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Abstract. Modern warehouse automation systems rely on fleets of in-
telligent robots that generate vast amounts of data — most of which re-
mains unannotated. This paper develops a self-supervised domain adap-
tation pipeline that leverages real-world, unlabeled data to improve per-
ception models without requiring manual annotations. Our work focuses
specifically on estimating the pose and shape of boxes and presents a
correct-and-certify pipeline for self-supervised box pose and shape esti-
mation. We extensively evaluate our approach across a range of simulated
and real industrial settings, including adaptation to a large-scale real-
world dataset of 50,000 images. The self-supervised model significantly
outperforms models trained solely in simulation and shows substantial
improvements over a zero-shot 3D bounding box estimation baseline.

Keywords: Certifiable models, computer vision, 3D robot vision, object pose
estimation, safe perception, self-supervised learning.

1 Introduction and Problem Statement

Warehouse automation has the potential to increase operational efficiency and
accuracy while reducing labor costs and human errors. A key task in this pro-
cess involves robots picking, transporting, and placing boxes between buffer and
storage shelves (see Figure 1). Executing such tasks reliably over long durations
without failure requires accurate perception in the operating domain.

In this work, we consider the problem of estimating the pose and shape of
boxes encountered in warehouse automation applications. We parameterize the
box as a cuboid and aim to simultaneously estimate its pose T ∈ SE(3) and
shape S (i.e., width, height, and depth). Automated warehouses are a source
of large amounts of unannotated data, collected by the robots during operation.
Our aim is to use the large-scale unannotated data collected by robots and enable
self-supervised domain adaptation to improve the perception results.

https://arxiv.org/abs/2507.00984v1
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Fig. 1: (left) Robot in a Symbotic warehouse picking up a box from a shelf.
(right) A real-world pick-up task using a model trained entirely in simulation
and adapted with our self-supervised pipeline on unlabeled data.

Contributions. Our contributions are threefold: (1) We propose a pipeline
that can accurately estimate the pose and shape of a box from stereo images.
(2) We implement a self-training pipeline, leveraging the correct-and-certify
approach from [1,2,3,4,5]. The approach utilizes corrected and certified estimates
to self-train the model and avoids the need for data annotation. (3) We report
an industry-scale demonstration of accurate box pose and shape estimation in
the desired operating domain. This is made possible by self-training on a dataset
of 50,000 images collected from Symbotic warehouses.

2 Related Work

2.1 Category-Level Object Pose and Shape Estimation

Object pose and shape estimation involves recovering the 3D pose and shape
of an object. Existing methods can be classified based on whether they assume
access to known instance-level shape priors. Approaches that rely on known
shape priors typically use predefined CAD models of each object instance [3,2]. In
contrast, category-level methods aim to generalize across unseen instances within
the same object category, without requiring instance-specific CAD models. These
approaches often learn to model shape deformations or normalized coordinate
representations to capture intra-class variation [6,7,8,9,4].

In this work, we focus on estimating the pose and shape of box-like ob-
jects without relying on instance-level shape priors. Several prior methods have
addressed this problem from different perspectives. For example, [10] proposes
Front Face Shot (FFS), a method that estimates box pose from front-view RGB
images. While FFS generalizes well to unseen pallet appearances, it depends
heavily on accurate front-face visibility and bounding box detection, which lim-
its its robustness in the presence of occlusion. Another approach, Cube R-CNN
[11], is a zero-shot RGB-only method trained on the large-scale Omni3D bench-
mark for general 3D bounding box prediction. However, in our experiments, it
suffers from substantial performance degradation due to domain shift, making
it less effective for our target setting.

https://www.symbotic.com/
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Fig. 2: Illustration of the proposed pipeline. We take stereo images as input and
use two keypoint prediction networks — one for each view — to predict the
box corners. Only high-confidence confidence keypoints are used for pose and
shape estimation. The box pose and shape estimation problem is formulated as
a two-view Perspective-n-Point optimization. Then, pose and shape estimates
that pass certain checks are used to generate pseudo-labels for self-supervised
learning. In particular, a predicted keypoint is considered a valid pseudo-label for
self-supervised learning if it passes a number of image-level and keypoint-level
checks (certificates). To ensure robustness against outliers, we apply Geman-
McClure [21] as a robust loss in the pose and shape estimator.

2.2 Test-Time Adaptation

Test-time adaptation has been explored through various strategies. Related works
[12,13] leverage auxiliary tasks, e.g., image rotation prediction, to guide feature
learning during test time. [14] generalizes this idea to reinforcement learning,
where action-observation pairs naturally serve as feedback signals. Another line
of work focuses on domain-level consistency across a mini-batch of test inputs by
minimizing softmax-entropy loss at test time [15,16]. To handle the more chal-
lenging scenario of having only a single test sample, [17] uses data augmentation
to synthesize a mini-batch. Temporal consistency has also been leveraged as a
source of self-supervision [18,19]. These methods maintain a coherent 3D scene
over time and render it into 2D views to provide consistent supervisory signals
for 2D vision tasks.

Another stream of methods follows a correct-and-certify paradigm [1,2,3,4,5],
where model outputs are first corrected, and only those that pass certain certi-
fication criteria are used as pseudo-labels for self-training. These methods often
rely on auxiliary sensor inputs such as CAD models [5], depth maps [4], or seg-
mentation masks [2]. In contrast, our approach does not assume additional sen-
sor modalities. Instead, it relies on the SAM2 model [20], making the framework
simple and easily adaptable to a variety of warehouse automation tasks.

3 Technical Approach

We consider a robot operating in a warehouse environment, equipped with two
calibrated RGB stereo-cameras. These cameras capture RGB images of 3D scenes
that contain an object of interest. We assume the object to be a storage box
parametrized by its width, height, and depth (a, b, c). Let S = diag(a, b, c) rep-
resent the anisotropic scaling factors to a unit cube (i.e., a cuboid with all edges
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of length 1). The goal is to compute the pose and shape of the box. Figure 2
shows our pipeline. It consists of a pre-trained stereo keypoint detection model
trained on the small labeled dataset or in simulation, an estimator to compute
the pose T and the shape S of the box in the 3D scene, and a self-training proce-
dure for the keypoint detection model to improve pose estimation on unlabelled
data. We call the resulting approach BOSS (Box pOse and Shape estimation with
Self-training).

Keypoint Predictor. We use Keypoint-RCNN as our keypoint predictor net-
work [22], with one network for each view. The network outputs the corners of
the boxes as keypoints with confidence scores. We only keep keypoints with a
confidence score greater than a specified threshold ϵconf .

Stereo Box Pose and Shape Estimator. We estimate the box pose and shape
through a two-view Perspective-n-Point (PnP) optimization problem. The ob-
jective is to estimate the object pose and scaling factors that align the repro-
jected keypoints with their predicted keypoints in the two camera views. The
optimization problem is formulated as:

min
T ,S


N l∑
i=1

∥∥δli∥∥22 + Nr∑
i=1

∥δri ∥22

 , (1)

where δli = Πl(T · Sui) − ỹl
i and δri = Πr(T r

l · T · Sui) − ỹr
i are the dis-

tances between the ith reprojected and predicted keypoints. N l and Nr are the
numbers of keypoints in the left and right images, respectively, ui are the 3D
keypoints on the unit cube centered at the origin of the object frame, ỹl

i and ỹr
i

are the observed 2D keypoint positions in the left and right images, T r
l is the

known transformation from the left to the right camera frame, Πl and Πr repre-
sent the projection models of the left and right cameras, respectively. In words,
Equation (1) minimizes the mismatch between the projections of the estimated
box corners (parametrized by the pose T and shape S) and the keypoint mea-
surements. The optimization is solved via gradient descent in PyTorch [23]. We
relax the rotation matrix constraint and, in each iteration, project the optimized
rotation back onto SO(3) using SVD.

Self-Training. To self-train, we use certificates to select pseudo-labels. We use
a 2D certificate, a residual certificate, and an epipolar constraint certificate. We
admit keypoints as pseudo-labels only if they pass all three certificates.

Let T̂ and Ŝ be the estimated pose and shape from Equation (1) respectively.
Our 2D certificate is based on intersection over union (IoU), given by

OC2D(Ŝ, T̂ ) = I

{
ar(M ∩ M̂)

ar(M ∪ M̂)
> 1− ϵ2D

}
, (2)

where ar(M) denotes the pixel area of all pixels (i, j) in the mask M with
M(i, j) = 1, and ϵ2D is a given threshold. IoU is computed using a reprojected
3D model M̂ and ground truth (GT) or detected segmentation mask M .
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Our residual certificate filters keypoints based on residuals in Equation (1).
Let δ represent the residuals in the pose and shape estimator, indexed as δl

and δr for the left and right views, respectively. The residual-based certificate is
defined as

OCres(ỹ, T̄ ) = I {∥δ∥2 < ϵres} . (3)

where ∥·∥2 is l2-norm and ϵres is a tunable threshold. If OCres(ỹ, T̄ ) = 1, we
use ỹ as a pseudo-label. Otherwise, if OCres(ỹ, T̄ ) = 0, we use the reprojected
keypoint Π(T̄ · Ŝui) as a pseudo-label, where T̄ = T̂ for the left view and
T̄ = T r

l · T̂ for the right view.
We use an epipolar constraint certificate as a final check. Given the known

intrinsics and extrinsics of both cameras, we rectify the keypoints so that epipolar
lines align with the x-axis, ensuring corresponding points share the same y-
coordinates. We then verify the consistency of these y-coordinates in the rectified
frames. Denote the rectified keypoints ỹl and ỹr be ỹ′

l and ỹ′
r, respectively. Then

epipolar constraint certificate is defined as:

OCepi(ỹl, ỹr) = I {(ỹ′
l − ỹ′

r)[2] < ϵepi} . (4)

where (·)[2] denotes the y-coordinate and ϵepi is a given threshold.

4 Certificate Validation

In this section, we empirically validate the three certificates. Over an annotated
dataset we show that the certificate scores correlate highly with the ground-truth
metrics such as the keypoint root mean square error (RMSE). We compare the
three certificate values: (i) IoU (see Equation (2)), (ii) ∥δ∥2 (see Equation (3)),
and (iii) (ỹ′

l − ỹ′
r)[2] (see Equation (4)), with the keypoint RMSE.

4.1 Validation of 2D Certificates

Figure 4a validates the effectiveness of the 2D certificate OC2D. This plot helps
us compare how the IoU score, which can be computed at test time, correlates
with the RMSE with the ground-truth keypoints. A clear trend is observed:
higher IoU scores correspond to lower RMSE values. Notably, pseudo-labels with
IoU values exceeding 0.95 yield average keypoint errors below 10 pixels, which
is small relative to the image resolution (1640× 1232). This empirical relation-
ship supports the use of OC2D as a reliable proxy for keypoint accuracy during
pseudo-label validation.

4.2 Validation of Residual Certificates

In Figure 4b we validate the residual certificate OCres. We plot the residual
certificate value ∥δ∥2 (see Equation (3)) on the x-axis. On the y-axis, we plot
the count of instances where the predicted RMSE is either greater than (blue
curve) or less than (red curve) the reprojected RMSE, across varying residual
certificate values. The predicted RMSE is the RMSE of the predicted keypoints
that are output directly from the keypoint network, and the reprojected RMSE is
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Fig. 3: Analysis of SAM2 sampling strategies. (a) Cumulative distribution of
IoU values for three SAM2 sampling strategies. The x-axis shows the IoU be-
tween predicted and ground-truth segmentations, and the y-axis indicates cumu-
lative probability. Uniform Simplex method outperforms both Adaptive Simplex
and Uniform Axis-Aligned Coordinate. (b) Visual comparison of two sampling
strategies within a regular octagon. With the same number of samples, the Axis-
Aligned Coordinate sampling is densely concentrated near the center, while the
Barycentric Simplex sampling provides more uniform coverage of the polygon.

the RMSE of the optimized keypoints reprojected from the PnP pose and shape
estimator. Note that the x-axis is the certificate value that can be computed at
test time, whereas the y-axis (i.e., predicted and reprojected RMSE) requires
knowledge of the ground truth.

We again observe a clear trend. For low residual values (left side of the x-
axis), the majority of instances fall under the red curve, indicating that predicted
keypoints are more accurate than reprojected ones. As the residual certificate
increases, the trend reverses—beyond a residual value of approximately 42 pixels,
the reprojected keypoints tend to outperform the predicted ones, as indicated
by the rising blue curve. This transition point around 42 suggests an empirical
threshold at which the residual certificate reliably filters high-quality predictions.

4.3 Validation of Epipolar Constraint Certificates

In Figure 4c, we validate the epipolar constraint certificates. We plot the epipo-
lar certificate value (i.e., Equation (4)) on the x-axis. The corresponding mean
RMSE of the selected pseudo-label keypoints and ground-truth keypoints (in
pixels) are plotted on the y-axis. Note that while the epipolar certificate value
can be computed at test time without the knowledge of the ground truth, the
mean RMSE requires ground truth. We again observe a clear trend. As shown
in Figure 4c, we report the mean RMSE (in pixels) across test samples as a
function of the epipolar certificate values. At low thresholds (e.g., <20 pixels),
the RMSE remains consistently low. However, as the value increases beyond 20
pixels, the RMSE grows rapidly, along with its variance. This behavior highlights
the importance of enforcing epipolar certificates.
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Fig. 4: (a)Validation of the 2D Certificate (i.e., Equation (2)). The x-axis is the
IoU score in the OC2D certificate. The y-axis is the RMSE error of the pseudo-
labels averaged across one image sample. We use ground-truth segmentation for
IoU calculation. Pseudo-labels with IoU values larger than 0.95 have average
keypoint errors of fewer than 10 pixels which is small relative to the image size
(1640×1232). (b) Validation of the Residual Certificate (i.e., Equation (3)). The
x-axis is the residual value and the y-axis is the counts of keypoints that either
predicted ones are more accurate (red) or reprojected ones are more accurate
(blue). We found that there is a heuristic threshold that enables hybrid keypoint
selection. (c) Validation of Epipolar Constraint Certificate (i.e., Equation (4)).
The x-axis is the discrepancy of the y coordinates between rectified selected
pseudo-label keypoints and ground truth keypoints in the OCepi certificate. Y-
axis is the RMSE error of the pseudo-labels averaged across one bin batch. This
figure highlights the importance of enforcing epipolar constraint certificates.

4.4 Impact of Sampling Strategies

In scenarios where the ground truth mask M is unavailable—commonly the
case in industrial settings—we leverage the SAM2 model [20] to generate pseudo-
ground truth masks for object boxes. To produce masks, SAM2 requires samples
in the pixel space. In this section, we examine how various sampling strategies
influence the quality of the resulting pseudo-ground truth masks.

Figure 3 analyzes the effect of different sampling strategies on SAM2 seg-
mentations for a 2D convex polygon. We only discuss 2D convex polygon because
the 2D projection of a box is a polygon. We consider three strategies: (1) Uni-
form Axis-Aligned Coordinate: Candidates are generated by taking convex
combinations of the polygon’s vertices. Specifically, we sample a non-negative
weight for each vertex from a uniform distribution over [0, 1], then normalize the
weights so that they sum to 1. (2) Uniform Simplex: Candidates are sampled
uniformly from the convex hull of the polygon’s vertices using a triangulation-
based approach. The polygon is first decomposed into simplices (i.e., triangles in
2D), and a simplex is selected via importance sampling, with the selection prob-
ability proportional to its area. A point is then sampled uniformly within the
chosen simplex using barycentric coordinates, ensuring uniform coverage across
the entire polygon [24]. (3) Adaptive Simplex: Similar to Uniform Simplex,
but with a key difference: while Uniform Simplex uses a constant number of
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(a) Simulation (b) inbound buffer (c) storage aisles

Fig. 5: Sample images from the simulated and real datasets used in the experi-
ments.

samples regardless of the area of the triangle, Adaptive Simplex scales the
number of samples proportionally to the triangle’s area.

In Figure 3a, the cumulative IoU distribution shows that Uniform Sim-
plex sampling significantly outperforms both Uniform Axis-Aligned Coordinate
and Adaptive Simplex, achieving a higher proportion of accurate segmentation
masks. Figure 3b visualizes the core difference by simulating sampling in a regu-
lar octagon. In Axis-Aligned Coordinate sampling, points tend to cluster densely
near the center of the feasible region and are sparsely distributed near its bound-
aries while Simplex sampling generates points uniformly in the polygon.

5 Experiments

We conducted three sets of experiments to evaluate BOSS. First, we validated
the effectiveness of our pipeline on a synthetic dataset (Section 5.1). Next, we
demonstrated its ability to bridge the sim-to-real gap (Section 5.2). Finally, we
will demonstrate its ability to perform self-supervised learning using a large-scale
unlabeled dataset (Section 5.3).

Pose and Shape Estimation Comparison

Sim2Sim Sim2Real
Approach APE [m] ARE [rad] ASE [m] APE [m] ARE [rad] ASE [m]

Model w/o SSL 0.584 0.219 0.369 2.080 0.554 1.589
BOSS-SAM2 0.038 0.069 0.084 0.134 0.223 0.238
BOSS-GT 0.041 0.063 0.078 0.148 0.239 0.259
BOSS-SAM2 (50k) - - - 0.135 0.217 0.247

Model Supervised 0.024 0.053 0.045 0.111 0.212 0.208

Table 1: Pose and shape estimation for self-supervised pipeline and other base-
lines. APE denotes the average position error; ARE denotes the average rotation
error; ASE denotes the average shape error.
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5.1 Validation on Synthetic Dataset

Setup. We use Blender to generate a dataset comprising a training dataset of 75
images and a test dataset of 375 images featuring five types of boxes. A typical
example from the synthetic dataset is shown in Figure 5a. The training dataset
includes images captured from a fixed viewpoint of a single object type with
varying lighting conditions and randomized object poses, while the test dataset
features both novel views of known objects and entirely new objects. We test
BOSS’ ability to perform self-supervised learning on the test dataset.
Results and Insights. Keypoint detection results are shown in Figure 6a.
The baseline model without self-supervised learning Model w/o SSL is trained
solely on the simulation training dataset. In contrast, the self-supervised models
are trained on the same dataset but also perform self-supervised learning on
the test dataset without annotations. This model has two variations: one using
ground truth segmentation for the 2D certificate BOSS-GT and another using
SAM2 masks [20] BOSS-SAM2. Finally, the supervised model Model Supervised
is trained directly on the simulation test dataset (i.e., this is the best achievable
performance with the architecture). Our goal is to fill the area between curves of
Model w/o SSL and Model Supervised, commonly known as the domain gap.
Notably, SSL effectively bridges this gap, with up to 90% of keypoints exhibiting
errors below 20 pixels—remarkably small relative to the image resolution of
1640×1232. Table 1 presents the pose and shape statistics. The model with SSL
significantly enhances pose and shape estimation, achieving accuracy more than
10 times higher —nearly matching that of a supervised model— with only around
4cm average error for position estimation; for reference, the average dimension of
the simulated boxes is 0.23m. Notably, for both keypoint detection and pose and
shape estimation, the SAM2 variant performs comparably to the GT variant.

5.2 Adaptation to Real Dataset

Setup. Symbotic provided a dataset with 9,000 images (Symbotic-9k), includ-
ing various types of boxes in two industrial environments: buffer shelves at in-
bound (Figure 5b) and storage aisles (Figure 5c). The dataset provides keypoint
annotations for stereo images, with keypoints predefined as the box corners.
Symbotic-9k is split into 7k/0.5k/1.5k images for train/val/test respectively.
Results and Insights. We evaluate all models on the test dataset split and show
results in Figure 6b. Model w/o SSL, trained solely on synthetic data, serves as
a lower bound. The upper bound model Model Supervised is trained and val-
idated on the train/val dataset. The area between Model w/o SSL and Model
Supervised is referred to as a sim-to-real gap. BOSS has two variations using
GT segmentation BOSS-GT or SAM2 BOSS-SAM2. Both models are first trained
on synthetic data and then refined through self-supervised learning on the train
and validation datasets. For comparison, we include Cube R-CNN, an RGB-only
zero-shot bounding box prediction model trained on the large-scale Omni3D
benchmark [11] (234k images) using 48 V100 GPUs, covering both indoor and
outdoor environments. The results clearly show that the SSL models, initially
trained on synthetic data and adapted using GT or SAM2-learned segmentation,
successfully bridge the sim-to-real gap. It also outperforms Cube R-CNN by a large
margin. Table 1 presents detailed results on the pose and shape estimation. Since
ground truth pose and shape are unavailable for the real dataset, we generate
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Fig. 6: Comparison of keypoint detection performance in Sim2Sim (left) and
Sim2Real (right) scenarios.

pseudo ground truth by running our pose and shape estimator on ground truth
keypoints. Notably, the self-supervised model consistently improves both pose
and shape estimation with significantly lower errors for all position, rotation,
and shape estimation. Self-supervised baseline also approaches the performance
of the supervised upper bound. We also observe that, for both keypoint detec-
tion and the pose and shape estimation, the SAM2 variation has a very similar
performance to the GT variation.

5.3 Adaptation to Large-scale Dataset

Setup. We are interested in how performance scales with the size of the dataset.
Symbotic provides an additional dataset of about 50,000 images, referred to
as Symbotic-50k, which however has no ground-truth keypoint annotations.
BOSS-SAM2 (50k) is first pre-trained on synthetic data and then refined via
self-supervised learning using a combination of the train and validation datasets,
along with Symbotic-50k. Note that for all BOSS-GT, BOSS-SAM2, and BOSS-SAM2
(50k), we use the same certificate thresholds to have a fair comparison. We ad-
ditionally report the performance of the model when evaluated only on outputs
that pass all certificate checks, denoted as BOSS-SAM2 (50k-oc). We present
the keypoint detection results on the test split in Figure 6b. Pose and shape
estimation results are presented in Table 1.
Results and Insights. Interestingly, BOSS-SAM2 (50k) outperforms BOSS-SAM2
and BOSS-GT by a small margin. This suggests that keypoint detection perfor-
mance scales with dataset size. We can gain further performance improvement by
filtering out bad labels during inference as shown BOSS-SAM2 (50k-oc), whose
performance is quite close to that of the supervised baseline. However, the im-
provement of BOSS-SAM2 (50k) compared with BOSS-SAM2 is limited. We believe
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this can be improved in the future by an automatic certificate threshold update
scheme during training. The current training uses a fixed threshold profile.

6 Conclusions

A self-supervised approach can train a box pose and shape estimation model
using large-scale, unannotated data collated by a robot fleet in a warehouse.
Implementing a simple pipeline to estimate the pose and shape of a box, we
show that it can be self-trained leveraging our correct-and-certify approach. The
correct-and-certify approach implements certificates to pseudo-label instances
during training but requires hard thresholds to be set apriori for training. We
devise an empirical way to choose these thresholds and demonstrate that our
training can bridge a large domain gap. Several avenues remain open for future
research. First, rather than applying hard thresholds to model outputs, can we
use soft pseudo-labels to retain more information? This idea is motivated by the
observation that certificate values naturally reflect the confidence level of each
pseudo-label. Second, we are interested in extending pose and shape estimation
to irregularly shaped objects, which would significantly improve generalization
across diverse warehouse tasks. Potential solutions include incorporating shape
parametrization [25] or learning a latent shape representation [26,27].
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