

Total No. of Questions : 8]

PC1676

[6351]-102

SEAT No. :

[Total No. of Pages : 3

F.E.

ENGINEERING PHYSICS

(2019 Pattern) (Semester- I/II) (107002) (Credit System)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) *Neat diagrams must be drawn wherever necessary.*
- 2) *Figures to the right indicate full marks.*
- 3) *Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.*
- 4) *Assume Suitable data, if necessary.*

Constants:

Mass of electron = 9.1×10^{-31} kg.

Charge on electron = 1.6×10^{-19} C

Velocity of light = 3×10^8 m/s

Planck's Constant = 6.63×10^{-34} J.s

Q1) a) State de Broglie hypothesis. Derive de Broglie's wavelength in terms of kinetic energy E and Potential difference V. [6]

b) What is normalisation condition, the wavefunction must satisfy? Write down the other conditions the wave function must satisfy. [4]

c) Show that the energy of a particle in an infinite potential well is quantised by giving the expression of energy and with energy level diagram. [4]

d) An electron is confined to a box of length 2 Å. Calculate the minimum uncertainty in its velocity. [4]

OR

Q2) a) Derive Schrodinger's time independent wave equation. [6]

b) Using $\Delta x \Delta p = h$, prove Heisenberg's uncertainty relation of energy and time. [4]

c) Write down any four properties of matter waves. [4]

d) An electron is trapped in an infinite potential well of width 1 Å calculate the lowest two permissible energies (in eV) the electron can have. [4]

P.T.O.

Q3) a) Explain Hall Effect. Derive the equation for Hall voltage. [6]
 b) What is Fermi-Dirac Probability distribution function. Write the terms involved in the equation. Draw the Energy diagrams with Fermi energy level for intrinsic and extrinsic semiconductors at 0°K . [4]
 c) Draw the I-V characteristics of solar cell and define the terms; [4]
 i) Fill factor
 ii) Open circuit voltage
 iii) Short circuit current
 d) Calculate the energy gap in silicon if it is transparent to a radiation of wavelengths greater than or equal to $11,000 \text{ \AA}$. [3]

OR

Q4) a) By using energy band theory of solids explain classification of solids into conductors, semiconductors and insulators. [6]
 b) Draw the energy band diagrams for Forward and Reverse biasing of the P-N junction diode. [4]
 c) Write down the expression for conductivity of a semiconductor. Using this, find the expressions for, intrinsic semiconductors and extrinsic semiconductor. [4]
 d) Calculate the number of acceptors to be added to a Germanium sample to obtain the resistivity of $10\Omega \text{ cm}$. Given $\mu = 17000 \text{ cm}^2/\text{V.sec}$. [3]

Q5) a) Explain the origin of magnetism in brief. Differentiate between paramagnetic materials and diamagnetic materials on the basis of magnetic susceptibility & magnetic permeability. [6]
 b) Explain Meissner effect. Show that superconductors are diamagnetic in nature. [4]
 c) Explain the following terms:
 i) Critical magnetic field
 ii) Persistent current
 d) The critical temperature for lead is 7.2K . However at 5K it loses its superconductivity when subjected to a magnetic field of $3.3 \times 10^4 \text{ A/m}$. Find the maximum value of critical magnetic field which will allow the metal to retain its superconductivity at 0°K . [4]

OR

Q6) a) Explain superconductivity. Differentiate between Type I & Type II superconductors (Any 4 pts). [6]
 b) Explain in brief the process of magnetic recording and retrieving. [4]
 c) What is magnetic permeability. Find the relation between relative permeability (μ_r) and magnetic susceptibility (χ). [4]
 d) The critical field of Niobium is $1 \times 10^5 \text{ A/m}$ at 8K and $2 \times 10^5 \text{ A/m}$ at 0 K . calculate the critical temperature of the element. [4]

Q7) a) What is meant by Non-destructive testing. Explain Acoustic Emission testing technique. [6]

b) Explain optical and electrical properties of nanoparticles in brief. [4]

c) Differentiate between Destructive and Non-destructive testing techniques. [4]

d) Find the echo time of ultrasonic pulse which is travelling with the velocity of 3.1×10^3 m/s in a sheet of mild steel of thickness 9 mm. [3]

OR

Q8) a) What is Nanotechnology? Explain briefly the variation in properties of nanoparticles on the basis of [6]

i) Surface area to volume ratio

ii) Quantum confinement Effect.

b) State any two applications of nanoparticles in [4]

i) Automobiles and

ii) Medicine

c) Explain flaw detection method using ultrasonic testing. [4]

d) An ultrasonic pulse is sent through a copper block and echo is recorded after 4 μ s. If velocity of ultrasonic waves is 5000 m/s, calculate the thickness of the copper block. [3]