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PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor
Dynamics Prediction in Unknown Environments

Mengyun Wang, Bo Wang, Yifeng Niu* and Chang Wang

Abstract— Accurate dynamics modeling is essential for
quadrotors to achieve precise trajectory tracking in various
applications. Traditional physical knowledge-driven modeling
methods face substantial limitations in unknown environments
characterized by variable payloads, wind disturbances, and ex-
ternal perturbations. On the other hand, data-driven modeling
methods suffer from poor generalization when handling out-
of-distribution (OoD) data, restricting their effectiveness in un-
known scenarios. To address these challenges, we introduce the
Physics-Informed Wind-Adaptive Network (PI-WAN), which
combines knowledge-driven and data-driven modeling methods
by embedding physical constraints directly into the training
process for robust quadrotor dynamics learning. Specifically,
PI-WAN employs a Temporal Convolutional Network (TCN)
architecture that efficiently captures temporal dependencies
from historical flight data, while a physics-informed loss func-
tion applies physical principles to improve model generalization
and robustness across previously unseen conditions. By incor-
porating real-time prediction results into a model predictive
control (MPC) framework, we achieve improvements in closed-
loop tracking performance. Comprehensive simulations and
real-world flight experiments demonstrate that our approach
outperforms baseline methods in terms of prediction accuracy,
tracking precision, and robustness to unknown environments.

I. INTRODUCTION

Accurate trajectory tracking of quadrotors in uncertain en-
vironments is crucial for accomplishing tasks such as search-
and-rescue and autonomous transportation [1]. Model-based
control approaches [2], which leverage prior knowledge of
system dynamics, have been widely adopted to enhance
control performance [3]. However, real-world flight scenarios
present significant challenges due to variable environmental
factors such as payload changes [4], wind disturbances
[5], and ground effects [6]. Fig. 1 illustrates how wind
disturbances can deflect the flight trajectory of a quadrotor in
real-world conditions. These phenomena introduce nonlinear
aerodynamics and disturbances that are difficult to charac-
terize with analytical models, thereby significantly limiting
the development and applicability of traditional model-based
control methods [7].

Recent research has focused on developing precise models
[8] of quadrotor dynamics to improve trajectory tracking
accuracy. Simple linear drag models have demonstrated ef-
fectiveness in low-speed flight scenarios [9]. However, high-
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Wind Fan

Fig. 1. The quadrotor controlled by the proposed approach is tracking
Circle trajectory in the presence of unknown external wind generated by a
wind fan.

speed and aggressive maneuvers typically induce complex
nonlinear phenomena [10]. Huang et al. [11] proposed mod-
eling these complex aerodynamic forces using fundamental
aerodynamic principles. However, such knowledge-driven
modeling methods require substantial expert knowledge and
present significant challenges in practical applications [12].

Data-driven modeling methods [13] have emerged as an
alternative by leveraging historical flight data to improve
dynamic modeling. Torrente et al. [10] employed Gaus-
sian Processes (GPs) to represent residual dynamics during
high-speed trajectory tracking. Although GPs offer advan-
tages in modeling uncertainties, they suffer from significant
computational limitations. Furthermore, their emphasis on
unmodeled aerodynamics constrains their applicability in
environments with unknown and variable conditions. To
overcome these constraints, Saviolo et al. [14] proposed a
neural network (NN) architecture capable of online param-
eter updating, enabling adaptation to dynamic and uncertain
environments. This method demonstrated robust tracking
performance under challenging conditions, including vary-
ing payloads, quadrotor configurations, and external wind
disturbances. However, these approaches primarily represent
single-step dynamics without fully exploiting the temporal
correlations inherent in sequential state transitions.

Recurrent Neural Networks (RNNs) [15] can model tem-
poral sequences. However, their application in dynamics
learning remains limited due to training instabilities caused
by vanishing and exploding gradients. In contrast, Tempo-
ral Convolutional Networks (TCNs) implement causal and
dilated convolutions to achieve stable and efficient model
training. Lee et al. [16] successfully applied TCNs to ex-
tract environmental characteristics for quadrupedal robots
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from historical state data. DroneDiffusion [17] leveraged
conditional diffusion models to learn quadrotor dynamics
by processing state sequences. The learned model was inte-
grated with an adaptive controller to generalize in complex,
unseen scenarios. However, the computational complexity of
diffusion models makes them impractical for online learning,
especially for resource-constrained onboard deployment.

Neural network-based dynamics often show limited gen-
eralization capabilities when predicting out-of-distribution
(OoD) data. To address this issue, Ye et al. [4] introduced
random noises during training to improve model generaliza-
tion on OoD data. Alternatively, integrating physical prior
knowledge into learning frameworks [18] can reduce the
dependence on training data while improving generalization
to unseen data or new conditions. Saviolo et al. [19] com-
bined a sparse temporal convolution network (TCN) with a
physics-inspired neural network (PINN) [18] to infer quadro-
tor dynamics from state histories. The physical information
enhances predictive capabilities for OoD scenarios [20].
However, this approach did not account for environmental
disturbances during model learning. Moreover, a multi-layer
perceptron (MLP) was used in the closed-loop tracking con-
troller instead of the proposed PI-TCN structure to simplify
optimization procedures.

To address these limitations, we propose the Physics-
Informed Wind-Adaptive Net (PI-WAN) to predict the dy-
namics of quadrotors under various wind conditions. Our
main contributions are summarized as follows:

• We combine knowledge-driven and data-driven mod-
eling methods by embedding physical constraints into
the training process of the PI-WAN. The TCN ar-
chitecture efficiently captures temporal dependencies
from historical flight data, while the physics-informed
loss improves model generalization and robustness by
applying physical knowledge to the learning framework.

• The learned PI-WAN dynamics is employed as an
estimator for external disturbances. The real-time pre-
diction results are incorporated into the MPC framework
to improve tracking performance in previously unseen
trajectories, ensuring adaptability and robustness against
various wind disturbances.

• We conduct experiments in simulations and real-world
scenarios. The proposed PI-WAN demonstrates superior
prediction accuracy, tracking performance, and robust-
ness under unknown wind conditions compared to base-
line methods—including the nominal dynamics, TCN
without physical constraints, and MLP architecture.

The rest of the paper is organized as follows. Section II
introduces the PI-WAN and the MPC framework. Section
III presents simulation and real-world experiments results.
Finally, Section IV concludes the key contributions and
limitations and proposes the future directions.

II. METHDOLOGY

A. Nominal Dynamics
The nominal dynamics of a quadrotor ẋ = fnom (x,u) can

be constructed by the state x =
[
p⊤,q⊤,v⊤]⊤ ∈ R10 and
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Fig. 2. Architecture of the proposed approach.

the control input u = [tmn, ωx, ωy, ωz]
⊤ ∈ R4 as

ẋ =

 ṗ
q̇
v̇

 =

 v
1
2 (q⊙ ω)

1
m (q⊙ f) + g

 , (1)

where p,q,v are the position, quaternion, and the velocity in
three-dimensional space. The control inputs contains mass-
normalized thrust tmn and the body rates ω = [ωx, ωy, ωz]

⊤.
The thrust vector and the gravity vector in the inertia frame
can be written as f = [0, 0, tmn]

⊤ and g = [0, 0, g]
⊤. Given

the state xk and the control input uk at timestamp k, the state
at the next timestamp xk can be computed by fourth-order
Runge–Kutta integral method as

xk+1 = xk + fRK4 (xk,uk,∆T ) . (2)

However, the simplified nominal model derived from first
principles fails to incorporate critical phenomena such as
aerodynamic drag forces, rotor interactions, and environmen-
tal disturbances. These model inaccuracies inevitably result
in degraded trajectory tracking performance. The primary ob-
jective of this paper is to develop a data-driven approach that
leverages historical flight data to learn a more comprehensive
and accurate dynamic model that surpasses the predictive
capabilities of the nominal model.

B. Data Collection

To develop a dynamics model with superior predictive
capability under environmental disturbances, we systemati-
cally acquire flight data across a spectrum of wind velocities
and trajectory patterns. Data collection is executed utilizing
a MPC trajectory tracking framework that operates on a
nominal dynamics model.
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Fig. 3. Different types of reference trajectories.

MPC governs system behavior to achieve optimal perfor-
mance through iterative solution of a constrained optimiza-
tion problem over a finite prediction horizon. The trajectory
tracking problem is mathematically formulated as follows:

min
u

H−1∑
k=0

[
(xk − xr

k)
⊤
Q (xk − xr

k) + u⊤
k Ruk

]
+

(xH − xr
H)

⊤
Q (xH − xr

H) .

s.t. xk+1 = xk + fRK4 (xk,uk,∆T ) ,
x0 = xinit,

umin ≤ uk ≤ umax,

(3)

where Q and R represent semi-positive definite diagonal
weighting matrices that penalize state tracking errors and
control effort, respectively. The control inputs are bounded
by constraints umin and umax. The resulting constrained
quadratic programming problem can be solved efficiently
using sequential quadratic programming techniques. We
leverage the CasADi framework [21] to deploy a multiple-
shooting scheme that enhances computational efficiency and
numerical stability.

We design seven reference trajectories, including Cir-
cle, Ellipse, Lemniscate, TransposedLemniscate, Spiral, War-
pedEllipse and ExtendedLemniscate. Each trajectory is ex-
ecuted for a duration of 20 seconds with temporal dis-
cretization at 0.02-second intervals, yielding 1000 data points
per trajectory. We choose 5 of these reference trajectories
to train the dynamics model, while the remaining two are
reserved as unseen trajectories to test the generalization
performance on OoD data. Environmental disturbances are
introduced via directionally heterogeneous wind conditions,
with independently configured velocity components along
the x and y axes. Wind speeds are set to different values in
the x and y directions. Throughout the flight, the state-action
pairs of the quadrotor are recorded synchronously with their
corresponding state derivatives.

C. PI-WAN Training

We design a Physics-Informed Wind-Adaptive Network
(PI-WAN) to approximate the dynamics of the quadrotor
under variable wind conditions. The network integrates state
vectors and control input history to predict state derivatives.

Specifically, the PI-WAN framework comprises two principal
components: a Temporal Convolutional Network (TCN) that
extracts temporal dependencies from sequential data, and a
Multi-Layer Perceptron (MLP) that performs the nonlinear
mapping to state derivatives. The TCN module implements
dilated causal convolutions with residual connections, en-
abling it to efficiently process input sequences of arbitrary
length while maintaining temporal coherence. This module
encodes the historical trajectory into a fixed-dimension fea-
ture representation that captures relevant temporal dynam-
ics across multiple time scales. Subsequently, this encoded
representation serves as input to the MLP module, which
approximates the complex nonlinear relationships governing
the aerodynamic effects. The predicted dynamics represented
by PI-WAN with parameters θ can be formally expressed as:

ẋ = fPI-WAN (Xt,Ut; θ) , (4)

where the inputs Xt =
[
x⊤
t−T ,x

⊤
t−T+1, · · · ,x⊤

t

]⊤
and Ut =[

u⊤
t−T ,u

⊤
t−T+1, · · · ,u⊤

t

]⊤
denote the historical sequences

of states and control inputs of length T up to time t. The
model learning problem is formulated as optimizing the
parameters of PI-WAN to minimize the prediction error of
the state derivatives. As observed in Eq. (1), the derivative
of position and quaternion can be computed directly from
the state. Therefore, we focus exclusively on predicting
the velocity derivatives as the network output. Furthermore,
since position states do not directly influence the dynamics
equations, they are omitted from the input feature. Moreover,
the position state is not correlated with the dynamics. Conse-
quently, the input tensor has dimensions 11×T , comprising
quaternion q, linear velocity v, and control inputs u. The
output tensor has dimensions 3×1, representing the velocity
derivative v̇.

Naive supervised learning suffers from poor generalization
when faced with OoD data, resulting in significant prediction
errors when models are deployed in new environments
or real-world situations. Physics-Informed Neural Networks
(PINNs) address this issue by embedding physical laws into
neural networks through physics-informed constraints within
the loss function. By integrating the differential equations
of quadrotor dynamics into the learning process, PI-WAN
effectively improves model robustness and generalization,
especially when dealing with OoD data and conditions.
During model training, the loss function can be written as

L = LSL + λLPI, (5)

where LSL represents the supervised learning loss based on
labeled data, LPI is the physics-informed loss, and λ is a
hyper-parameter balancing the contribution of each term. LSL
is the mean squared error between training labels and the
prediction output of PI-WAN. LPI enforces physics-informed
constraints by calculating the mean squared error between PI-
WAN predictions and the nominal model outputs. The loss
functions can be computed by

LSL =
1

NB

NB∑
i=1

∥ẋlabels − fPI-WAN (Xi,Ui; θ) ∥, (6)



LPI =
1

NB

NB∑
j=1

∥fRK4 (xj ,uj)− fPI-WAN (Xj ,Uj ; θ) ∥, (7)

where NB is the numbers of a batch of training data, ẋlabels
is the training labels, fPI-WAN (Xt,Ut; θ) is the prediction
output of PI-WAN, and fRK4 (xj ,uj) is the state derivative
computed by the nominal model.

The calculation of LPI requires random sampling from
the state-input space to ensure comprehensive coverage.
However, PI-WAN focuses on temporal sequence prediction
rather than single-step dynamics, which inhibits direct ran-
dom sampling. Previous work [19] utilized fixed pre-training
samples for calculating PI loss, which limited the coverage
of the state-input space. We periodically resample points at
a predefined frequency during training. This dynamic sam-
pling method ensures comprehensive coverage of physical
information across the state-input space, resulting in more
robust generalization properties.

D. Closed-Loop Control

After establishing the MPC formulation for trajectory
tracking [22], we integrate the trained PI-WAN to improve
controller performance. While previous studies have incorpo-
rated learned models directly as hard constraints within MPC
optimization frameworks, the computational complexity of
neural networks often precludes real-time implementation.
To enhance computational efficiency in optimization, Savi-
olo et al. [19] demonstrated improved closed-loop control
accuracy through physics-informed loss with simplified MLP
architectures rather than computationally intensive TCNs.
However, our approach requires inferring unknown wind
disturbances from historical state sequences, a capability that
surpasses MLP-based methods. We implement PI-WAN as an
implicit compensator for the nominal model rather than as an
explicit optimization constraint, thereby achieving a balance
between predictive accuracy and computational efficiency.

Assuming the difference between the nominal model’s
prediction and the PI-WAN’s prediction results from environ-
mental disturbances, we can characterize the environmental
disturbance term as:

fw(Ht) =
1

NT

NT∑
i=1

(fPI-WAN(xt−i,ut−i)−fNom(xt−i,ut−i)),

(8)
where Ht = {xt−NT

,ut−NT
, · · · ,xt−1,ut−1} represents

the state-control history preceding time step t, and NT

denotes the temporal window hyperparameter for disturbance
estimation. Incorporating this disturbance term, we construct
an enhanced dynamics model:

fcorr (xt,ut,Ht) = fNom (xt,ut) +Λfw(Ht), (9)

where Λ is a disturbance adaptation matrix that dynamically
adjusts the disturbance compensation intensity for each state
component. The MPC formulation constrained by fcorr, as
referenced in Eq. (3), can be expressed through the discrete
update equation:

xk+1 = xk + f̂corr (xk,uk,Htk ,∆T ) , (10)

where f̂corr is the Runge-Kutta numerical integration imple-
mentation of fcorr.

III. EXPERIMENTS AND RESULTS

In this section, we present a comprehensive evaluation of
our proposed PI-WAN through simulations and experiments,
aiming to answer the following questions: 1) How does
the prediction performance of PI-WAN for quadrotor states
under different wind speeds? Is it still robust on unseen
reference trajectories and wind speeds that are not included
in the training data? 2) How does integrating PI-WAN
prediction results into closed-loop control improve trajectory
tracking performance? 3) How does the overall performance
of PI-WAN compared to other relevant baseline methods? 4)
Can PI-WAN be deployed onboard on a real quadrotor?

A. Environmental Setup

Implement. We develop a custom wind-simulation en-
vironment using Airsim [23] for evaluating our approach.
We utilize two computers with 16 i9-9900K CPUs and an
RTX 3080 GPU. One computer runs the high-fidelity Airsim
simulation, while the other handles the training process. We
set different wind speeds in the x-axis and y-axis directions
to simulate the uncertainty of the real environment. Our PI-
WAN is implemented using PyTorch. We implement the
MPC framework based on CasADi [21], and the weight
matrix is set as Q = diag (10, 10, 10, 5, 5, 5, 5, 1, 1, 1) ,R =
diag (0.1, 0.2, 0.2, 0.2).

Baselines. We compare the prediction performance of PI-
WAN with four baselines: (1) PI-TCN, a TCN architecture
trained in [19]; (2) PI-MLP, a multi-layer perceptron trained
with the physics-informed loss; (3) TCN, a TCN trained
without physics-informed loss; (4) Nom, the nominal model
described in Eq. (1). Additionally, we evaluate the tracking
performance of PI-WAN-MPC against four corresponding
baselines: (1) PI-TCN-MPC; (2) PI-MLP-MPC; (3) TCN-
MPC; (4) Nom-MPC. For each MPC variant, the correspond-
ing dynamics model provides wind influence estimation, with
the exception of Nom-MPC which relies exclusively on the
nominal model without disturbance compensation. We use
the root mean square error (RMSE) metric to evaluate the
prediction and tracking performance.

B. Predictive Performance

We compare the predictive performance of PI-WAN with
other baseline methods on training trajectories and previously
unseen trajectories. Table I quantifies the predictive RMSE
on different trajectories. Fig. 4 visualizes the prediction
results on the WarpedEllipse trajectory which was not en-
countered during training. The left plot shows the changes
in predicted and actual linear acceleration, while the right
bar chart presents the predictive RMSE across all baseline
methods. The results show that the TCN, trained exclusively
with supervised learning loss LSL without the PI loss LPI,
achieves the best performance on training trajectories but
exhibits limited generalization in unseen trajectories. In
contrast, physics-informed variants (PI-TCN and PI-WAN)



TABLE I
THE PREDICTION RMSE IN DIFFERENT TRAJECTORIES AT VARIOUS WIND SPEEDS.

Prediction RMSE [m/s2] Trained Trajectory Unseen Trajectory

Trajectory Circle Ellipse Lemniscate Lemniscate T Spiral WarpedEllipse Lemniscate E

Nom 2.2720 2.6407 10.3416 11.9999 1.9896 2.3234 0.7551
TCN 0.0090 0.0108 0.0186 0.0208 0.0067 0.6804 0.4759

PI-MLP 0.0115 0.0136 0.0283 0.0370 0.0112 1.3890 1.0782
PI-TCN 0.0158 0.0212 0.0727 0.1026 0.0169 0.6776 0.2370
PI-WAN 0.0230 0.0289 0.0667 0.1012 0.0196 0.4785 0.2007
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Fig. 4. The prediction RMSE for the unseen reference trajectory. (Left:
Prediction state derivatives. Right: RMSE between prediction and ground
truth (stacked with no overlap).)

that incorporate LPI demonstrate superior performance on
unseen test trajectories, despite sacrificing some prediction
accuracy on the training trajectories. The proposed PI-WAN,
which iteratively updates the sample points to calculate LPI,
achieves higher tracking accuracy compared to PI-TCN.
While PI-MLP shows competitive accuracy on training tra-
jectories, its limitation in temporal feature extraction signifi-
cantly impairs its ability to model environmental disturbances
from sequential state data, resulting in substantially degraded
performance on unseen trajectories.
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C. Closed-Loop Tracking Performance

We integrate the state prediction PI-WAN model into the
MPC framework to enhance trajectory tracking performance
across diverse environmental conditions. Table II compares
the tracking RMSE across multiple trajectories. The results
in the first row demonstrate that nominal MPC exhibits
substantial tracking errors, primarily due to modeling inac-
curacies caused by wind disturbances. In contrast, controllers
augmented with learning-based prediction modules achieve
significant improvements in tracking accuracy across both
training and unseen trajectories. While multiple baseline
controllers demonstrate comparable performance metrics on
training trajectories, their capabilities diverge significantly
when confronted with previously unseen trajectories. Only
the physics-informed models (PI-TCN and PI-WAN) main-
tain robust performance enhancements. Other models even
introduce additional decline in tracking accuracy. Figure 6
visualizes the trajectory tracking results of nominal MPC
and PI-WAN-MPC on Spiral, WarpedEllipse, and Extend-
edLemniscate trajectories. All trials depicted in Figure 6 are
conducted under an x-axis wind speed of 5 m/s. The Spiral
trajectory, included in the training dataset, demonstrates near-
perfect alignment between the tracking and reference paths
after correction by PI-WAN’s predictive compensation. The
previously unseen WarpedEllipse and ExtendedLemniscate
trajectories also significantly improve when controlled by PI-
WAN-MPC and achieve compensation for unknown distur-
bances, demonstrating its robustness and adaptability.

Figs. 5 compares the tracking RMSE of 5 approaches
under different wind speeds in Spiral, WarpedEllipse and
ExtendedLemniscate trajectories. The nominal MPC has
high tracking accuracy under minimal wind disturbance
conditions, while the tracking error grows as wind velocity
increases. The other controllers maintain tracking accuracy
across the entire spectrum of wind conditions, attributable
to their adaptive capacity to model and compensate for
environmental disturbances. Controllers incorporating PI loss
enable capturing physical principles, thereby maintaining
excellent tracking performance on unseen trajectories.

D. Real World Experiment

We validate our controller augmented by PI-WAN using
a real-world quadrotor. The physical experimental platform
is illustrated in Fig. 7. The quadrotor has a mass of 0.98 kg,
with a maximum thrust-to-weight ratio of 4.5. The state
of the quadrotor is provided by the Nokov motion capture



TABLE II
THE TRACKING RMSE IN DIFFERENT TRAJECTORIES AT 5 m/s WIND IN THE X-AXIS.

Tracking RMSE [m] Trained Trajectory Unseen Trajectory

Trajectory Circle Ellipse Lemniscate Lemniscate T Spiral WarpedEllipse Lemniscate E

Nom-MPC 0.1652 0.1581 0.7924 0.1931 0.2028 0.1270 0.0995
TCN-MPC 0.0940 0.1214 0.4722 0.1806 0.0950 0.1200 (↓ 5.51%) 0.0852 (↓ 14.37%)

PI-MLP-MPC 0.1026 0.1595 0.4922 0.1801 0.1142 0.1204 (↓ 5.20%) 0.1273 (↑ 27.94%)
PI-TCN-MPC 0.0792 0.1374 0.4772 0.1829 0.0907 0.1112 (↓ 12.44%) 0.0893 (↓ 10.25%)
PI-WAN-MPC 0.0598 0.1355 0.4898 0.1886 0.1148 0.0747 (↓ 41.18%) 0.0592 (↓ 40.50%)
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TABLE III
THE AVERAGE TRACKING RMSE IN THE REAL-WORLD EXPERIMENTS.

Approach Nominal-MPC PI-WAN-MPC

RMSE [m] 0.2689 0.1927

system. Our algorithms are all implemented on the on-board
computer Nvidia Xavier NX. Constrained by computational
resources, we set the frequency of the MPC controller to 15
Hz. Disturbances estimation using PI-WAN is performed at
5 Hz. We map the mass-normalized thrust from the MPC
to a throttle signal using the online thrust update module
proposed in [24]. The attitude and throttle commands are
sent to the flight control via the serial port.

We perform nominal MPC and PI-WAN-MPC under a
circle trajectory with external wind generated by a fan. For
fair comparison, the frequency and parameter settings of
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MPC are kept the same. Snapshots of the tracking process
by PI-WAN-MPC are depicted in Fig. 1. Each case is
repeated at least three times, and we calculate the average
tracking RMSE in Table III. PI-WAN has not been fine-
tuned using real flight data. It can be seen that the quadrotor
controlled by PI-WAN can accomplish the tracking task
with small RMSE. However, the nominal MPC is subject to
changing perturbations and has a large tracking error. The PI-
WAN’s ability to adapt to perturbations reduces the tracking
error by 28.34%. The consistent results with the simulation
demonstrate the robustness of PI-WAN in the real world.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduces PI-WAN (Physics-Informed Wind-
Adaptive Network), a novel framework that integrates
knowledge-driven and data-driven modeling methods by em-
bedding physical constraints directly into the training process
for robust quadrotor dynamics learning. PI-WAN employs
a TCN architecture with physics-informed loss functions,
substantially enhancing model generalizability across previ-
ously unseen conditions. By incorporating real-time predic-
tion results into a MPC framework, our approach enables
real-time adaptation to external disturbances. Comprehen-
sive experiments in both simulated and real-world scenarios
demonstrate that PI-WAN outperforms baseline methods in
prediction accuracy, trajectory tracking performance, and
robustness to unknown environments. Future research di-
rections include extending the framework to accommodate
multiple environmental factors beyond wind effects and de-
veloping online learning capabilities to facilitate continuous
adaptation to dynamic environmental conditions.
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