

Total No. of Questions : 8]

P3663

SEAT No. :

[Total No. of Pages : 4

[6001]-4005

F.E. (All Branches)

BASIC ELECTRICAL ENGINEERING
(2019 Credit Pattern) (Semester - I/II) (103004)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) *Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.*
- 2) *Figures to the right indicate full marks.*
- 3) *Neat diagrams must be drawn wherever necessary.*
- 4) *Assume suitable additional data, if necessary.*
- 5) *Use of non-programable calculator is allowed.*

Q1) a) Define impedance. Draw the impedance triangle for R-L & R-C series circuit. **[4]**

b) Obtain the expression for current and power, when voltage $v = V_m \sin \omega t$ is applied across purely inductive circuit. **[6]**

c) The series circuit having resistance 10Ω , inductance 0.1 H and capacitance $150 \mu\text{F}$ is connected to 1-phase, 200 V , 50 Hz AC supply, Calculate - **[8]**

- i) Inductive reactance X_L
- ii) Capacitive reactance X_C
- iii) Net reactance X
- iv) Impedance Z
- v) Current drawn by the circuit
- vi) Power factor
- vii) Active power P
- viii) Reactive power Q .

OR

Q2) a) If 200 V , 50 Hz supply is applied across the resistance of 10Ω , find equation for voltage & current. **[4]**

P.T.O.

b) Derive the expression for power, when voltage $v = V_m \sin \omega t$ is applied across R-L series circuit. [6]

c) The series circuit having resistance 10Ω and capacitance $150 \mu F$ draws a current of 9.4 A from 1-phase, 50 Hz AC supply. Calculate -

- Capacitive reactance
- impedance
- power factor
- supply voltage
- Active power and
- reactive power.

[8]

Q3) a) Define

- Balanced load
- Unbalanced load and
- Phase sequence.

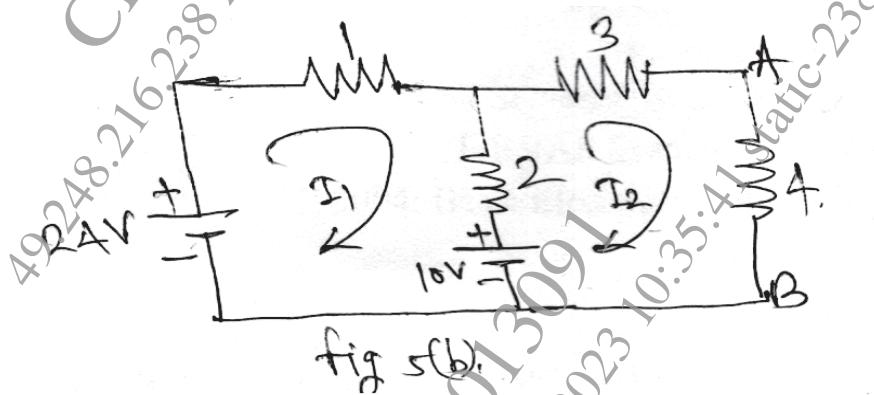
[3]

b) Derive the EMF equation of single phase transformer. [6]

c) Derive the relation between i) phase voltage and line voltage ii) phase current and line current in case of balanced STAR connected 3-ph inductive load. Assume phase sequence RYB. Draw the circuit diagram & necessary phasor diagram. [8]

OR

Q4) a) Define the voltage regulation and efficiency of transformer along with formula. [3]

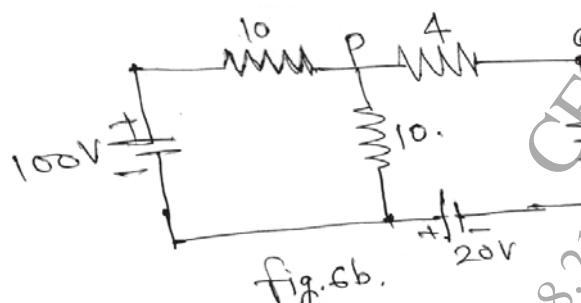

b) The maximum flux density in core of a $250/1000 \text{ V}$, 50 Hz , 1-ph transformer is 1.2 T . If EMF/turn is 10 V , calculate i) Primary & secondary number of turns ii) area of cross section of core. [6]

c) Three identical impedances each of $6+j8 \Omega$ are connected in star across 3-ph, 400 V, 50 Hz ac supply. Determine. [8]

- phase voltage
- phase current and line current
- power factor, 3-ph active, reactive and apparent power

Q5) a) State and explain KCL & KVL [4]

b) Calculate the current flowing through 4Ω (AB) for the circuit shown in fig 5b, using Kirchhoff's Laws. All resistances are in Ω [6]


c) Derive the equations to convert Delta connected resistive circuit into equivalent Star circuit. [8]

OR

Q6) a) Explain the practical current source by means of [4]

- Symbol of representation
- Value of internal resistance
- Graphs between V and I

b) Calculate the current flowing through 4Ω (PQ) for the circuit shown in fig 6b, using Superposition Theorem. All resistances are in Ω [6]

c) Calculate the current flowing through 4Ω (PQ) for the circuit shown in fig 6b, using Thevenin's Theorem. [8]

Q7) a) Define resistance of the material & state factors on which it depends. [3]
b) Explain construction and working principle of Lithium ion battery. [6]
c) Derive an expression for insulation resistance of a single core cable with the necessary diagram. [8]

OR

Q8) a) State the material used for positive plate, negative plate & electrolyte for lead acid battery. [3]
b) The current flowing at the instant of switching 240 V, 40 Watt lamp is 2 A. The TCR of tungsten filament is 0.0055 per degree Celsius at 20°C. Determine.
i) temperature of filament of the lamp ii) working current [6]
c) If α_1 and α_2 are the RTC of a conducting material at t_1^0 C and t_2^0 C respectively prove that $\alpha_2 = \frac{\alpha_1}{1 + \alpha_1(t_2 - t_1)}$ & hence, obtain $\alpha_t = \alpha_0 / (1 + \alpha_0 \cdot t)$ [8]