

Total No. of Questions : 8]

SEAT No. :

PC-1719

[Total No. of Pages : 3

[6353]-36

T.E. (Computer Engg.)
THEORY OF COMPUTATION
(2019 Pattern) (Semester - I) (310242)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.

Q1) a) Give Context Free Grammars for the following languages [9]

- i) $L = \{ w \in \{a,b\}^* | w \text{ is string starting with 'a' and ending with 'b'} \}$
- ii) $RE = 0(0+1)^*01(0+1)^*1$
- iii) $RE = (011+1)^* (01)^*$

b) Simplify the following grammar as [8]

- i) Eliminate Useless production

$$S \rightarrow abS \mid abA \mid abB$$

$$A \rightarrow cd$$

$$B \rightarrow aB$$

$$C \rightarrow dc$$

- ii) Eliminate Unit Production

$$S \rightarrow Aa \mid B$$

$$A \rightarrow b \mid B$$

$$B \rightarrow A \mid a$$

- iii) Eliminate the \in Production

$$S \rightarrow XYX$$

$$X \rightarrow 0X \mid \epsilon$$

$$Y \rightarrow 1Y \mid \epsilon$$

OR

P.T.O.

Q2) a) $S \rightarrow aB \mid bA$

$A \rightarrow a \mid aS \mid bAA$

$B \rightarrow b \mid bS \mid aBB$

Derive using Leftmost Derivation and Rightmost Derivation : i) bbaaba
ii) aaabbb. Draw parse tree for the same. [9]

b) Find context Free Grammar generating each of these languages. [8]

i) $L_1 = \{ a^i b^j c^k \text{ such that } i = j + k \text{ where } i, j, k \geq 1 \}$

ii) $L_2 = \{ a^i b^j c^k \text{ such that } j = i + k \text{ where } i, j, k \geq 1 \}$

Q3) a) i) Construct PDA for the given CFG, and test whether 010^4 is acceptable by this PDA.

$S \rightarrow 0BB$

$B \rightarrow 0S \mid 1S \mid 0$

ii) Construct PDA for the given CFG, and test whether 'aaabb' is acceptable by this PDA.

$S \rightarrow aSb$

$S \rightarrow a \mid b \mid \epsilon$

[10]

b) What is NPDA? Construct a NPDA for the set of all strings over {a, b} with odd length palindrome. [8]

OR

Q4) a) Construct a PDA accepting the language $L = \{a^n b^m a^n \mid n, m \geq 0\}$ by null store. [6]

b) Design a PDA for a language $L = \{XcX^r \mid X \in \{a, b\}^*\}$ and string X^r is the reverse of string $X\}$ [6]

c) Obtain a PDA to accept the language - [6]

$L = \{w \mid w \in \Sigma^*, \Sigma = \{a, b\} \text{ and } n_a(w) = n_b(w)\}$ by final state

Q5) a) Design the Turing for the function $f(n) = 2n$ is computable. [9]

b) What are the different ways for extension of TM? Explain. Design TM for language $L = \{a^m b^n \mid m < n\}$ [9]

OR

Q6) a) Construct a TM to accept the language over {0,1} containing the substring 001. [6]

b) Design a TM to multiply a unary number by 2. [8]

c) Design Turing Machine for 1's Complement. [4]

Q7) a) What Traveling salesman problem? How to prove that Traveling salesman problem is NP Complete? [5]

b) What is post correspondence problem? Why is post correspondence problem undecidable? Explain PCP with following instance of the set of the strings A and B [12]

	A	B
1	1	111
2	10111	10
3.	10	0

OR

Q8) a) What is reducibility in Computability Theory ? Explain in detail, the polynomial time reduction approach for proving that a problem is NP Complete. [8]

b) State and explain with suitable example : [9]

- i) Decidable Problem
- ii) Undecidable Problem
- iii) Church-Turing Thesis.

