
ar
X

iv
:2

50
7.

01
01

6v
1

 [
cs

.R
O

]
 1

 J
ul

 2
02

5

VQ-VLA: Improving Vision-Language-Action Models via Scaling
Vector-Quantized Action Tokenizers

Yating Wang12 Haoyi Zhu13 Mingyu Liu14 Jiange Yang15 Hao-Shu Fang6 Tong He1†

1Shanghai AI Lab 2Tongji 3USTC 4ZJU 5NJU 6SJTU
{wangyating,liumingyu,yangjiange,hetong}@pjlab.org.cn

{hyizhu1108,fhaoshu}@gmail.com
†Corresponding Author

Abstract

In this paper, we introduce an innovative vector quanti-
zation based action tokenizer built upon the largest-scale
action trajectory dataset to date, leveraging over 100 times
more data than previous approaches. This extensive dataset
enables our tokenizer to capture rich spatiotemporal dynam-
ics, resulting in a model that not only accelerates inference
but also generates smoother and more coherent action out-
puts. Once trained, the tokenizer can be seamlessly adapted
to a wide range of downstream tasks in a zero-shot man-
ner, from short-horizon reactive behaviors to long-horizon
planning. A key finding of our work is that the domain gap
between synthetic and real action trajectories is marginal,
allowing us to effectively utilize a vast amount of synthetic
data during training without compromising real-world per-
formance. To validate our approach, we conducted exten-
sive experiments in both simulated environments and on real
robotic platforms. The results demonstrate that as the volume
of synthetic trajectory data increases, the performance of our
tokenizer on downstream tasks improves significantly—most
notably, achieving up to a 30% higher success rate on two
real-world tasks in long-horizon scenarios. These findings
highlight the potential of our action tokenizer as a robust
and scalable solution for real-time embodied intelligence sys-
tems, paving the way for more efficient and reliable robotic
control in diverse application domains. Project website.

1. Introduction

Tokenization plays a critical role in recent generative models,
including large language models (LLMs) [1, 29], image and
video generation models [15, 21, 37], and vision-language-
action (VLA) models [6, 24]. One of the key benefits of tok-
enization is that it compresses the input space. By reducing
high-dimensional continuous data into a compact sequence

of tokens, the complexity of the learning task is substantially
reduced. Compared to image patches and language tokens,
action sequences are inherently easier to compress because
of their spatio-temporal continuity.

Recently, several studies have started to explore action
quantized tokenization for Vision-Language-Action (VLA)
models [4, 33], demonstrating promising potential. Effec-
tive action tokenization not only significantly enhances the
downstream performance of VLA models, especially for
tasks involving long-horizon planning, but also markedly
improves their training and inference efficiency. In this pa-
per, we delve deeper into the potential of action tokenization,
with a specific emphasis on its scalability and accuracy. We
first find that the more precise the tokenization, the more
pronounced the improvements in long-horizon action mod-
eling. This motivates us to train the VQ tokenizer with
well-scaled action trajectories to cover various tasks. Addi-
tionally, we observe that action trajectories, unlike visual and
physical modalities, exhibit minimal domain gaps between
real-world and simulated environments. This characteristic
enables effective scaling of action tokenizers through the
extensive use of synthetic action data. Moreover, training
action tokenizers is computationally lightweight compared
to scaling entire VLA models. Consequently, focusing on
scaling action tokenization emerges as a highly cost-effective
strategy, requiring fewer computational and data resources
while delivering significant performance enhancements.

Specifically, we propose a convolutional residual VQ-
VAE [4, 26, 48] framework for training action tokenizers.
To effectively train the model, we propose a progressive
training strategy: Initially, we train the tokenizer on real-
world robotic datasets, such as OpenX-Embodiment [32],
which typically contain noisy and jittery trajectories. Sub-
sequently, we gradually integrate cleaner and smoother syn-
thetic data from large-scale simulated robotic datasets, such
as LIBERO [27] and ManiSkill [31]. This progressive ap-
proach allows the VQ model to converge toward smoother

https://xiaoxiao0406.github.io/vqvla.github.io
https://arxiv.org/abs/2507.01016v1

and more stable representations. Compared to previous
approaches that typically rely on training with single-task
datasets, our method expands the tokenizer training dataset
by more than 100 times, effectively covering a broad spec-
trum of downstream tasks.

We conduct extensive experiments in both simulated and
real-world environments. First, we evaluate our VQ-VAE
action tokenizers in the LIBERO simulator, where the results
demonstrate the effectiveness of the convolutional residual
VQ-VAE and provide preliminary validation for the hypothe-
sis that the VQ-VAE action tokenizer can leverage synthetic
data for scaling. Additionally, real-world experiments with
a Franka Research 3 robot further validate the superiority
of our approach. Specifically, our findings are as follows:
(1) as the amount of simulated action data increases, the
VQ-VAE tokenizers exhibit linear scaling properties in im-
proving VLA success rates; (2) the tokenizers significantly
enhance inference speed and smoothness of VLA models;
and (3) the tokenizers effectively reduce cumulative errors,
enabling better performance in long-horizon tasks.

In summary, our contributions are as follows:
• We propose a general convolutional residual VQ-VAE-

based framework for action tokenizers.
• We demonstrate that action tokenizers can be effectively

scaled by leveraging large-scale simulated action data.
• We prove that our action tokenizers improve the perfor-

mance, inference speed, and long-horizon capabilities of
VLA models.

2. Releated Works
Vision-Language-Action Models. Vision-Language-Action
(VLA) models[5, 7, 9, 16, 24, 38, 42, 43, 52, 53] bridge
visual-language understanding with robot control by map-
ping multimodal inputs to action outputs. Based on vision-
language models (VLM) [3, 8, 9, 13], VLAs represent robot
actions (e.g., 6DoF motion, gripper control) as discrete to-
kens compatible with text-based output. For example, RT-
1[5] and RT-2[6] showed that dividing continuous actions
into discrete bins allows integration with VLMs, enabling
zero-shot generalization using web-scale pretraining. Recent
works[24, 32] further leverage this approach, demonstrating
improved task generalization through large VLM backbones.
Building on this foundation, recent works have explored
various approaches to improve VLA, such as leveraging
3D visual inputs [53], integrating chain-of-thought reason-
ing [47], and employing parallel decoding strategies [25].
In our work, we aim to simultaneously improve the perfor-
mance and execution speed of VLA.
Action Representation. Action representation is one of the
core components in robot policy learning. Classic action
representation schemes include high-level sub-tasks [2, 13],
action primitives [20, 40], keypoints [12, 18], as well as
low-level continuous end-effector pose [27, 32] or joint

state [19]. Recently, imitation learning-based end-to-end ap-
proaches [5, 11, 51, 54, 55] often utilize the latter. In order to
represent complex multi-modal distributions and adapt to dis-
crete generative models, many works further discretize con-
tinuous low-level actions, including per-dimension and per-
timestep binning discretization [5, 24], VQ-VAE [4, 26, 30],
and cosine transform [33]. Additionally, some works ex-
tract corresponding predictive signals from action-less video
data to represent actions, such as pixels [7, 44], trajecto-
ries [41, 45], and latent motion [10, 46].
Tokenization. The tokenizer is one of the fundamental com-
ponents in language and vision generation tasks, especially
for autoregressive transformer-based generation models. For
language generation tasks, mainstream methods adopt byte
pair encoding (BPE) [17, 34] to compress input text. For
vision generation tasks, recent works [15, 28, 35, 37, 49, 50]
mainly use vector quantization [39] for tokenization to map
continuous visual signals into a discrete token sequence.
Similarly, in robot learning, many works [5, 6, 26, 30, 33]
model action prediction as a generative problem and tokenize
the robot action modality to capture the multi-modal distri-
bution within skills and adapt it to autoregressive generative
policies. In our work, we propose a general convolutional
residual VQ-VAE to tokenize robot action. Different from
several releated works [26, 30] that use VQ-VAE to tokenize
robot actions, our VQ-VAE is trained on large-scale data and
is applicable to all tasks.

3. Methods

3.1. Preliminaries: VLA models.
We use OpenVLA[24] as our backbone model. OpenVLA’s
origin formulation is to adopt a discrete tokenization strategy
for robot action prediction through fine-tuning the Prismatic-
7B VLM backbone. The method frames action prediction as
a vision-language task, mapping input observation images
and natural language instructions to discrete robot action
sequences. Specifically, continuous robot actions are dis-
cretized into 256 bins per dimension, with bin boundaries
determined by the 1st and 99th percentiles of training data
distributions rather than min-max ranges to mitigate outlier
effects. This discretization converts N-dimensional actions
into N discrete integers (0-255). To embed these into the
LLM’s vocabulary, OpenVLA overwrites the 256 least-used
tokens in the Llama tokenizer (last 256 tokens) rather than
using special tokens, as the original tokenizer only reserves
100 special tokens.

3.2. Action Tokenizer via Residual VQ-VAE
Based on Residual VQ-VAE [4, 26, 48], we design our
encoder and decoder inspired by VAE in pyramidal flow
matching [23]. Instead of the simple Multi-Layer Perceptron
(MLP) used in Residual VQ-VAE [26, 48], we integrate 2D

Conv Residual VQ
Encoder �

Action sequence

Conv Residual VQ
Decoder �

�

q(�)

Action Reconstruction

Quantizer ⊕-

+
Quantizer ⊕-

+

VQVAE
loss

OpenVLA 7B

Visual Encoder

What should the robot
to do to {task}? A:

Input image Language Instruction

VQ
Decoder �

language tokenizer

task: Put all cups into the basket

predicted robot actions

XYZ positions,
Euler angles,
gripper states

Lora

Figure 1. The VQ-VLA pipeline, consisting of two main stages: (1) training a general convolutional residual VQ-VAE and (2) fine-tuning
OpenVLA using the LoRA approach. Specifically, a general convolutional residual VQ-VAE is first trained on the Open X-Embodiment
dataset, LIEBRO, and ManiSkill datasets. The trained VQ-VAE is then frozen and serves as an action tokenizer for OpenVLA, replacing the
simple binning method. In the second stage, OpenVLA is fine-tuned using the LoRA technique to optimize its performance.

temporal convolutional layers, motivated by their ability to
efficiently capture local relationships and hierarchical tem-
poral dependencies, addressing the scaling limitations of
MLPs.

Given an input action sequence at:t+n ∈ Rn×d, where
n is the sequence length and d the action dimensionality,
the encoder ϕenc, composed of 2D temporal convolutional
layers, transforms the sequence into a latent embedding
x ∈ Rk, expressed as x = ϕenc(at:t+n). To compress x, we
apply Residual Vector Quantization (RVQ) [48], decompos-
ing x into quantized residuals: q(x) =

∑Nq

i=1 qi(ri), where
r1 = x, ri+1 = ri − qi(ri), and Nq denotes the number of
quantization stages.

The quantized embedding q(x) is passed through the
decoder ϕdec, which uses 2D temporal deconvolutional lay-
ers to reconstruct the sequence ât:t+n, ensuring temporal
structure preservation: ât:t+n = ϕdec(q(x)).

To train the framework, we minimize the total loss L,
a weighted combination of reconstruction loss Lrec, vec-
tor quantization (VQ) loss Lcodebook, and commitment loss
Lcommit:

L =∥at:t+n − ât:t+n∥22
+ λ

(
∥sg(x)− q(x)∥22 + ∥x− sg(q(x))∥22

)
,

(1)

where sg(·) denotes the stop-gradient operation, and λ bal-
ances the loss components. We set λ = 4 in our experiments.

This design ensures efficient, scalable, and robust encoding
of structured temporal data.

3.3. Training Residual VQ-VAE
We train three versions of the Residual VQ-VAE to evaluate
the scaling capability of our action tokenizer: (1) using only
the Open X-Embodiment dataset[32], (2) combining Open
X-Embodiment and Libero datasets[27], and (3) combining
Open X-Embodiment, Libero, and ManiSkill[31] datasets.
These experiments were designed to test our hypothesis that
the action tokenizer can effectively scale with simulated ata.

To improve the encoder’s ability to process temporal and
spatial information, we introduced two types of embeddings
before the action sequences are passed into the encoder:
• Time Embedding: A sinusoidal time embedding was

added to encode temporal information at varying frequen-
cies. This embedding allows the model to capture both
low-frequency and high-frequency temporal patterns in
the input actions, improving its ability to represent fine-
grained temporal details.

• Action-Type Embedding: Learnable embeddings were
added for the different components of the action sequence
(e.g., XYZ positions, Euler angles, and gripper states).
Since the 7 dimensions of the action vector have distinct
meanings, this embedding provides a strong prior for the
model, helping it distinguish and process the unique roles
of each dimension more effectively.

The use of these embeddings enhances the encoder’s
ability to process structured data, improving the quality of
the latent representations and the overall performance of the
tokenizer.

To train a more universal robot action tokenizer and re-
duce computational overhead, the model is trained using only
action sequences as input, without additional conditional in-
puts. This design reduces complexity while maintaining
the generalizability of the tokenizer. All models are trained
on a single A100 GPU. For example, training on the Open
X-Embodiment dataset requires just one A100 GPU and is
completed in one week.

3.4. Integrating Residual VQ-VAE as Action Tok-
enizer in VLA

In this work, we replace the simple bin-based action tok-
enizer used in OpenVLA with a Residual VQ-VAE-based
action tokenizer to improve the expressiveness and preci-
sion of action tokenization. Instead of discretizing action
sequences into uniform bins, the action sequence at:t+n is
first processed through a pre-trained and frozen Residual VQ-
VAE encoder ϕ(·), generating latent representations. These
representations are then quantized into discrete codebook
indices (tokens) {ziq}

Nq

i=1 corresponding to Nq Residual VQ
layers. The quantized tokens ziq are used as the action tokens
for training and prediction in the Vision-Language Model
(VLM).

Unlike OpenVLA, where all token IDs are mapped to
the range [0, 255], the token IDs generated by different VQ
layers in the Residual VQ-VAE are assigned unique, non-
overlapping ranges. Specifically, tokens from the i-th VQ
layer are offset by (i− 1)× 256, ensuring that:

ziq ∈ [256× (i− 1), 256× i− 1], ∀i ∈ {1, . . . , Nq}.
For example, tokens from the first layer are in the range
[0, 255], those from the second layer are in [256, 511], and
so on. This design avoids conflicts between token IDs from
different layers, as tokens with the same ID in different layers
represent semantically different features of the action space.

The Vision-Language Model (VLM) is trained to pre-
dict these tokens directly. The loss function is the standard
next-token prediction loss, computed as the cross-entropy
between the predicted token distribution ẑiq and the ground
truth token ziq produced by the frozen Residual VQ-VAE:

LVLM = −
Nq∑
i=1

logP (ẑiq = ziq|ot−h:t),

where ot−h:t represents the input observation sequence, and
Nq is the number of Residual VQ layers.

To further enhance computational efficiency, similar to
OpenVLA, the least-used tokens in the vocabulary are re-
placed during fine-tuning. However, this replacement pro-
cess respects the layer-specific token ID ranges, ensuring

that the tokenization remains consistent and interpretable
across all layers.

This integration of a pre-trained and frozen Residual
VQ-VAE as the action tokenizer in VLA enables a more
expressive and scalable representation of actions. By lever-
aging hierarchical quantization with non-overlapping token
ID ranges, the model achieves better action representation,
avoids semantic confusion between layers, and ensures sta-
ble loss convergence during training. Furthermore, by using
the VQ-VAE tokens to represent longer action sequences
instead of predicting one action at a time, the model signif-
icantly reduces the number of tokens required for training
and inference. This mechanism allows the model to predict
more complex behavior sequences with fewer steps, lead-
ing to a substantial improvement in inference speed and
computational efficiency.

4. Experiments

In our experiments, we first validate the effectiveness and
scalability of the action tokenizer in VLA models using
LIBERO simulator[27]. Subsequently, real-world experi-
ments are conducted to further verify our hypothesis. We
also investigate the impact of action tokenizers on the per-
formance, inference speed, and long-horizon capabilities
of VLA models, alongside ablation studies to evaluate key
design choices.

4.1. Simulation Experiments
4.1.1. Experiment Setup
We utilize the LIBERO benchmark[27] to validate and
evaluate the effectiveness and scalability of the action tok-
enizer, using the Franka Panda robot. Specifically, the entire
LIBERO task suite—including LIBERO-Spatial, LIBERO-
Object, LIBERO-Goal, LIBERO-10, and LIBERO-90—is
used as the entire LIBERO dataset. Among these, LIBERO-
90 comprises 90 short-horizon tasks, while the other task
suites each contain 10 tasks, with 50 demonstrations per
task. For evaluation, testing is conducted on LIBERO-goal,
LIBERO-10 and LIBERO-90.

Following the approach in OpenVLA[24], we filter out all
”no-op” actions from the dataset. To preliminarily validate
the effectiveness of using VQ-VAE as an action tokenizer in
VLA models and its scalability, we train two versions of a
convolutional residual VQ-VAE. The first version VQM is
trained solely on the Maniskill dataset[31], and the second
VQM+R is trained on a mixture of Maniskill dataset and
RLBench dataset[22]. Both models are trained on a single
A100 GPU with a batch size of 1024, which takes about only
1 week.

We use two pre-trained VQ-VAE models as frozen action
tokenizers for OpenVLA: VQM and VQM+R . LoRA is then
applied to fine-tune OpenVLA on the LIBERO-90 dataset.

Additionally, we fine-tune the original OpenVLA model
on the LIBERO-90 dataset using LoRA as a baseline for
comparison.For a fair comparison, all fine-tuning on the
LIBERO-90 task suite is conducted for 400K gradient steps
with a batch size of 4, using 4 A100-80GB GPUs and an
action chunk length of K=5.

4.1.2. Effectiveness of Conv Residual VQ-VAE
In the early stages of the experiment, we selected two task
suites, LIBERO-10 and LIBERO-GOAL, to conduct pre-
liminary scaling validation experiments. Specifically, we
used two variants of Residual VQ-VAE models: one with a
simple MLP as the encoder and decoder, and the other with a
larger 2D temporal convolutional network as the encoder and
decoder. The results are summarized in Tab. 1. The findings
indicate that using temporal convolutional networks as the
encoder and decoder in the Residual VQ-VAE significantly
outperforms the MLP-based architecture in terms of success
rate. These results suggest that temporal convolutional net-
works can serve as an effective action tokenizer, capable of
capturing temporal dependencies more effectively.

Furthermore, when we increased the training data for
the VQ-VAE model, transitioning from data solely derived
from individual LIBERO tasks to the entire LIBERO dataset,
the success rate consistently improved. This observation
provides preliminary evidence supporting the scalability of
our action tokenizer design.

Training Dataset of VQLIBERO-10 (%)LIBERO-GOAL (%)

Original OpenVLA - 51.0 75.8

MLP Residual VQ-VAE
ALL-LIBERO 53.4 72.6
LIBERO-10 53.2 -
LIBERO-GOAL - 65.2

Conv Residual VQ-VAE
ALL-LIBERO 60.0 75.2
LIBERO-10 54.0 -
LIBERO-GOAL - 72.4

Table 1. The evaluation results of residual VQ-VAE architec-
tures.The results demonstrate that the Conv Residual VQ-VAE
outperforms the MLP-based version, particularly when trained on
the full LIBERO dataset (ALL-LIBERO), highlighting its ability to
better capture temporal dependencies and improve success rates.

4.1.3. Scaling Data Improves VQ-VAE Action Tokenizer
Performance

In the experiment, to avoid potential performance inflation
from in-domain data during evaluation on LIBERO-90, we
trained the VQ-VAE Action Tokenizer on completely out-
of-domain ManiSkill and RLBench simulation data, rather
than LIBERO data. we compare three models: the baseline,
which fine-tunes the original OpenVLA; VQM, which uses
a VQ-VAE trained on the Maniskill dataset as the action
tokenizer for OpenVLA; and VQM+R, which uses a VQ-VAE
trained on a mixture of the Maniskill and RLBench datasets
as the action tokenizer for OpenVLA.

On LIBERO-90, VQM+R achieved 80.98%, a 7.45% im-
provement over the OpenVLA baseline (73.53%), Tab. 2.
Furthermore, an ablation study using only ManiSkill data for
training VQM resulted in substantially lower performance,
underscoring the critical role of sufficient synthetic data
scale.

baseline(%)VQM(%)VQM+R(%)

LIEBRO-90 73.53 14.38 80.98

Table 2. Effectiveness of VQ-VAE Action Tokenizers in Scaling
Simulation Data.The results demonstrate VQM+R reached 80.98%,
outperforming the OpenVLA baseline by 7.45%

4.2. Real-Word Experiment
4.2.1. Experiment Setup
Our robotic platform consists of a single Franka Research3
arm equipped with a third-person-view RealSense D435
camera mounted in a fixed position to capture environmental
observations. The system operates at 20 Hz (moderately
reduced from the native 100 Hz control frequency to bal-
ance training efficiency and motion continuity), with actions
defined as absolute end-effector poses in SE(3) space (3D
position + quaternion orientation).

Our experimental benchmark comprises six manipulation
tasks (4 short-horizon tasks, 2 long-horizon tasks) designed
to evaluate the model’s ability to handle varying task com-
plexities. For each task, we collect 50 demonstrations and
evaluate performance over 20 trials:

1) Pull out a tissue paper: The robot need to grasp and
pull out a single tissue paper.

2) Pick up the [TOY NAME]:The robot is required to
pick up the specific toy, including the toy snake, the toy
eggplant, and the toy chicken, resulting in a total of three
tasks (with no other distractions).

3) Put the toy into the basket: The robot need to pick
up the toy(no other distractions) and put it into the basket.

4) Flip the pot upright: We set a flipped pot on the
platform, the robot need to flip and upright a fallen cooking
pot.

5) Put all cups into the basket: We place two different
cups on the table and set a few other things(toys) as distrac-
tions. The robot need to sequentially put two cups into the
basket, testing long-horizon task.

6) Put the toy into the drawer: We place a toy on the
table and set a few other things as distractions. The robot
need to sequentially open the drawer,pick up the specific
toy and put it into the drawer, and close the drawer, testing
long-horizon task.

We finetune each task separately for 100K gradient steps
(batch size 4 across 4 A100-80GB GPUs) with action chunk
length K=5. During deployment.

Pull out a tissue paper Put the toy into the basket

 Pick up the{toy name}

Filp the pot uprightPut all cups into the basket Put the toy into the drawer

Libero 90

Figure 2. All Evaluation environments:We conduct comprehen-
sive evaluations of VQ-VLA in both simulation and real-world
settings. In simulation, evaluations are performed on the LIBERO-
90 benchmark within the LIBERO dataset. And six diverse tasks
are designed for real-world testing.

4.2.2. Performance on Short-Horizon Tasks

Based on the pre-trained VQO and VQO+L in the simulation
experiments, we further incorporated 120k synthetic trajec-
tories from the ManiSkill dataset, co-training VQO+L+M with
Open X-Embodiment dataset and LIBERO dataset to evalu-
ate the scaling capability of our action tokenizer. We eval-
uated the performance of the action tokenizer trained with
different datasets on four carefully designed short-horizon
tasks, focusing on multi-task learning, precision manipula-
tion, and dynamic adjustment capabilities. The results are
shown in Fig. 3.

It can be observed that when synthetic trajectories are
added for co-training, the performance of the action tok-
enizer improves significantly. The average success rate in-
creased from the baseline of 23% to 46.25%, with a notable
improvement of 30% in the ”Flip the pot upright” task. In
the ”Pull out a tissue paper” task, which tests the robot’s per-

formance in high-precision dynamic operations (as this task
requires continuous, fine-grained grasping and pulling mo-
tions), the baseline model achieved only a 5% success rate,
failing almost entirely. In contrast, models incorporating VQ
achieved success rates of 20% or higher.

Furthermore, comparing VQO+L with VQO, the average
success rate on short-horizon tasks increased by only 0.5%.
This may be attributed to the limited size of the LIBERO
dataset, which has minimal impact on short-horizon tasks.
However, the ManiSkill dataset is 50 times larger than
LIBERO, leading to a significant improvement in success
rates when used for training.

4.2.3. Performance on Long-Horizon Tasks
VQ-VLA demonstrates outstanding performance on long-
horizon tasks (”Put all cups in the basket” and ”Put the
toy into the drawer”), significantly outperforming baseline
model in both success rate and efficiency. In scenarios where
baseline models achieve success rates as low as 15% or
nearly 0, the VQO+L+M model achieves significantly higher
success rates of 50% and 30%, respectively (see Fig.3). For
the ”Put the toy into the drawer” task, a representative long-
horizon scenario, the baseline model was only able to com-
plete the first step of opening the drawer in 15 out of 20
trials, failing to proceed further in most cases. In contrast,
the VQO+L+M model successfully opened the drawer in
all test cases, demonstrating its robustness and reliability in
handling complex sequential tasks.

A key advantage of VQ-VLA in long-horizon tasks lies in
its use of VQ-VAE as an action tokenizer, which enables the
model to predict multiple actions in a single inference step.
This design reduces the accumulation of errors over extended
task sequences, making VQ-VLA particularly advantageous
for tasks requiring long-term planning and execution. Addi-
tionally, in scenarios involving the consecutive execution of
multiple subtasks, VQ-VLA not only achieves higher suc-
cess rates but also significantly reduces task completion time
compared to baseline models, highlighting its superior execu-
tion efficiency and ability to handle long-horizon challenges
effectively.

4.2.4. Sim&Real Domain Gap Analysis
To quantify the domain gap between synthetic data and real-
world data, we trained a VQ-VAE model exclusively on the
LIBERO dataset, referred to as VQL, for OpenVLA. The
model was tested in three real-world tasks (one long-horizon
and two short-horizon tasks), and the results are shown in
Tab. 3. The results indicate that the performance of VQL
is comparable to that of both VQO+L and VQO, suggesting
that the domain gap between synthetic and real-world data
is minimal.

Although real-world data may contain noise, the inclusion
of Open X-Embodiment data as a real-world dataset expands
the data sources and enriches the diversity of data types,

0

10

20

30

40

50

60

70

Pick up the
[TOY NAME

Su
cc

es
sR

at
e

]
Put all cups in
the basket

Flip the pot
upright

Pull out a
tissue paper

Put the toy into
the basket

Put the toy into
the drawer

Long-horizon
average

Short-horizon
average

Short-Horizon tasks Long-Horizon tasks

80

All tasks

All tasks average

Figure 3. Real-world experimental results: We compare the performance of Baseline, VQO, VQO+L, and VQO+L+M on both short-horizon
and long-horizon tasks. In terms of the average success rate, all VQ-based models outperform the Baseline. The best-performing model,
VQO+L+M, achieves a success rate that is 23.25% higher than the Baseline on both short-horizon and long-horizon tasks. Additionally, the
results show that VQO+L+M outperforms VQO+L, which in turn outperforms VQO, indicating the effectiveness of incorporating synthetic data
during training without compromising real-world performance.

which effectively enhances the model’s generalization and
robustness.

Put the toy
into the drawer (%)

Flip the pot
upright (%)

Put the toy
into the basket (%)

baseline 5.0 30.0 20.0
VQO 15.0 45.0 35.0
VQL 10.0 55.0 35.0
VQO+L 10.0 45.0 35.0
VQO+L+M 25.0 60.0 45.0

Table 3. Performance Comparison Across Real-World Tasks:
We observe that the performance of VQL is comparable to that
of both VQO+L and VQO, indicating that the domain gap between
synthetic and real-world data is minimal.

4.2.5. Inference Speed Comparison

During the real-world experiments, we measured the action
execution frequency of VQ-VLA and compared it with the
original OpenVLA. The results are summarized in Tab. 4.
As shown in the table, with a compression ratio of 5 in VQ-
VAE, the inference speed is nearly tripled. This significant
improvement greatly facilitates real-time performance in
practical applications.

4.3. Ablation Studies

In this section, we report some ablation studies to show the
effectiveness of the design choices of our method.

Frequency (Hz)

VQ-VLA 11.84
OpenVLA 4.16

Table 4. The Results of Frequencies. We report the comparison
results of our VQ-VLA and baseline OpenVLA.

4.3.1. Action Chunking via VQ-VAE and Autoregressive
Output

The original OpenVLA model generates a single action per
inference step based solely on the current observation, re-
sulting in a step-by-step execution approach. To improve
efficiency and handle longer action sequences, we extend
OpenVLA to output a sequence of five actions in an autore-
gressive manner, similar to the action chunking mechanism
in VQ-VLA. Specifically, the model predicts the next action
based on the current observation and previously generated
actions, allowing it to generate a sequence of actions in a
single inference step. This autoregressive approach serves as
an alternative action chunking strategy by grouping multiple
actions for execution.

To evaluate the effectiveness of different action chunking
strategies, we design ablation experiments comparing the
autoregressive output of OpenVLA to the VQ-based action
chunking method in VQ-VLA. The results, shown in Tab. 5,
indicate that the use of the autoregressive approach for action
chunking in the original OpenVLA leads to a significant
drop in success rate compared to the baseline. In real-world
experiments, when using the autoregressive approach as

a form of action chunking, the spatial magnitude of each
action chunk is relatively small, resulting in slower overall
execution of actions. Compared to the Action Chunking via
VQ-VAE method, even with the same action chunk size, the
time required to reach the same target location is significantly
longer. Additionally, this approach tends to exhibit shortcut
learning, where the model directly copies previous actions
within the same action chunk. By analyzing the output
values of each action chunk, it is observed that multiple
actions within a single chunk have remarkably similar values,
indicating a lack of diversity in the predicted actions.

Overall, Action Chunking via VQ-VAE not only improves
inference speed but also enhances the performance of VLA
by generating more effective and diverse action sequences.
This makes it a more suitable approach for addressing real-
world long-horizon tasks.

Action Chunking LIBERO-90 (%) Flip the pot
upright (%)

Put the toy
into the basket (%)

baseline 74.76 30.0 20.0
Autoregressive Output 66.53 10.0 0.0
VQ-based (VQO+L+M) 86.61 60.0 45.0

Table 5. Comparison of action chunking methods: We evaluate
the performance on three tasks (one simulator task and two real-
world tasks). The results show that the Autoregressive Output used
in OpenVLA performs poorly as an action chunking method, with a
significant gap compared to the VQ-based approach. This indicates
that the VQ-based method is more effective.

4.3.2. Embedding Integration Effectiveness

To evaluate the impact of embeddings, we conducted an ab-
lation study comparing the model’s performance with and
without embeddings. Specifically, the baseline model pro-
cesses raw action sequences directly, while the enhanced
model incorporates both time embedding and action-type
embedding.

As shown in Tab. 6, the model with embeddings signifi-
cantly outperforms the baseline in terms of success rate. This
demonstrates that the integration of embeddings improves
the encoder’s ability to represent structured action sequences,
leading to better overall performance.

LIBERO-90 (%) Flip the pot
upright (%)

Put the toy
into the basket (%)

VQO+L (w.o. Embeddings) 85.17 40.0 35.0
VQO+L (w Embeddings) 86.16 45.0 35.0

Table 6. Embedding integration improves performance. The
table compares models with and without embeddings across three
tasks, showing that embeddings enhance success rates, especially
for ”Flip the pot upright.”

5. Limitations and Future Works
In our work, extensive experiments demonstrate that our
proposed action tokenizers can improve VLA performance
and inference speed while achieving scalability on simulated
data. However, there still remain some limitations and op-
portunities for future work. First, our action tokenizers can
be further extended to larger-scale simulated datasets, such
as RLbench [22] based on CoppeliaSim. Second, our work
improves inference speed by decoding multi-step action se-
quences, which can be further combined with techniques
such as distillation [36] and quantization [14] of VLMs in the
future. Fially, the architecture design of our action tokenizers
can be further improved, for example, by incorporating the
frequency of action data as a extra condition. In summary,
we hope that our work can serve as a strong baseline and
inspire future research.

6. Conclusions
In this paper, we propose a general convolutional residual
VQ-VAE framework for action tokenizers that can seam-
lessly integrate with state-of-the-art VLA models. Our VQ-
VAE is trained on 100 times more data than previous meth-
ods and can be directly transferred to downstream both real-
world and simulated robotic manipulation tasks. Extensive
experiments conducted in both simulated and real-world en-
vironments validate that the proposed convolutional residual
VQ-VAE framework not only enhances the performance of
VLA policies but also accelerates inference. Finally, our
VQ-VAE also demonstrates the ability to scale effectively
with large-scale simulated data.

Acknowledgments
This work is supported by the National Key R&D Program
of China (NO.2022ZD0160102) and Shanghai Artificial In-
telligence Laboratory.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad,

Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 1

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebo-
tar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i
can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. 2

[3] Jean-Baptiste Alayrac, Jeffrey Donahue, Pauline Luc, Alexis
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: A visual
language model for few-shot learning. Advances in Neural
Information Processing Systems (NeurIPS), 35:23716–23736,
2022. 2

[4] Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla
with a smaller footprint. https://ai.stanford.edu/blog/minivla/,
2024. 1, 2

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakr-
ishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al.
Rt-1: Robotics transformer for real-world control at scale.
arXiv preprint arXiv:2212.06817, 2022. 2

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023. 1, 2

[7] Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang
Li, Yifeng Li, Yuxiao Liu, Hongtao Wu, Jiafeng Xu, Yichu
Yang, et al. Gr-2: A generative video-language-action model
with web-scale knowledge for robot manipulation. arXiv
preprint arXiv:2410.06158, 2024. 2

[8] Wei Chen, Yifeng Zhang, Hao Li, Xufeng Wang, and Ming
Liu. Anyvlm: Unified vision-language model for any robot
morphology. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–8. IEEE, 2024. 2

[9] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa,
Soravit Changpinyo, Jialin Wu, Carlos Riquelme Ruiz, Sebas-
tian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling
up a multilingual vision and language model. arXiv preprint
arXiv:2305.18565, 2023. 2

[10] Xiaoyu Chen, Junliang Guo, Tianyu He, Chuheng Zhang,
Pushi Zhang, Derek Cathera Yang, Li Zhao, and Jiang Bian.
Igor: Image-goal representations are the atomic control
units for foundation models in embodied ai. arXiv preprint
arXiv:2411.00785, 2024. 2

[11] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun
Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action diffu-
sion. The International Journal of Robotics Research, page
02783649241273668, 2023. 2

[12] Norman Di Palo and Edward Johns. Keypoint action to-
kens enable in-context imitation learning in robotics. arXiv
preprint arXiv:2403.19578, 2024. 2

[13] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan
Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embod-
ied multimodal language model. In Proceedings of the 40th
International Conference on Machine Learning, pages 8469–
8488, 2023. 2

[14] Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and
Martin Vechev. Exploiting llm quantization. Advances in
Neural Information Processing Systems, 37:41709–41732,
2025. 8

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12873–12883, 2021. 1, 2

[16] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu,
Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu Lu. Rh20t:
A comprehensive robotic dataset for learning diverse skills in
one-shot. arXiv preprint arXiv:2307.00595, 2023. 2

[17] Philip Gage. A new algorithm for data compression. The C
Users Journal, 12(2):23–38, 1994. 2

[18] Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Ka-
terina Fragkiadaki. Act3d: 3d feature field transformers for
multi-task robotic manipulation. In 7th Annual Conference
on Robot Learning. 2

[19] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine,
and Karol Hausman. Relay policy learning: Solving long-
horizon tasks via imitation and reinforcement learning. arXiv
preprint arXiv:1910.11956, 2019. 2

[20] Matthew Hausknecht and Peter Stone. Deep reinforce-
ment learning in parameterized action space. arXiv preprint
arXiv:1511.04143, 2015. 2

[21] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie
Tang. Cogvideo: Large-scale pretraining for text-to-video gen-
eration via transformers. arXiv preprint arXiv:2205.15868,
2022. 1

[22] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026, 2020. 4, 8

[23] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang,
Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, and
Zhouchen Lin. Pyramidal flow matching for efficient video
generative modeling. arXiv preprint arXiv:2410.05954, 2024.
2

[24] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan
Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An
open-source vision-language-action model. arXiv preprint
arXiv:2406.09246, 2024. 1, 2, 4

[25] Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning
vision-language-action models: Optimizing speed and suc-
cess. arXiv preprint arXiv:2502.19645, 2025. 2

[26] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim,
Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. Be-
havior generation with latent actions. arXiv preprint
arXiv:2403.03181, 2024. 1, 2

[27] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang
Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking
knowledge transfer for lifelong robot learning. arXiv preprint
arXiv:2306.03310, 2023. 1, 2, 3, 4

[28] Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin
Wang, and Ying Shan. Open-magvit2: An open-source project
toward democratizing auto-regressive visual generation. arXiv
preprint arXiv:2409.04410, 2024. 2

[29] Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal,
A Neelakantan, P Shyam, G Sastry, A Askell, S Agarwal,
et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1:3, 2020. 1

[30] Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen,
and Animesh Garg. Quest: Self-supervised skill abstractions
for learning continuous control. Advances in Neural Informa-
tion Processing Systems, 37:4062–4089, 2025. 2

[31] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xu-
anlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao Su.
Maniskill: Generalizable manipulation skill benchmark with

large-scale demonstrations. arXiv preprint arXiv:2107.14483,
2021. 1, 3, 4

[32] Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Poo-
ley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open
x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
6892–6903. IEEE, 2024. 1, 2, 3

[33] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess,
Suraj Nair, Quan Vuong, Oier Mees, Chelsea Finn, and
Sergey Levine. Fast: Efficient action tokenization for vision-
language-action models. arXiv preprint arXiv:2501.09747,
2025. 1, 2

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[35] Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying
Shan, and Limin Wang. Taming scalable visual tok-
enizer for autoregressive image generation. arXiv preprint
arXiv:2412.02692, 2024. 2

[36] Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj
Joshi, Marcin Chochowski, Ameya Sunil Mahabaleshwarkar,
Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, et al. Llm pruning and distillation in practice: The
minitron approach. arXiv preprint arXiv:2408.11796, 2024.
8

[37] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: Llama for scalable image generation. arXiv
preprint arXiv:2406.06525, 2024. 1, 2

[38] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch,
Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias
Kreiman, Charles Xu, et al. Octo: An open-source generalist
robot policy. arXiv preprint arXiv:2405.12213, 2024. 2

[39] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2

[40] Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish
Kapoor. Chatgpt for robotics: Design principles and model
abilities. Ieee Access, 2024. 2

[41] Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang
Gao, and Pieter Abbeel. Any-point trajectory modeling for
policy learning. arXiv preprint arXiv:2401.00025, 2023. 2

[42] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu,
Zhiyuan Xu, Ning Liu, Ran Cheng, Chaomin Shen, Yaxin
Peng, et al. Tinyvla: Towards fast, data-efficient vision-
language-action models for robotic manipulation. arXiv
preprint arXiv:2409.12514, 2024. 2

[43] Jiange Yang, Wenhui Tan, Chuhao Jin, Keling Yao, Bei Liu,
Jianlong Fu, Ruihua Song, Gangshan Wu, and Limin Wang.
Transferring foundation models for generalizable robotic ma-
nipulation. arXiv preprint arXiv:2306.05716, 2023. 2

[44] Jiange Yang, Bei Liu, Jianlong Fu, Bocheng Pan, Gangshan
Wu, and Limin Wang. Spatiotemporal predictive pre-training
for robotic motor control. arXiv preprint arXiv:2403.05304,
2024. 2

[45] Jiange Yang, Haoyi Zhu, Yating Wang, Gangshan Wu, Tong
He, and Limin Wang. Tra-moe: Learning trajectory prediction
model from multiple domains for adaptive policy condition-
ing. arXiv preprint arXiv:2411.14519, 2024. 2

[46] Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo,
Jianwei Yang, Baolin Peng, Ajay Mandlekar, Reuben Tan,
Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining
from videos. arXiv preprint arXiv:2410.11758, 2024. 2

[47] Michał Zawalski, William Chen, Karl Pertsch, Oier Mees,
Chelsea Finn, and Sergey Levine. Robotic control via
embodied chain-of-thought reasoning. arXiv preprint
arXiv:2407.08693, 2024. 2

[48] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. Soundstream: An end-to-
end neural audio codec. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 30:495–507, 2021. 1, 2, 3

[49] Canyu Zhao, Mingyu Liu, Wen Wang, Weihua Chen,
Fan Wang, Hao Chen, Bo Zhang, and Chunhua Shen.
Moviedreamer: Hierarchical generation for coherent long
visual sequence. arXiv preprint arXiv:2407.16655, 2024. 2

[50] Canyu Zhao, Mingyu Liu, Huanyi Zheng, Muzhi Zhu, Zhiyue
Zhao, Hao Chen, Tong He, and Chunhua Shen. Diception: A
generalist diffusion model for visual perceptual tasks. arXiv
preprint arXiv:2502.17157, 2025. 2

[51] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with low-
cost hardware. arXiv preprint arXiv:2304.13705, 2023. 2

[52] Wei Zhao, Pengxiang Ding, Min Zhang, Zhefei Gong,
Shuanghao Bai, Han Zhao, and Donglin Wang. Vlas:
Vision-language-action model with speech instructions
for customized robot manipulation. arXiv preprint
arXiv:2502.13508, 2025. 2

[53] Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin
Yan, Yilun Du, Yining Hong, and Chuang Gan. 3d-vla: A
3d vision-language-action generative world model. arXiv
preprint arXiv:2403.09631, 2024. 2

[54] Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli
Ouyang, and Tong He. Point cloud matters: Rethinking
the impact of different observation spaces on robot learn-
ing. Advances in Neural Information Processing Systems, 37:
77799–77830, 2024. 2

[55] Haoyi Zhu, Honghui Yang, Yating Wang, Jiange Yang,
Limin Wang, and Tong He. Spa: 3d spatial-awareness
enables effective embodied representation. arXiv preprint
arXiv:2410.08208, 2024. 2

	Introduction
	Releated Works
	Methods
	Preliminaries: VLA models.
	Action Tokenizer via Residual VQ-VAE
	Training Residual VQ-VAE
	Integrating Residual VQ-VAE as Action Tokenizer in VLA

	Experiments
	Simulation Experiments
	Experiment Setup
	Effectiveness of Conv Residual VQ-VAE
	Scaling Data Improves VQ-VAE Action Tokenizer Performance

	Real-Word Experiment
	Experiment Setup
	Performance on Short-Horizon Tasks
	Performance on Long-Horizon Tasks
	Sim&Real Domain Gap Analysis
	Inference Speed Comparison

	Ablation Studies
	Action Chunking via VQ-VAE and Autoregressive Output
	Embedding Integration Effectiveness

	Limitations and Future Works
	Conclusions

