

Total No. of Questions : 9]

SEAT No. :

P-3919

[Total No. of Pages : 4

[6001]-4002

F.E.

ENGINEERING PHYSICS

(2019 Pattern) (Semester - II) (Credit System) (107002)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Question No. 1 is compulsory.
- 2) Q.No. 2 to Q.No. 9 carry equal marks.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- 5) Use of electronic calculator is allowed.

Physical Constants :

1) Mass of electron	$m_e = 9.1 \times 10^{-31} \text{ kg}$
2) Charge on electron	$e = 1.6 \times 10^{-19} \text{ C}$
3) Planck's constant	$h = 6.63 \times 10^{-34} \text{ J-sec.}$

Q1) Write correct option of given questions with Answer. (1 mark each) : [10]

- i) According to Dr. Broglie's hypothesis, the wavelength $\lambda = \frac{h}{p}$ is applicable for
 - a) Photons
 - b) Matter particles
 - c) Either matter particles or photons
 - d) Both matter particles and photons
- ii) According to Heisenberg's uncertainty principle -
 - a) $\Delta x \cdot \Delta p \geq \frac{h}{2n}$
 - b) $\Delta x \cdot \Delta p \leq \frac{h}{2n}$
 - c) $\Delta x \cdot \Delta p \geq \frac{h}{6n}$
 - d) $\Delta x \cdot \Delta p \leq \frac{h}{4n}$

P.T.O.

iii) In Schrodinger's time independent equation _____ of a particle is independent of time.

- Kinetic energy
- Potential energy
- Total energy
- Wave function

iv) Fermi level for a metal or conductor is highest energy level occupied by electrons at _____.

- 0°C
- 0°F
- 0°K
- None of the above

v) Hall effect is true for _____.

- Metals only
- Semiconductors only
- For N-type semiconductors only
- Both metal and semiconductors

vi) The magnetic materials exhibit the property of magnetisation because of _____.

- Orbital motion of electrons
- Spin of electrons
- Spin of nucleus
- All of the above

vii) A superconductor is a perfect _____ material.

- Insulator
- Semiconductor
- Dielectric
- Diamagnetic

viii) Tunneling of Cooper pairs through an insulating layer between two superconductors is called _____.

- Josephson effect
- Onnes effect
- Meissner effect
- Kerr effect

ix) With increase in size of nanoparticles its hardness _____.

- Increases
- Decreases
- Remains same
- Difficult to predict

x) In Non destructive testing (NDT) the physical and chemical properties of sample _____.

- Changes
- Do not changes
- Depends on temp
- Does not depend on temp

Q2) a) Deduce Schrodinger's time independent wave equation. [6]
b) State and explain Heisenberg's uncertainty principle using the except of small and large wave packet. [5]
c) Calculate the energy difference between the ground state and first excited state of an electron in the rigid box of length 1A° . [4]

OR

Q3) a) State De Broglie's hypothesis. Derive an expression for De Broglie's wavelength of an electron accelerated by a potential difference of 'V'. [6]
b) Define wave function. Write the conditions of well behaved wave function. [5]
c) The uncertainty in the location of a particle is equal to its De Broglie wavelength. Show that the uncertainty in the velocity to a particle is equal to the particle velocity itself. [4]

Q4) a) With the help of bond theory of solids explain the classification of solids into conductors, semiconductors and insulators. [6]
b) What are solar cells? Draw I-V characteristics of solar cells and define the terms i) Short circuit current and ii) Open circuit voltage. [5]
c) The Hall coefficient of a specimen of a doped silicon is found to be $3.66 \times 10^{-4} \text{ m}^3/\text{c}$. The resistivity of the specimen is $1 \times 10^{-2} \Omega\text{m}$. Determine the mobility of the charge carriers. [4]

OR

Q5) a) Explain the Hall effect with a neat labelled diagram. Derive an expression for Hall voltage. [6]
b) Define Fermi level in semiconductors. For a P-N junction diode draw energy band picture showing the position of Fermi level in i) Zero bias and ii) Forward bias. [5]
c) Calculate the number of donors atoms which must be added to an intrinsic semiconductors to obtain the resistivity of $10^6 \Omega\text{cm}$. (Given mobility of electrons = $1000 \text{ cm}^2/\text{V sec.}$) [4]

Q6) a) Differentiate between diamagnetism, paramagnetism and ferromagnetism. (Any two points) [6]

b) Define : [5]

- Magnetic permeability and
- Magnetic susceptibility

Obtain the relation between them.

c) The critical magnetic field of niobium is 1×10^5 A/m at 8°K and 2×10^5 A/m at 0°K. Calculate the critical temperature of the element. [4]

OR

Q7) a) Explain artificial magnetic field in brief. Distinguish between Type-I & Type II superconductors. (Any 3 points). [6]

b) Explain Meissner effect in brief. Show that superconductors are characterised by perfect diamagnetism. [5]

c) Define the terms : [4]

- Magnetic field strength (H)
- Magnetic induction (B)
- Magnetisation (M)
- Relative permeability (μ_r)

OR

Q8) a) What is echosounding technique? Using this technique explain non destructive testing for the measurement of thickness of a metal sheet using ultrasonic waves. [6]

b) What is Non Destructive Testing (NDT)? Distinguish between Non Destructive Testing and Destructive Testing. (Any two points) [5]

c) Write any four applications of nanotechnology in the field of automobile. Explain any one in brief. [4]

OR

Q9) a) Explain optical and mechanical properties of nanoparticles [6]

b) What are nanoparticles? What is the effect of quantum confinement on the properties of nanoparticles? [5]

c) An ultrasonic pulse is sent through a copper block. The echo pulse is received after 4 μ s. If velocity of ultrasonic in copper is 5000 m/s, calculate the thickness of copper block. If the reflection pulse recorded after 1.253 μ s from the top what is the location of flaws? [4]

