

[6267]-1

F.E. (Insem)

ENGINEERING MATHEMATICS - II
(2019 Pattern) (Semester - II) (107008)

Time : 1 Hour]

[Max. Marks : 30

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2 and Q.3 or Q.4.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.

Q1) a) Solve : $(1 + \log xy)dx + \left(1 + \frac{x}{y}\right)dy = 0$ [5]

b) Solve : $(x^2 - 3xy + 2y^2)dx + (3x^2 - 2xy)dy = 0$ [5]

c) Solve : $\frac{dy}{dx} + \frac{2y}{x} = x^2 y^2$ [5]

OR

Q2) a) Solve : $(e^{-y} \sec^2 y - x) dy = dx$ [5]

b) Solve : $\cos y - x \sin y \frac{dy}{dx} = \sec^2 x$ [5]

c) Solve : $(x^2 + y^2 + x)dx + xy dy = 0$ [5]

Q3) a) Water at temperature 70°C cools down to 50°C in 5 minutes in the surrounding temperature of 20°C . Find the temperature of the water after 15 minutes from the beginning. [5]

b) An electromotive force E volts is applied to a circuit containing a resistance R ohms in series and an inductance L henries (E, R, L are constants). If the initial current is zero, show that the current builds up to 80% of its theoretical maximum in $\frac{L \log 5}{R}$ seconds. [5]

c) A chain is coiled up near the edge of a smooth table and it just starts to fall over the edge. When a length x has fallen, its velocity v is given by

$xv \frac{dv}{dx} + v^2 = gx$, where g is gravitational constant. Show that if $v = 0$ at

$$x = 0, \text{ then } v^2 = \frac{2}{3}gx \quad [5]$$

OR

Q4) a) Find the orthogonal trajectories of the family of parabolas : $y^2 = 4ax$. [5]

b) In a R-C-circuit voltage $200e^{-5t}$ is applied and the circuit contains resistance $R = 20$ ohms and condenser of capacity $C = 0.01$ farad in series. If at time $t = 0$, charge $q = 0$, prove that $q = 10te^{-5t}$ [5]

c) A steam pipe of inner radius 10 cm is protected with a covering 6 cm thick for which $K = 0.0003$ in steady state. Find the heat lost per hour through a one meter long pipe if the inner surface of the pipe is at 200°C and the outer surface of the covering is at 30°C . [5]