

[6178] - 2

F.E.

ENGINEERING PHYSICS

(2019 Pattern) (Semester - I/II) (107002)

Time : 2½ Hours]

[Max. Marks : 70]

Instructions to the candidates :

- 1) Q. 01 is compulsory, Answer Q2 or Q3, Q4 or Q5, Q6 or Q7, Q8 or Q9.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicates full marks.
- 4) Use of Electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.

Physical Constants :-

- Plank's constant $h = 6.63 \times 10^{-34}$ J.S
- Mass of electron $m_e = 9.1 \times 10^{-31}$ Kg
- Charge on election $e = 1.6 \times 10^{-19}$ C

Q1) Write the correct option with answer for the following (1 mark each). [10]

- i) The de Broglie wavelength is _____ proportional to mass of the particle and _____ proportional to velocity of the particle
 - a) Directly, directly
 - b) Inversely, inversely,
 - c) Directly, inversely
 - d) Inversely, directly
- ii) If a wave function is finite, single valued, continuous and normalizable it is called as
 - a) Well behaved function
 - b) Probability function,
 - c) Fermi function
 - d) None of these
- iii) Heisenberg Uncertainty Principle is the product of _____ in position and momentum
 - a) Difference
 - b) Uncertainties
 - c) Addition
 - d) Subtraction

iv) In Hall effect, when a specimen carrying current I is placed in transverse magnetic field B then electric field developed in specimen is _____ to I and B

- a) parallel
- b) intersect
- c) perpendicular
- d) none of above

v) The resistivity has unit _____

- a) Ohm-m
- b) Ohm
- c) Ohm/m
- d) Ohm/cm

vi) Superconductivity is characterized by a state of _____

- a) Finite resistivity
- b) Infinite resistivity
- c) Zero resistivity
- d) Zero conductivity

vii) Superconductor is a perfect _____ material.

- a) Insulator
- b) Semiconductor
- c) Dielectric
- d) Diamagnetic

viii) _____ materials are weakly attracted when placed in the external magnetic field

- a) Paramagnetic material
- b) Diamagnetic material
- c) Ferromagnetic materials
- d) Ferrimagnetic materials

ix) A nanoparticle has dimensions in the range

- a) 10 to 100 micrometres
- b) 1 to 100 nanometres,
- c) 1 to 10 nanometres
- d) Greater than 100 nm

x) _____ testing is used to locate voids, cracks, flaws present inside the material

- a) Destructive testing
- b) Both destructive and non-destructive testing
- c) None in destructive and non-destructive testing
- d) Non-destructive testing

Q2) a) Derive Schrodinger's time Independent wave equation. [6]
 b) State and explain Heisenberg's uncertainty principle. [5]
 c) Calculate the energy difference between the ground state and first excited state of an electron in the rigid box of length 1 A° . [4]

OR

Q3) a) Derive the equation for energy of the particle is enclosed in a one-dimensional rigid box (infinite potential well). [6]
b) State de Broglie hypothesis. Derive the equation of de Broglie wavelength for an electron accelerated by a potential difference “V”. [5]
c) An electron has a speed of 600 m/s with an accuracy of 0.005 %. Find the uncertainty in its position. [4]

Q4) a) Explain classification of solids on the basis of Band Theory. [6]
b) Explain the working of PN junction diode in (a) forward bias (c) reverse bias on the basis of energy level diagram. [5]
c) Calculate the mobility of charge carriers in doped silicon whose conductivity is 100 per $\Omega\text{-m}$ and the Hall coefficient is $3.6 \times 10^{-4} \text{ m}^3/\text{coulomb}$. [4]

OR

Q5) a) Explain Hall effect. Derive the equation of Hall coefficient. [6]
b) Prove that in intrinsic semiconductor fermi level lies exactly at centre between valence band and conduction band. [5]
c) Calculate the conductivity of pure silicon at room temperature when concentration of carriers is 1.6×10^{10} per cc [$\mu_e = 1500 \text{ cm}^2/\text{V-sec}$, $\mu_h = 500 \text{ cm}^2/\text{V-sec}$]. [4]

Q6) a) Differentiate between type I and type II superconductors. [6]
b) Define the terms:
i) Magnetic field strength (H)
ii) Magnetization (M)
iii) Magnetic Susceptibility (χ)
iv) Magnetic Induction (B)
v) Relative Permeability (μ)
c) Explain DC and AC Josephson effect in brief. [4]

OR

Q7) a) Explain how the information is recorded and retrieved in magneto-optical recording devices. [6]
b) State and Explain Meissner effect. Show that superconductors exhibit perfect diamagnetism. [5]
c) Differentiate ferromagnetic materials and paramagnetic material. (Any two points) [4]

Q8) a) Explain Electrical and Mechanical properties of nanoparticles. [6]
b) Differentiate between Non-Destructive Testing techniques and destructive testing techniques. [5]
c) Explain the applications of Nano particles in Targeted Drug Dilivery. [4]

OR

Q9) a) What is Non Destructive Testing? Explain Ultrasonic Testing Technique for flaw detection. [6]
b) Explain nano technology is used in, Automobile and electronics field. [5]
c) An ultrasonic pulse of frequency 130 kHz is sent through a block of steel. The echo pulse is recorded after 1.695 microseconds. If the velocity of ultrasonic in steel is 5900 m/s, calculate the thickness of the steel block and the wavelength of the pulse. [4]

○○○○