

[6403]-36

T.E. (Computer Engineering)
THEORY OF COMPUTATION
(2019 Pattern) (Semester - V) (310242)

Time : 2½ Hours]

[Max. Marks : 70]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.

Q1) a) Give Context Free Grammars for the following languages and show the derivation for given string. [12]

- i) $L = \{ w \in \{a,b\}^* \mid w \text{ is string of starting with 'a' and ending with 'b'} \}$
 show the derivation for "ababab"
- ii) $L = a^n b^{2n}$ where $n \geq 1$. Show the derivation for "aabbba"
- iii) $RE = (0+1)^*$ Show the derivation for "0110"

b) Reduce the following grammar to Greibach Normal form. [6]

$$S \rightarrow AA \mid 0$$

$$A \rightarrow SS \mid 1$$

OR

Q2) a) Convert the following grammar to CNF. [8]

$$S \rightarrow aSa \mid bSb \mid A \mid \epsilon$$

$$A \rightarrow a \mid b \mid \epsilon$$

b) In the grammar, convert the given production rule into GNF form. If any production rule in the grammar is not in GNF form, convert it. [10]

$$S \rightarrow XB \mid AA$$

$$A \rightarrow a \mid SA$$

$$B \rightarrow b$$

$$X \rightarrow a$$

Q3) a) i) Construct PDA for the given CFG, and test whether 010^4 is acceptable by this PDA. [10]

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

ii) Construct PDA for the given CFG, and test whether 'aaabb' is acceptable by this PDA.

$$S \rightarrow aSb$$

$$S \rightarrow a \mid b \mid \epsilon$$

b) Construct PDA to accept $L = \{ a^n b^n \mid n \geq 1 \}$ through empty stack. [4]

c) Convert the given PDA to CFG $S \rightarrow 0S1 \mid 00 \mid 11$ [4]

OR

Q4) a) Construct Pushdown automata for $L = \{0^n 1^m 2^{(n+m)} \mid m, n \geq 0\}$ [6]
 b) NPDA for accepting the language $L = \{a^{2m} b^{3m} \mid m \geq 1\}$ [6]
 c) NPDA for accepting the language $L = \{a^i b^j c^k d^l \mid i=k \text{ or } j=i, j>=1, l>=1\}$ [6]

Q5) a) Write short notes on with suitable diagrams. [12]
 i) Reducibility
 ii) Multi-tape Turing Machine
 iii) Multi-head Turing Machine
 iv) Two-way infinite Tape Turing Machine:
 v) Multi-tape Multi-head Turing Machine
 b) Construct a TM for subtraction of two unary numbers $f(a-b) = c$ where a is always greater than b. Explain the logic of building this Turing machine. [5]

OR

Q6) a) Draw a Turing Machine to increment a binary number by 1 and demonstrate with any example. [6]
 b) Obtain a Turing Machine to accept the language containing strings of a's and b's that do not end with abb. [7]
 c) Construct a TM for the language $L = \{0^n 1^n 2^n \mid n \geq 1\}$ [4]

Q7) a) What Minimum spanning tree problem? Prove that finding MST by using Kruskal's algorithm is in class P. [5]
 b) What is post correspondence problem? Why is post correspondence problem undecidable? Explain PCP with following instance of the set of the strings A and B. [12]

	A	B
1.	1	111
2.	10111	10
3.	10	0

OR

Q8) a) Define and Compare Class P and Class NP Problem with suitable diagram. [8]
 b) State and explain with suitable example. [9]
 i) Decidable Problem
 ii) Undecidable Problem
 iii) Church-Turing Thesis

① ① ① ①