

[6351]-109

F.E.

ENGINEERING MATHEMATICS - II
(2019 Pattern) (Semester - I/II) (107008)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Q.1 is compulsory.
- 2) Attempt Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data, if necessary.

Q1) Write the correct option for the following multiple choice questions.

- i) The value of integral $\int_0^{\infty} \sqrt{x} e^{-x^3} dx$ by using substitution $x^3 = t$ is _____. [2]
 - a) $\frac{\sqrt{\pi}}{6}$
 - b) $\frac{\sqrt{\pi}}{2}$
 - c) $3\sqrt{\pi}$
 - d) $\frac{\sqrt{\pi}}{3}$
- ii) The region of absence for the curve represented by the equation $y^2(2a - x) = x^3$ is _____. [2]
 - a) $x > 0$ and $x < 2a$
 - b) $x < 0$ and $x > 2a$
 - c) $x < 0$ and $x < 2a$
 - d) $x > 0$ and $x > 2a$
- iii) Find the centre and radius of a sphere $x^2 + y^2 + z^2 - 4x + 6y - 2z - 11 = 0$. [2]
 - a) (2, -3, 1) and 5
 - b) (-2, 3, -1) and 11
 - c) (4, -6, -2) and 6
 - d) (2, 3, -1) and 5

iv) The value of the integral $\int_0^1 \int_0^y dx dy$ is _____. [2]

a) $\frac{1}{4}$

b) $\frac{1}{3}x$

c) $\frac{1}{2}$

d) $\frac{1}{2}y$

v) Using polar transformations $x = r\cos \theta$, $y = r\sin \theta$ the cartesian double integral $\iint f(x, y) dx dy$ is transformed to [1]

a) $\iint_R f(r, \theta) dr d\theta$

b) $\iint_R f(r, \theta) \frac{1}{2} dr d\theta$

c) $\iint_R f(r, \theta) 2dr d\theta$

d) $\iint_R f(r, \theta) r dr d\theta$

vi) The number of loops in the rose curve $r = a \cos 2\theta$ are _____. [1]

a) 4

b) 2

c) 8

d) 3

Q2) a) If $I_n = \int_0^{\frac{\pi}{2}} x^n \cos x dx$ then prove that $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1) I_{n-2}$. [5]

b) Evaluate $\int_0^{\infty} \frac{x^2}{2^x} dx$. [5]

c) Evaluate $\frac{d}{dx} \operatorname{erf}(\sqrt{x})$ [5]

OR

Q3) a) If $I_n = \int_0^{\frac{\pi}{4}} \sec^n x dx$ then prove that $I_n = \frac{(\sqrt{2})^{n-2}}{n-1} + \frac{n-2}{n-1} I_{n-2}$ [5]

b) Evaluate $\int_0^3 x^4 (3-x)^5 dx$. [5]

c) Prove that $\int_0^{\infty} \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log\left(\frac{a^2+1}{2}\right)$ [5]

Q4) a) Trace the curve $y^2(a - x) = x^2(a + x)$, ($a > 0$). [5]

b) Trace the curve $r = a(1 - \sin\theta)$, ($a > 0$). [5]

c) Find the arc length of the astroid $x = a \cos^3 t$, $y = a \sin^3 t$, ($a > 0$). [5]

OR

Q5) a) Trace the curve $y^2 = (x - 1)(x - 2)(x - 3)$. [5]

b) Trace the curve $r = a \cos 5\theta$, ($a > 0$). [5]

c) Trace the curve $x = t^2$, $y = t - \frac{t^3}{3}$ [5]

Q6) a) Show that the plane $2x - y - 2z = 4$ is tangential to the sphere $x^2 + y^2 + z^2 + 2x - 6y + 1 = 0$ and find the point of contact. [5]

b) Find the equation of right circular cone whose vertex is at $(0, 0, 0)$, semivertical angle $\frac{\pi}{4}$ and axis along the line $\frac{x}{-2} = \frac{y}{1} = \frac{z}{-2}$. [5]

c) Find the equation of right circular cylinder having its radius '4' and equation of the axis is $\frac{x+1}{1} = \frac{y+1}{-1} = \frac{z+1}{1}$. [5]

OR

Q7) a) Show that the two spheres $x^2 + y^2 + z^2 - 2x + 4y - 4z = 0$ and $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ touch each other externally and find the point of contact. [5]

b) Find the equation of right circular cone whose vertex is $(1, 1, 1)$, axis is the line $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$ and semivertical angle $\frac{\pi}{4}$. [5]

c) Find the equation of right circular cylinder of radius 03 units and axis is the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{3}$. [5]

Q8) a) Evaluate $\iint_R xy \, dx \, dy$ over the region R bounded by the parabolas $y^2 = x$ and $x^2 = y$. [5]

b) Find the area of one loop of the rose curve $r = a \cos 2\theta$. [5]

c) Find the x-coordinate of centre of gravity of the area enclosed by the parabola $y^2 = 4x$ and the line $y = 2x$. [5]

OR

Q9) a) Evaluate the integration by changing the order : [5]

$$\int_0^1 \int_y^1 e^x \, dx \, dy$$

b) Find the volume of the tetrahedron bounded by the co-ordinate planes

$$x=0, y=0, z=0 \text{ and the plane } \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1. [5]$$

c) Prove that the moment of inertia of the area between the curves $y^2 = ax$ and $x^2 = ay$ about x-axis is $\frac{9}{35} Ma^2$.

(Given that the density $\rho = \frac{3M}{a^2}$ where M is the mass) [5]

