

First Year Engineering (All Branches)
BASIC ELECTRICAL ENGINEERING
(2019 Pattern) (Semester - I) (103004)

*Time : 1 Hour]**[Max. Marks : 30]***Instructions to the candidates:**

- 1) *Solve Q.1 or Q.2, Q.3 or Q.4.*
- 2) *Figures to the right indicate full marks.*
- 3) *Neat diagrams must be drawn wherever necessary.*
- 4) *Assume suitable additional data, if necessary.*
- 5) *Use of non-programmable calculator is allowed.*

Q1) a) What is magnetic effect of an electric current in case of a long straight conductor? Hence state right hand thumb rule. [3]

b) Distinguish between an electric circuit and a magnetic circuit; stating similarities (04 points) and dissimilarities (02 points) [6]

c) Two coils A and B have self-inductances of $10 \mu\text{H}$ and $40 \mu\text{H}$ respectively. A current of 2 A in coil A produces a flux linkage of $5\mu\text{Wb}$ -turns in coil B. Calculate:

- i) Mutual inductance between the coils
- ii) Coefficient of coupling
- iii) Average emf induced in coil B if the current of 1 A in coil A is reversed at uniform rate in 0.1 second.

OR

Q2) a) Define Self Inductance by three ways. [3]

b) Obtain the expression for energy stored in magnetic field produced by an inductor. [6]

c) An iron ring of mean circumference of 150cm and cross sectional area 12 cm^2 is wound with 600 turns of coil. The coil produces flux of 1.25 mWb while carrying a current of 2 A. Find the relative permeability of iron. [6]

Q3) a) Define [3]

- i) cycle
- ii) period and
- iii) frequency of an alternating quantity.

b) Explain the concept of lagging taking two electrical quantities with the help of their waveforms and phasor diagrams. [6]

c) Two capacitors of $2 \mu\text{F}$ and $8 \mu\text{F}$ are connected in series across 200 V DC supply. [6]

Find

- resultant capacitance value
- voltage across each capacitor and
- charge on each capacitor.

OR

Q4) a) Obtain an expression for average value of a sinusoidal alternating current. [3]

b) Define the following terms in electrostatics and mention their units. [6]

- Electric flux density
- Electric field strength
- Absolute permittivity

c) An alternating current varying sinusoidally with a frequency of 50 Hz has an rms value of 10 A. Write the expression for instantaneous value of this current quantity and find its value for [6]

- $t = 0.0015 \text{ sec}$
- $t = 0.0075 \text{ sec}$ after passing through zero and then increasing negatively.

✉ ✉ ✉