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RaGNNarok: A Light-Weight Graph Neural Network for Enhancing
Radar Point Clouds on Unmanned Ground Vehicles

David Hunt*, Shaocheng Luo*, Spencer Hallyburton, Shafii Nillongo, Yi Li,
Tingjun Chen, and Miroslav Pajic

Abstract— Low-cost indoor mobile robots have gained pop-
ularity with the increasing adoption of automation in homes
and commercial spaces. However, existing lidar and camera-
based solutions have limitations such as poor performance in
visually obscured environments, high computational overhead
for data processing, and high costs for lidars. In contrast,
mmWave radar sensors offer a cost-effective and lightweight
alternative, providing accurate ranging regardless of visibility.
However, existing radar-based localization suffers from sparse
point cloud generation, noise, and false detections. Thus, in this
work, we introduce RaGNNarok, a real-time, lightweight, and
generalizable graph neural network (GNN)-based framework
to enhance radar point clouds, even in complex and dynamic
environments. With an inference time of just 7.3 ms on the low-
cost Raspberry Pi 5, RaGNNarok runs efficiently even on such
resource-constrained devices, requiring no additional computa-
tional resources. We evaluate its performance across key tasks,
including localization, SLAM, and autonomous navigation, in
three different environments. Our results demonstrate strong
reliability and generalizability, making RaGNNarok a robust
solution for low-cost indoor mobile robots.

I. INTRODUCTION

Indoor mobile robots, such as unmanned ground vehicles
(UGVs), are increasingly used in homes and commercial
spaces, requiring accurate sensing for GNSS-free mapping
and navigation in potentially complex environments. Tradi-
tionally, these robots rely on lidar and cameras, but both
technologies have limitations that hinder their wide adoption
on low-cost platforms.

Lidar offers high precision but is expensive (e.g., $800+
for the Livox MID-360), power-intensive, and struggles in
visually occluded environments (e.g., smoke, dust). Cameras,
while affordable, face challenges in low-light or visually
uniform environments and lack depth perception unless
combined with additional sensors. Both lidar and camera-
based systems require deep learning (DL) models for reliable
scene understanding, which may exceed the computational
capacity of low-cost robots and fail in tasks that have real-
time requirements.

In contrast, mmWave radar provides a low-cost,
lightweight alternative with accurate ranging, even in poor
visibility. Modern 77 GHz mmWave radars achieve 4 cm
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range resolution in a compact, low-power form factor,
making them ideal for indoor mobile robots. Unlike lidar
and cameras, radar can also detect velocity, enabling real-
time differentiation between static and dynamic objects, and
enhancing situational awareness in complex environments.

While mmWave radar may offer a low-cost alternative for
UGV-based mapping, localization, and navigation, several
critical challenges have hindered its real-time adoption. First,
the angular resolution of typical mmWave radar sensors used
on UGVs is limited to 14.3° [1], significantly coarser than
lidar’s 0.1° resolution [2]. This results in 90% fewer points
than even 2D lidar slices, leading to sparse and incomplete
environmental representations. Second, radar point clouds
are prone to high false detection rates due to multipath
interference, where radio waves reflect off multiple objects
before returning to the sensor. In indoor environments, we
observed that up to 60% of detected points were false, fur-
ther complicating localization and mapping.

Existing approaches for mmWave radar-based sensing on
UGVs struggle with real-time feasibility and degrade in
dynamic environments. Some methods encode radar inputs
as images[3]–[5], while others rely on generative adversarial
networks (GANs) [6], but these approaches demand high-
compute, segmentation-based deep learning models that are
impractical for UGVs with limited computational resources.
Additionally, no prior work effectively utilizes radar velocity
measurements, making it challenging to distinguish static
from moving objects—a crucial limitation that hampers
mmWave radar-only mapping and reliable navigation.

To overcome these challenges, we introduce RaGNNarok,
a lightweight graph neural network (GNN)-based framework
that enhances 2D mmWave radar point clouds for real-
time UGV navigation. Unlike CNN-based approaches that
struggle with irregular, sparse radar data, RaGNNarok di-
rectly models point relationships as a graph, enabling spatial
feature aggregation while filtering multipath artifacts. By
incorporating velocity measurements, our method uniquely
discriminates between static and dynamic objects, improving
navigation robustness. Additionally, its efficient architecture
significantly boosts frame rate, achieving 7.3 ms inference
time on a Raspberry Pi 5, making RaGNNarok the first
practical GNN-based solution for real-time mmWave radar-
based UGV autonomy.

To demonstrate both performance and real-time feasibil-
ity, we integrate RaGNNarok into the navigation pipeline
on a resource-constrained UGV. Combined with industry—
standard ROS2 packages—Nav2 and slam-toolbox ([7]–
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[9])—we show that our GNN-enhanced mmWave radar
framework enables accurate mapping, real-time localization,
and robust navigation in complex, dynamic environments.
Unlike prior methods that struggle with sparse, noisy radar
data, RaGNNarok enhances point clouds in real-time, ensur-
ing precise localization without reliance on high-resolution
lidar or vision-based sensors. To the best of our knowledge,
this is the first work to achieve real-time localization and
navigation on a UGV using enhanced mmWave radar point
clouds, demonstrating the practical viability of GNNs for
mmWave radar-based autonomy.

This paper is organized as follows. Section Sec. III in-
troduces the framework used to implement the RaGNNarok
model. Following, section Sec. IV describes the robust eval-
uations used to validate RaGNNarok, including real-world
case studies on a UGV and comparisons to existing tradi-
tional and learning-based methods. Finally, section Sec. V
presents the results of our evaluations where we demonstrate
the accuracy, computational efficiency, and feasibility of the
RaGNNarok model.

II. RELATED WORKS

Deep learning (DL) models for mmWave radar sensing.
Previous works [4]–[6], [10]–[12] have introduced methods
of converting low resolution mmWave radar data into high-
resolution 2D and/or 3D lidar-like point clouds through
various DL models. However, these models only focused
on static environments and either do not generalize well
in complex, previously unseen, environments and/or can-
not be executed in real-time on computationally-constrained
platforms. Furthermore, [13] generated high-resolution 3D
reconstructions on indoor environments by using a rotation
mmWave radar, but also only focused on static environments
and requires significant computational resources to run in real
time. By contrast, RaGNNarok allows for operating in com-
plex and dynamic environments while being generalizable
and executing in real-time on resource-constrained platforms.
Graph Neural Networks (GNNs). Previously, [14]–[16]
have each applied GNNs to mmWave radar point clouds; yet,
they focused only on detecting specific objects (e.g., vehicles
and people) in radar point clouds. By contrast, RaGNNarok
is designed to enhance the point cloud corresponding only to
the static environment by identifying and filtering out multi-
path detections.
Automotive radars. In the automotive domain, previous
works have implemented mmWaveradar-based localization
[17]–[25], using methods like the cross-correlation of oc-
cupancy grid maps [18] and the Fourier-Mellin Transform
method [22]. Further, [17], [23], [24] introduced simulta-
neous localization and mapping (SLAM) pipelines. Yet, all
focused on outdoor environments and used high-resolution
radars such as the CTS350-X [26] with angular resolutions
ranging from 1◦ to 4◦. These radars are expensive, large, rela-
tively heavy (6 kg), consume a high amount of power (24 W),
and require high data rates (1 Gbps ethernet), making them
infeasible for low-cost, resource-constrained UGVs [26].
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Fig. 1: RaGNNarok block diagram.

Radar odometry. Regarding UGV odometry and colli-
sion avoidance, [27]–[33] proposed techniques for mmWave
radar-based odometry that determines a UGV’s relative loca-
tion with regards to its starting point in an unknown environ-
ment; e.g., [27], [30]–[33] used a mmWave radar to estimate
the velocity and an IMU sensor to determine the yaw angle
and rate of the vehicle. Still, these methods are susceptible
to large odometry drifts over time making them infeasible
for localization over longer trajectories.
Collision avoidance. Recently, [34], [35] developed
mmWave radar-based collision avoidance for indoor UGVs.
Yet, both were restricted to static environments; [34] only
operates in simple small-scale rectangular spaces, and [35]
only plans continuous paths around an environment that
avoids collisions.

III. SYSTEM DESIGN

RaGNNarok utilizes a UGV’s estimated position and
velocity (e.g., obtained from wheel encoders) to efficiently
enhance noisy radar point clouds and differentiate between
static and dynamic detections (see Fig. 1). The enhanced
point clouds can then be used for downstream tracking,
mapping, localization, and navigation tasks in real-time. We
now introduce the three main RaGNNarok components.

A. Radar Point Cloud Pre-processing

To optimize performance of the RaGNNarok framework,
we perform the following pre-processing steps.
Step 1 : Multi-radar point cloud. First, we utilize a “front”
and “rear” 77 GHz TI-IWR1843 radar sensor [36], [37]
operating at 20 Hz to achieve a 360◦ field-of-view (FOV).
This provides greater situational awareness and significantly
improves down-stream mapping, localization, and navigation
performance when one radar is obscured (e.g., by objects
or people close to the vehicle). Here, each radar detection
(d = [dx; dy; dz; dv]) contains the 3D Cartesian coordinates
and relative velocity (i.e., velocity towards or away from the
radar) of an object.

While the TI-IWR1843 can perform 3D sensing, we opt to
use a 2D configuration (i.e., dz term is set to 0) as we found
the elevation estimates to be inaccurate for UGV scenarios.
Thus, both radars are configured to have a range resolution
(dres) of 7 cm, maximum sensing range (dmax) of 8.56 m,
azimuth angular resolution (θres) of 14.3◦, and velocity
resolutions (vres) 0.01 m/s. Here, we minimize the processing
load by using the TI mmWave SDK [38] to implement a
standard radar processing pipeline directly on the radars.
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Fig. 2: Overview of the RaGNNarok model architecture

Additionally, we filter ground detections by removing all
detections within a range of 1.5 m. The final combined point
cloud typically features ∼50 points.
Step 2 : Dynamic object detection. In dynamic environ-
ments, a significant number of radar detections can corre-
spond to moving objects (e.g., people). Thus, for each new
frame of radar data, we identify detections corresponding to
dynamic objects by utilizing the UGV’s translational velocity
(v) and the velocity component of each detection (dv). For
a detection with 2D coordinates q = [dx; dy], the relative
velocity measured by the radar for a static point can be
expressed as d̂v = ⟨− q

∥q∥ , v⟩ Thus, we define dynamic
detections as any detection where |d̂v − dv| > 0.05m/s.
Once separated, static detections are then used to generate a
probabilistic occupancy grid map while dynamic detections
can then be used by other downstream tasks (e.g.; tracking)
Step 3 : Probabilistic occupancy grid Given the sparsity
of the radar point clouds, we additionally employ a proba-
bilistic occupancy grid to provide recent temporal history to
the model. Empirically, we found that an occupancy grid
with a cell resolution of 20 cm, range of [-5 m,5 m], and
temporal history leveraging the previous 20 radar frames (i.e.
1 s of previous sensing) best balanced between increasing
point cloud accuracy while minimizing the required sensing
duration. Here, we utilize a UGV’s pose (i.e.; position and
orientation) estimate to continuously align the occupancy
grid with the most recently recorded radar frame.

B. RaGNNarok Model

Graph neural networks (GNNs) encode data as a set of
nodes and edges where each node is defined by a set of
properties and each edge defines how the nodes are con-
nected. Compared to other methods, graph neural networks
are particularly well suited for enhancing radar point clouds
because their graph structure allows them to work well with
sparse data and spatial representations while also being more
robust to noise and false detections [39]. RaGNNarok takes
in a radar point cloud and detection probability information
to classify each detection as valid or invalid (e.g.; a multipath
detection).

Input graph nodes and edges For each radar detection
captured by the probabilistic occupancy grid, we define a
node (n = [dx; dy; dz; pdet]) which contains the Cartesian

coordinates and current probability of the detection. For
the edges between nodes, we use the Pytorch Geometric
radius graph module to define the edges between all
nodes within a 10 m radius of each other. Here, each edge’s
value is the euclidean distance between the two correspond-
ing nodes. Compared to previous segmentation approaches,
we highlight how this input format significantly reduces the
size of the model input data while allowing it to dynamically
adapt to point clouds with varying numbers of points.

Model Output. For each radar node in the graph, RaGN-
Narok classifies each node as valid or invalid. When labeling
each node, we define a node as valid if its corresponding
radar detection was within 20 cm of a lidar ground-truth
detection.

Model Architecture. As shown in Fig. 2, we imple-
mented a light-weight GNN architecture by using a series
of three GraphSAGE convolution blocks using the Pytorch
SAGEConv modules [40]. Compared to other graphical
convolution methods, we selected GraphSAGE convolutions
because they learn a flexible aggregation function and gener-
alize particularly well beyond the training data [40]. In total,
our model only utilizes 705 parameters, compared to recent
state of the art (SOTA) works [5] and [3] which utilized
∼7.7 M and ∼17.5 M parameters, respectively. As we show
in the following sections, this simpler model significantly
reduces the computational time required for each inference.

Loss Function We utilize Binary Cross Entropy (BCE) loss
during training as this is a commonly applied loss function
in graph neural network training pipelines and is particularly
well suited for classification tasks.

Data Augmentations To further improve the robustness of
our model as well as to prevent over-fitting during training,
we additionally employed the following three data augmen-
tations during the training process. First, a random yaw (i.e.,
around the z axis) rotation in the range [0◦,360◦]. Secondly,
we applied a random perturbations to the occupancy prob-
ability (i.e., pdet) of each node by sampling from a normal
distribution with a standard deviation of 0.05. Finally, we
randomly perturbed (dx, dy) for each node by independently
sampling from a normal distribution with standard deviation
of 16 cm.
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C. Detection History

After enhancing the radar point clouds using the RaGN-
Narok model, we further increase the density of the final
output point cloud by maintaining a short history of detected
points. To achieve this, we keep a list of valid detections, and
each detection is maintained for a duration of 10 radar frames
(i.e., 0.5 s worth of radar frames). As with the probabilistic
occupancy grid, we utilize the UGVs pose information to
continuously align the point cloud history with the most
recently received radar frame.

IV. EVALUATION

We rigorously validated the performance of RaGNNarok
using a real-world ROS2 prototype UGV equipped compute-
limited single board computer. In addition to assessing the
quality of the generated point clouds, we also evaluated
the performance of downstream localization, navigation, and
mapping tasks through a series of offline and real-time
experiments. Furthermore, we benchmark our performance
against traditional and state of the art DL models. Notably,
evaluations were performed across a diverse set of complex
environments where people were regularly moving through-
out the scene.

A. Experimental Setup

Platform. We used an iRobot Create3 unmanned ground
vehicle (Fig. 3) equipped with a Raspberry Pi5 single board
computer, TI-IWR1843front and back radars, a Livox MID-
360 lidar (used only for collecting ground truth), and Xsens
MTi-10 IMU sensor. Radar and lidar data were sampled at
a rate of 20 Hz while IMU measurements were sampled
at 200 Hz. Also, we align the coordinate frames of the
sensors by applying coordinate transformations to the radar
data such that both radars have the same coordinate frame
as the lidar. The entire design is implemented in a real-
time ROS2 framework.
Test environments. We used the three complex envi-
ronments shown in Fig. 4 to evaluate the performance
of RaGNNarok. Each environment featured people moving
freely throughout the scene, objects of different shapes, sizes,
and materials, and a combination of enclosed and open
spaces. Finally, we also ensured that RaGNNarok is robust
to changing environments by moving various objects (e.g.,

Fig. 4: Indoor test environments 1, 2, and 3 (left to right).

chairs, tables, and whiteboards) in all environments between
trials.

B. Baseline Methods

RaGNNarok’s performance is compared against the fol-
lowing baseline methods.
Naive Radar: Utilizing the combined point cloud from the
radar sensors (i.e., no additional filtering or point cloud
stacking) to localize the UGV at each frame.
RadarHD [3]: A DL segmentation model that converts raw
data from a single radar into 2D lidar-like point clouds. Here,
we utilized a TI-DCA1000 to capture raw data from the front
radar and RadarHD’s pre-trained model to obtain a predicted
2D point cloud to localize the UGV at each frame.
RadCloud [5]: A more recent DL model, optimized for
resource-constrained platforms, that converts raw data from a
single radar into 2D lidar-like point clouds. Again, we used
the TI-DCA1000 to capture raw data from the front radar
and RadCloud’s pre-trained model to obtain a predicted 2D
point cloud for localizing the UGV in each frame.

C. Datasets

For model training, point cloud quality evaluation, and
localization accuracy experiments, we recorded the following
large-scale datasets.
RaGNNarok Training, Validation, and Test Datasets. For
training, validation, and testing of the RaGNNarok model,
we captured a total of 57,641 time-synchronized frames by
performing 33 independent trials across the three testing
environments, covering a total trajectory distance of 1.3
km. For each trial, the UGV was driven along a unique
trajectory consisting of irregular turns at varying speeds.
All trials contained people moving freely throughout the
scene and objects that changed position from trial to trial.
For model training and validation, we used 5,400 samples
for training and 1,801 samples for validation. Notably, only
environment 2 was used for training the model, allowing
environments 1 and 3 to be used for assessing performance
in new environments. The remaining 50, 440 samples were
then used for assessing the quality of the point cloud and for
offline localization accuracy experiments.
Baseline datasets As RadarHD and RadCloud both used
unique radar configurations, we recorded additional datasets



containing 10,360 (for RadarHD) and 11,244 (for RadCloud)
time-synchronized frames following similar trajectories and
featuring similar environmental factors as the RaGNNarok
dataset. For the Naive radar dataset, we used the existing
57,641 samples recorded for evaluating RaGNNarok’s per-
formance.

D. Offline Evaluations

Point cloud quality To evaluate the quality of the generated
point clouds versus ground truth lidar scans, we use the
commonly used Chamfer and Hausdorff metrics [41]–[43].
However, given that the point clouds generated by each
baseline method have varying resolutions and densities, we
use the one-way version of these metrics to see how close
the radar point cloud is to the ground truth lidar point cloud.
Thus, we define the Chamfer distance (CD) as

CD(Sradar, Slidar) =
1

2|Sradar|
Σ

x∈Sradar
min

y∈Slidar
d(x, y) (1)

and Hausdorff distance (HD) as

HD(Sradar, Slidar) = max
x∈Sradar

min
y∈Slidar

d(x, y),

where d(x, y) denotes the Euclidean distance i.e., ||x− y||22.
Finally, we record the number of points generated by each
method to better understand the density of each point cloud.
Localization accuracy Next, we evaluated how well the
generated point clouds could be used for downstream local-
ization tasks. To accomplish this, we implemented a radar-
inertial localization stack which used an extended kalman
filter (EKF) to continuously estimate the global pose of the
UGV in a pre-mapped environment [44]. Here, we define the
pose estimate as P̂ = [p̂, Ψ̂], where p̂ = (x, y) and Ψ̂ = Ψ
denote the UGV’s global position and heading, respectively.
For the EKF ‘predict’ step, we employ a non-linear first-
order motion model to fuse vehicle velocity and IMU mea-
surements. Then we used the popular iterative closest point
(ICP) scan matching to “update“ the kalman filter with new
measurements. Additionally, erroneous measurements were
excluded using the χ2 anomaly detector (e.g., [45]), with an
empirically determined probability of valid data of 0.95.

To construct maps of each test environment, we utilized
the popular hector mapping [46] algorithm to generate a
2D map using the lidar sensor. Additionally, we measured
the ground truth pose P for each experiment using a lidar-
inertial localization stack which utilized an EKF to fuse
IMU, wheel encoders, and lidar ICP measurements. This
was benchmarked against a VICON motion capture system
showing that the lidar ground truth was always within 20 cm
of the VICON ground truth.

Finally, we use the standard absolute trajectory error
(ATE) and relative trajectory error (RTE) metrics [47] to
assess the localization performance of each method. Here,
for the i-th frame, the error metrics for translation (tr) and
heading (hd) trajectory errors are defined as

ATEtr(i) =||p̂i − pi||2
RTEtr(i) =||(p̂i − p̂i−1)− (pi − pi−1)||2,

(2)

TABLE I: Comparison of average inference time where
RaGNNarok achieves significant reductions compared to
existing works.

Platform RaGNNarok RadCloud [5] RadarHD [3]

Raspberry Pi 5 7.3 ms 178.5 ms 290.7 ms
Desktop (GPU) 1.3 ms 8.2 ms 33.3 ms

ATEhd(i) =|Ψ̂i −Ψi|
RTEhd(i) =|(Ψ̂i − Ψ̂i−1)− (Ψi −Ψi−1)|.

(3)

E. Real-time Full Stack Case Studies

To round out our evaluation, we demonstrated the real-
time feasibility of the RaGNNarok framework, by per-
forming real-time simultaneous localization and mapping
(SLAM) and navigation case studies. We highlight that the
RaGNNarok framework was run alongside industry standard
SLAM, localization, and navigation stacks in real-time on
the Raspberry Pi 5.
Simultaneous Localization and Mapping We used the
commonly used slam-toolbox ROS2 package to perform
SLAM using the point clouds generated by the RaGNNarok
model[9]. Due to the lower resolution nature of the radar
sensing, we set the map resolution to 10 cm.
Navigation Finally, we used the popular ROS2 Nav2 pack-
age to demonstrate real-time localization and navigation
through a mapped environment[7], [8]. Here, we adapted the
standard Nav2 adaptive monte carlo localization (AMCL)
and default navigation configuration to utilize the enhanced
point clouds generated from the RaGNNarok framework.
Noteably, we also used the maps generated in the previous
step to successfully demonstrate how our framework can be
used to successfully map and then autonomously navigation
through an environment.

V. RESULTS

We start with an analysis of the computational time re-
quired to run each model, followed by the offline evaluations
of point cloud quality and localization accuracy. Then, we
conclude with a discussion on our real-time full stack case
studies for SLAM and navigation.

A. Computational Time Analysis

To compare the computational time required to make each
inference on RaGNNarok versus the other baseline methods,
we conducted run-time timing tests on a Raspberry Pi 5 and
a Lenovo P360 equipped with a Nvidia T1000 GPU and an
Intel i9 CPU. As seen in Table I, RaGNNarok significantly
reduces the computational time required to enhance input
point clouds. Even on a GPU equipped machine, we achieve
an over 6× and 25× reduction in inference time compared
to RadCloud and RadarHD, respectively. Additionally, we
highlight that RaGNNarok still maintains low inference times
on the compute constrained Raspberry Pi 5, enabling real-
time operations for our UGV platform.
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Fig. 5: RaGNNarok generates more accurate point clouds
that remove false detections and generalize well to new
environments.

TABLE II: Comparison of point cloud quality (* and †
indicate results from previously seen and new environments,
respectively).

avg Chamfer (CD) Hausdorf (HD)
Method points mean tail (90%) mean tail (90%)

RadarHD [3] 5,651 0.71 m 1.17 m 3.61 m 6.31 m
RadCloud [5] 65 0.25 m 0.42 m 0.85 m 1.54 m
Naive radar 65 0.47 m 0.71 m 2.30 m 4.02 m

RaGNNarok* 109 0.28 m 0.41 m 1.41 m 2.13 m
RaGNNarok † 108 0.30 m 0.44 m 1.11 m 2.40 m

TABLE III: Comparison of average trajectory errors. (* and †
indicate results from previously seen and new environments,
respectively)

Absolute (ATE) Relative (RTE)
Localization Method Trans(m) Rot(deg) Trans(m) Rot(deg)

Naive Radar 2.45 m 4.22◦ 0.013 m 0.056◦
RadCloud [5] 0.32 m 2.71◦ 0.016 m 0.080◦
RadarHD [3] 1.31 m 6.21◦ 0.027 m 0.111◦

RaGNNarok* 0.16 m 1.43◦ 0.004 m 0.038◦
RaGNNarok† 0.20 m 2.07◦ 0.004 m 0.036◦

B. Offline analysis

Point cloud quality. Table II summarizes the point cloud
quality assessment, and Fig. 5 presents examples of point
clouds generated using each method. As seen in Fig. 5,
RaGNNarok produces accurate and dense point clouds that
feature minimal false detections. Compared to RadarHD and
the Naive radar methods, RaGNNarok significantly improved
the chamfer and hausdorf point cloud error metrics, indicat-
ing that its point clouds more accurately resembled the en-
vironment. Additionally, compared to the RadCloud model,
RaGNNarok produced 1.6× more points on average while
still generating sufficiently accurate point clouds. Finally, we
highlight that the RaGNNarok model generalized well as it
showed almost no performance drop when operating in new
environments.
Localization. Table III summarizes the average ATE and
RTE for each sensing method. Fig. 6 presents an example

X(m)

Y(m)

Fig. 6: Comparison of RaGNNarokand Naive Radar trajec-
tory estimates (top), RadCloud estimates (bottom left), and
RadarHD estimates (bottom right).

mean: 0.19m
stdev: 0.13m
90-th percentile: 0.35m

Fig. 7: Histogram of the RaGNNarok ATE errors illustrates
how RaGNNarok enables accurate localization performance
with minimal errors

of each method’s localization performance in environment 1.
As shown in Table III, RaGNNarok enables accurate location
estimates of the UGV’s location with an average ATE of
19 cm. Moreover, 90% of RaGNNarok errors are less than
35 cm (Fig. 7). These results indicate that RaGNNarok
maintains consistently accurate trajectory estimates, even in
dynamic and complex environments.

Compared to the baseline methods, when considering
the average ATE, RaGNNarok achieves 1.6× improvement
compared to RadCloud (i.e., the best performing SOTA DL-
based method), and 12.8× improvement compared to the
naive radar sensing method. Moreover, the naive radar base-
line enabled successful localization in most trials, but there
were several trials where a large number of false detections
led to a complete loss of localization; thus, resulting in
the very high average ATE error. Finally, the SOTA DL
models somewhat provided accurate localization (especially
RadCloud), but with sporadic large localization errors due to
inaccurate predictions from the models in more complicated
environments. Ultimately, RaGNNarok provided the most
accurate and consistent localization of all the considered
methods.

C. Real-time Full Stack Case Studies

We now present results from our real-time SLAM and
navigation case studies. Note video examples of the case
studies can be found in our accompanying video submission.

SLAM. Fig. 8 presents an example of a map generated
using the RaGNNarok framework. As seen in the figure,
the generated map accurately captures the key features of
the environment and largely resembles the map obtained
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Fig. 8: Comparison of map generated using RaGNNarok
point clouds versus lidar point clouds.
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Fig. 9: Navigation trials in test environment 2. The green dots
in the right figure denote RaGNNarok-generated radar point
clouds, while the red line denotes the planned trajectory.

using the lidar sensors. Additionally, the generated map
features relatively few false detections, demonstrating how
RaGNNarok enables real-time SLAM, even on compute
constrained UGVs.
Navigation. Finally, we demonstrate how the maps generated
using RaGNNarok’s enhanced point clouds can be used to
enable real-time radar navigation. Here, Fig. 9 presents an
example of a navigation case study, the map of the envi-
ronment, and the real-time planned trajectory of the UGV.
As seen in our corresponding video submission, the UGV is
successfully able to estimate its location and autonomously
navigate through a complex environment by utilizing the
enhanced point cloud from RaGNNarok.

VI. CONCLUSION

In this work, we introduced RaGNNarok, a lightweight
graph neural network designed to enhance radar point clouds
for real-time sensing, localization, and navigation. We eval-
uated its effectiveness in terms of computational efficiency
and point cloud quality, as well as its ability to enable
accurate localization, mapping, and collision-free navigation
in complex and dynamic environments. Furthermore, we val-
idated its real-world feasibility by deploying RaGNNarokon
a ROS2-based unmanned ground vehicle (UGV) running

on a Raspberry Pi 5, proving that high-performance radar-
based autonomy is achievable on resource-constrained plat-
forms.Looking ahead, we plan to extend RaGNNarok from
2D to 3D point cloud enhancement, further improving spatial
awareness and precision. Additionally, we aim to adapt our
framework for aerial vehicles, expanding its applicability to
a broader range of autonomous systems.
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