementation of priority queue with all basic operations.		
		Explain Array implementation of priority queue with all basic operations. [9]		
[5925]-256				