

Total No. of Questions : 09]

SEAT No. :

P6486

[Total No. of Pages : 4

[5868]-102
F.E. (Semester - II)
Engineering Physics
(2019 Pattern) (Paper - II) (107002)

Time : 2½ Hours]

[Max. Marks : 70]

Instructions to the candidates:

- 1) *Question No. 1 is compulsory.*
- 2) *Neat diagrams must be drawn wherever necessary.*
- 3) *Figures to the right indicates full marks.*
- 4) *Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.*
- 5) *Assume suitable data, if necessary.*

Physical Constants :-

1) <i>Planck's constant</i>	$h = 6.63 \times 10^{-34} \text{ J-S}$
2) <i>Mass of electron</i>	$m_e = 9.1 \times 10^{-31} \text{ kg}$
3) <i>Charge on electron</i>	$e = 1.6 \times 10^{-19} \text{ C}$

Q1) Write the correct option with answer for the following : [10]

- i) The wavelength λ associated with a particle of mass m moving with velocity v is given by
 - a) $\lambda = \frac{h}{mv}$
 - b) $\lambda = \frac{mv}{h}$
 - c) $\lambda = \frac{hv}{m}$
 - d) $\lambda = \frac{m}{hv}$
- ii) The equation of motion of matter wave was derived by
 - a) Heisenberg
 - b) Bohr
 - c) De Broglie
 - d) Schrodinger
- iii) In metals the band gap energy / forbidden energy gap is
 - a) 0 eV
 - b) 0.7 eV
 - c) 1.12 eV
 - d) > 5 eV

P.T.O.

iv) A solar cell work on the principle of

- Photoelectric effect
- Photoluminescence effect
- Photovoltaic effect
- Photocombustion effect

v) The relative permeability can be expressed by

- $\mu_r = 1 + \mu_0$
- $\mu_r = 1 + x$
- $\mu_r = \frac{x}{\mu_0}$
- $\mu_r = \mu_0 + \mu_a$

vi) Superconductivity is the phenomenon in which _____ of materials suddenly disappears below critical temperature.

- Capacitance
- Conductivity
- Inductance
- Resistance

vii) Ultrasonic waves have frequency

- Less than 20 Hz
- 20 Hz to 20 kHz
- Greater than 20 kHz
- None of the above

viii) In nanomaterials which of the following statement is correct.

- Surface to volume ratio is very small
- Surface to volume ratio is large
- Surface to volume ratio is 1 (unity)
- None of the above

Q2) a) Derive an equation for energy of a particle enclosed in 1D rigid box or in an infinite potential well. [6]

b) What is wave function Ψ ? Write mathematical conditions of well behaved wave function. [5]

c) An electron is accelerated by a potential difference of 10 kV . What is De Broglie wavelength associated with this electron. [4]

OR

Q3) a) Starting from De Broglie hypothesis, derive Schrodinger's time independent wave equation. [6]

b) State Heisenberg's Uncertainly principle. Explain it using the concept of narrow and broad wave packet. [5]

c) Lowest energy of an electron in a potential well is 38 eV . Calculate the width of well. [4]

Q4) a) Derive an expression for conductivity of intrinsic, and extrinsic semiconductors. [6]

b) What is fermi level in a semiconductor? With the neat labelled diagram, draw the position of fermi level in N Type & P Type semiconductor at 0° K. [5]

c) A copper strip 2.0 m wide, 1.0 mm thick is placed in a magnetic field of 1.5T. If a current of 200 A is set up in the strip, calculate the Hall voltage that appears across the strip. [5]

Assume $R_H = 6 \times 10^{-7} \text{ m}^3/\text{C}$.

OR

Q5) a) State Hall effect. Derive an equation of Hall voltage. [6]

b) Define fermi level in conductors and semiconductors. Draw the position of fermi level in intrinsic, N - type & P - type semiconductors. [5]

c) Calculate the number of acceptors to be added to germanium sample to obtain the resistivity of $10\Omega\text{m}$. [4]

Q6) a) Explain the following terms in superconductivity : [6]

i) Critical Magnetic field.

ii) Meissner effect

b) Define : [5]

i) Magnetic induction (B)

ii) Magnetic field strength (H)

iii) Magnetization (M) and state the relation between B, M & H.

c) Explain DC & AC Josephson effect in brief. [4]

OR

Q7) a) Differentiate between Diamagnetism, paramagnetism and ferromagnetism. (Any Three points) [6]

b) What is superconductivity? Distinguish between Type I and Type II superconductors. (any four points) [5]

c) The transition temperature for lead is 7.2 K. However at 5K it loses the superconductivity property if subjected to magnetic field of $3.3 \times 10^4 \text{ A/m}$. Find the maximum value of magnetic field which will allow the metal to retain its superconductivity at 0K. [4]

Q8) a) What is echo sounding technique? Using this technique explain non destructive testing for the measurement of thickness of metal sheet using ultrasonic waves. [6]

b) What are nanoparticles? What is nanotechnology? Explain the optical property of nanoparticle. [5]

c) Distinguish between Destructive and Non Destructive testing (any two points) [4]

OR

Q9) a) What are applications of nanoparticles? Explain any two applications of nanoparticles in brief. [6]

b) Explain in brief Acoustic Emission Technique of NDT and its application. [5]

c) Explain electrical property of nanoparticles. [4]
