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Learning Steerable Imitation Controllers from
Unstructured Animal Motions

Dongho Kang∗, Jin Cheng∗, Fatemeh Zargarbashi∗, Taerim Yoon†, Sungjoon Choi†, and Stelian Coros∗

Abstract— This paper presents a control framework for
legged robots that leverages unstructured real-world animal
motion data to generate animal-like and user-steerable be-
haviors. Our framework learns to follow velocity commands
while reproducing the diverse gait patterns in the original
dataset. To begin with, animal motion data is transformed into a
robot-compatible database using constrained inverse kinematics
and model predictive control, bridging the morphological and
physical gap between the animal and the robot. Subsequently,
a variational autoencoder-based motion synthesis module cap-
tures the diverse locomotion patterns in the motion database
and generates smooth transitions between them in response
to velocity commands. The resulting kinematic motions serve
as references for a reinforcement learning-based feedback
controller deployed on physical robots. We show that this
approach enables a quadruped robot to adaptively switch gaits
and accurately track user velocity commands while maintaining
the stylistic coherence of the motion data. Additionally, we
provide component-wise evaluations to analyze the system’s
behavior in depth and demonstrate the efficacy of our method
for more accurate and reliable motion imitation.

I. INTRODUCTION

Motion imitation using reinforcement learning (RL) lever-
ages prerecorded motion data from real-world animals or
human actors, offering an efficient way to acquire natural and
agile locomotion skills for legged robots [1, 2, 3]. By directly
imitating motion data, this approach eliminates the need for
hand-crafted reference generators or heuristic reward designs
commonly used in RL training.

However, prerecorded motion data consists of fixed motion
trajectories that cannot be modified during execution, pre-
venting any real-time user steering or interaction. As a result,
the learned skills are typically limited to specific scenarios
that closely mirror the original recording conditions. Fur-
thermore, significant differences in morphology and physical
properties between the data source and the target robot often
make it difficult to reproduce the motions effectively.

To overcome these limitations, this paper presents a
framework for steerable animal motion imitation in legged
robots by leveraging the diverse movement patterns present
in an unstructured motion database (DB). Here, steerable
refers to the ability to responsively follow a user’s intended
moving direction and velocity, and adapt gait modes based
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Pace Trot

Fig. 1: Unitree Go2 robot navigating freely across a grass
field in response to joystick commands (top). The gait pattern
automatically transitions from Pace to Trot as the forward
speed command increases from 0.6m/s to 1.0m/s (bottom).

on these commands. The term unstructured indicates that our
approach utilizes a rich dataset contains a wide range of gait
patterns spanning various movement speeds, notably without
being pre-segmented by gait pattern and velocity.

The framework begins with an offline kino-dynamic mo-
tion retargeting process that adapts the motion data to the
robot’s morphology and physical capabilities, mitigating
kinematic and physical artifacts. To generate responsive
behaviors, we employ a variational autoencoder (VAE)-based
motion synthesis module [4] that generates reference robot
motions conditioned on user-specified velocity commands,
capturing the diverse gait patterns in the motion data. These
reference motions are executed by a feedback control policy,
trained via RL with the motion synthesis module in the loop.

We validate the efficacy of our approach through com-
prehensive experiments evaluating the core stages of the
framework. Our kino-dynamic motion retargeting method
effectively generates kinematically and dynamically feasible
motions, enabling reliable RL training that accurately repli-
cates dynamic and expressive animal motions. By effectively
reproducing diversity in the motion database, the motion
synthesis module generates reference trajectories that not
only track user-specified velocity commands accurately but
also adaptively switch between gait patterns. Finally, we
demonstrated the full pipeline by deploying motion synthesis
and control online on the Unitree Go2 robot, showcasing
responsive navigation and adaptive gait switching behavior
in real time, as shown in Figure 1.

In summary, this paper makes three main contributions:
first, we introduce a framework that reproduces diverse
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behaviors from unstructured motion data on legged robots;
second, we present a kino-dynamic motion retargeting strat-
egy that bridges the morphological and physical gaps for
seamless skill transfer; and finally, we demonstration of steer-
able legged locomotion control with natural gait transitions
on a quadruped robot while replicating animal motion style.

II. RELATED WORK

A. Motion Imitation for Legged Robots

In pursuit of replicating the natural and agile movements
of legged animals and humans, an increasing number of
studies leverage motion data captured from real subjects,
either through 3D motion capture systems [1, 3, 5, 6, 7, 8]
or pose estimation from monocular video [2, 3, 9].

A key challenge in this direction is bridging the mor-
phological and physical gap between the motion source
and the target robot—a process known as motion retar-
geting (MR). Earlier efforts primarily addressed kinematic
discrepancies by using scaled keypoint transfers [10], or
remapping high-level motion features such as contact timings
and base trajectories [5, 11]. However, when the source
motion exhibits complex and highly dynamic behaviors,
difference in physical capabilities between the source and the
robot become increasingly critical. To address this, dynamic-
aware MR methods that account for the robot’s dynamics
and physical limits have gained increasing attention. These
methods commonly employ model-based control frameworks
[2, 9, 12] as offline optimization tools to refine reference
motions, ensuring dynamic feasibility with the target robot.

A second major challenge lies in developing a robust
feedback controller capable of executing these motions on
hardware while preserving their agility and expressiveness. In
this context, motion imitation via RL is increasingly favored
for its ability to produce robust control policies across diverse
motion repertoires [1, 3, 6, 7, 13], while overcoming the
runtime computational demands and modeling limitations of
the classical model-based control approaches.

Our approach incorporates a kino-dynamic MR strategy
that addresses both the kinematic and physical gap between
the source and the target robot, generating a robot motion
DB that consists of kinematically and dynamically feasible
motion sequences using unconstrained inverse kinematics
and model-based control. Meanwhile, for real-time motion
tracking, we train a residual RL policy to reliably track
reference motions on the physical robot.

B. Steerable and Stylistic Motion Synthesis

Generating steerable motion controllers from unstructured
datasets has been extensively explored in character anima-
tion, with the goal of producing motions that are realistic, di-
verse, and controllable. A classical approach to this challenge
is motion matching [14], which retrieves and blends motion
segments from a given dataset based on user commands.
However, motion matching inherently lacks generalization,
as it essentially patchworks existing motion sequences. To
overcome this limitation, recent research has increasingly

turned to learning-based generative methods, including gen-
erative adversarial network (GAN)-based [15, 16] or VAE-
based methods [4, 17].

GAN-based approaches have gained significant attention
for generating realistic motions for physics-based characters.
Adversarial Motion Priors [15] is a prominent example
where an RL policy acts as the generator to learn natural
motions by interacting with a physics simulation, guided by a
discriminator that rewards stylistic realism. When combined
with task rewards, this method enables steerable behaviors
while retaining realistic motion style. This approach was
further extended by Peng et al. [16], who incorporated
skill embeddings to enhance scalability across a broader
range of behaviors. However, these approaches often suffer
from training instability and mode collapse, limiting motion
diversity and requiring careful tuning.

Another line of research leverages VAEs to embed motion
datasets into a structured latent space for steerable motion
generation. Ling et al. [4], Won et al. [18] proposed VAE
architectures where state transitions are embedded in the
latent space as conditional distributions. In these frameworks,
a decoder generates the next state prediction based on
the previous state and a latent vector, effectively capturing
motion dynamics. To enable control, an RL policy modulates
these latent vectors, ensuring the resulting motion transitions
align with user commands while preserving motion style.

In this work, we combine a VAE and an RL policy to
generate responsive and expressive motion, similar to Ling
et al. [4], Won et al. [18]. To preserve the diversity of
motion patterns, we use the mixture-of-experts architecture
as proposed by Ling et al. [4]. Additionally, we structure
the hyperspherical latent space [19], which provides a well-
defined action space for the RL-based motion synthesis
policy, preventing unbounded exploration during training.

III. OVERVIEW

An overview of our framework is illustrated in Figure 2.
As a first step, we transform unstructured animal motion
data into a robot-compatible motion DB. Specifically, we use
constrained inverse kinematics and a model-based control
framework to ensures the resulting motion sequences are
both kinematically and dynamically feasible for the robot.

Subsequently, we embed the state transitions from the re-
targeted motion DB into a latent space using a hyperspherical
VAE. The VAE is trained to reconstruct the current state refx̂t,
conditioned on the previous state refxt−1 and a latent vector
zt. We effectively capture diverse gait patterns and smooth
transitions between them in the motion DB using a mixture-
of-experts (MoE) decoder architecture.

Next, a reference motion synthesis module is developed
using the frozen VAE decoder. This module generates ref-
erence motions in response to user-specified velocity com-
mands ct, while maintaining stylistic coherence with the
motion DB. We employ an RL-based motion synthesis policy
that modulates latent variables conditioned on ct and the
previously generated reference motion refx̂t−1. The policy
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Fig. 2: Overview of the framework. An animal motion DB is first transformed into a robot motion DB using kino-dynamic
motion retargeting (in blue). Next, each state transition in the motion DB is embedded into a latent space using a VAE
(in purple). The trained decoder, combined with an RL-based motion synthesis policy produces a new reference motion in
response to velocity commands (in green). Finally, the reference motion is tracked by an RL controller (in orange).

is trained to navigate the latent space, producing new refer-
ence motion refx̂t that effectively follows arbitrarily sampled
velocity commands during training.

Finally, the synthesized reference motion refx̂t is provided
as a tracking target to an RL feedback tracking controller,
trained to robustly track the reference motion on a physical
robot. At runtime, we deploy the pipeline comprising the mo-
tion synthesis policy, the VAE decoder, and the RL tracking
controller to enable the robot to interactively respond to user
commands. The subsequent chapters describe each stage of
this framework in detail.

IV. KINO-DYNAMIC MOTION RETARGETING

We use a kino-dynamic MR approach that combines con-
strained inverse kinematics (IK) with a model-based control
framework. This ensures that motions retargeted from an
animal motion DB are both kinematically and dynamically
feasible for the robot. Similar to the previous work by Yoon
et al. [2], we decouple the MR process into two stages: a
kinematics stage and a dynamics stage.

In the kinematics stage, we process a source ani-
mal’s motion pose-by-pose starting from the first time
instance. At each time step, we extract the source base
position [srcx, srcy, srcz], base roll, pitch and yaw angles
[srcϕ, srcθ, srcψ], and limb vectors src

B ei with i ∈ {1, 2, 3, 4}.
The limb vectors are unit vectors, expressed in the base
frame {B}, pointing from the shoulders to the corresponding

foot. Additionally, we compute the ground-projected forward
velocity, srcvfwd, sideway velocities srcvside, and yaw rate
srcψ̇ of the source; these quantities are used as 2D velocity
components for subsequent processing.

We adjust the base height, roll, and pitch components by
applying scaling factors α(·) ∈ R, and transfer to the robot:[

tgtz tgtϕ tgtθ
]
=
[
αz

srcz αϕ
srcϕ αθ

srcθ
]
. (1)

Additionally, we scale and numerically integrate the 2D ve-
locity components for the remaining base pose components:tgtx

tgty
tgtψ

 =

tgtx−
tgty−
tgtψ−

+∆tRz(
tgtψ−)

αfwd
tgtv−fwd

αside
tgtv−side

αψ̇
tgtψ̇−

 , (2)

where the superscript (·)− denotes the value at the previous
timestep, and Rz(·) ∈ R3×3 is the rotation matrix about z-
axis. Subsequently, we compute the robot’s foot positions by
scaling limb vectors with the factor αlimb ∈ R3 and adding
them to the shoulder positions:

tgtrfoot,i =
tgtrshoulder,i +

tgtRWB(αlimb ⊙ src
B ei), (3)

where ⊙ denotes element-wise multiplication and tgtRWB is
the rotational matrix of the robot base. The values of the
scaling factors used in our experiments are listed in Table I.

After constructing base pose and foot positions, we can
use a standard IK solver to compute generalized coordinates
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Fig. 3: (a) Limb penetration and contact foot slips introduced
by UVM. (b) Our kino-dynamic MR removes these artifacts,
and ensure both kinematic and dynamic feasibility.

of the robot tgtq which allow us to build full pose of the
robot [10]. However, this scale-and-transfer method—often
refer to as unit vector method (UVM)—introduces kinematic
artifacts such as contact foot slips, limb penetrations, and
violation of joint limits as illustrated in Figure 3.

To address these issues, we formulate a constrained IK
problem that enforces limb and joint constraints as follows:

min
q

∥tgtqbase ⊖ qbase∥2 +
∑

k∈swing

∥tgtrfoot,k − FKfoot,k(q)∥2

s.t. FKfoot,j(q) = ranc,j ∀j ∈ stance (4a)
FKfoot,k(q)z > 0 ∀k ∈ swing (4b)
FKknee,i(q)z > 0 ∀i ∈ {1, 2, 3, 4} (4c)
q̄ > q > q. (4d)

Here, FKfoot,i(·) and FKknee,i(·) are forward kinematics func-
tions mapping the robot’s generalized coordinates to the
world-frame position of the i-th foot and knee, respectively.
The operator ⊖ denotes the substraction between base pose
compoenents of generalized coordinates, performing direct
subtraction for positions and computing a scalar error from
the quaternion difference for orientation.

The objective function of Equation (4) consists of two
terms: 1) the error between the base pose components of
generalized coordinates variable tgtqbase and its IK target
qbase, and 2) the positional error between the swing feet
and their respective IK targets. Importantly, the constraint
Equation (4a) fixes the position of each stance foot j to an
anchor position ranc,j , where the z-component is set to the
terrain height, and x− and y−components are taken from
the foot’s position when the current contact was initially de-
tected. This constraint prevents footslip and foot penetration
in the retargeted motion. Additionally, Equation (4b) ensures
that the swing foot is always above the terrain. Simiarly,
Equation (4c) ensures that every knee is always above the
terrain. Finally, Equation (4d) ensures that the generalized
coordinates respect their limits, such as the joint limits.

The optimal solution from this optimization is used as
a kinematically retargeted motion kinq, and processing the
entire source motion frame by frame yields the full retargeted
motion sequence kinq1:N where N is the sequence length.

TABLE I: Default scaling factors used in the MR kinematic
stage in our experiments.

αz αϕ αθ αfwd αside αψ̇ αlimb

0.81 1.0 1.0 0.6 0.6 1.0 [0.6, 0.7, 0.81]

After obtaining kinq1:N , we proceed to the dynamics stage
to ensure dynamic feasibility using a model-based control
framework—specifically, model predictive control (MPC).
At a high-level, this process is formulated as a trajectory
tracking problem, where the objective is to follow kinq1:N

by minimizing the generalized coordinate error over a time
horizon T in a receding horizon manner. The control input is
the robot’s joint torque, bound by the robot’s actuation limits,
and the system state x contains the generalized coordinates
and velocities: x := [q, q̇].

We implement this MPC using the MJPC framework [20],
with the iLQG solver [21], which leverages the full-body
robot model and contact model of the MuJoCo simulator [22]
to numerically compute the derivative information required
by the solver. In our experiment, we set the time horizon to
T = 2.0 s with a discretization time step of 0.01 s.

The resulting MPC trajectory serves as our kino-
dynamically retargeted motion refx0:N and is stored in our
retargeted motion DB. Although solving this MPC problem
is computationally expensive, MR is performed offline to
generate a robot motion database for downstream learning
tasks, which does not require real-time execution.

V. MOTION SYNTHESIS

The motion synthesis module is a central component of our
framework, responsible for preserving the stylistic quality of
motions in the DB, while capturing and reproducing their
diversity in response to user-specified velocity commands.
To achieve this, we adopt a VAE-based motion synthesis
approach inspired by Ling et al. [4], which effectively models
multiple motion modes by leveraging a MoE architecture.
This approach comprises two substages: motion embedding
and training an RL-based motion synthesis policy.

A. Motion Embedding

Firstly, we embed state transitions present in the motion
DB into a structured latent space, by training a VAE to
reconstruct the latter state in each transition pair. The input
and output of the VAE are defined using local components of
the robot state. Specifically, we introduce a ground-projected
base frame {P}, and define the VAE state vector as

vaex :=
[
Pz Ph Pv Pw Prfeet θ θ̇

]
∈ R49, (5)

which concatenates the base height, base orientation, base
linear and angular velocities, foot positions relative to P ,
joint positions, and joint velocities. The base orientation
Ph ∈ R6 is represented using the x− and z−axis vectors of
the base frame, expressed in {P} [23].

The VAE encoder takes as input a pair of consecutive
states (vaext−1,

vaext), and outputs distribution parameters of
the 18-dimensional latent space. The decoder then predicts



TABLE II: PPO hyperparameters.

Number of envs 4096 Value ftn. coeff. 1.0
Batch size 24576 Entropy coeff.∗ 0.002
Number of epochs 5 Discount factor 0.99
Learning rate 0.0005 GAE parameter 0.95
NN Hidden layers [512, 256, 128] Clipping range 0.2
NN Activation ftn. ELU KL target 0.01

∗ We set the entropy coefficient to 0.0 for the motion synthesis policy.

the current state vaex̂t conditioned on the latent vector zt
and the previous state vaext−1. We adopt a MoE architecture
for the decoder, consisting of six expert networks and a
gating network similar to the previous work by Ling et al.
[4]. This architecture effectively captures and preserves the
diversity of motion patterns in the database. The encoder and
each expert network in the decoder are implemented as fully
connected networks with two hidden layers of 256 units. The
gaiting network is also a fully connected network, with two
hidden layers of 64 units. All hidden layers use the ELU
activation function.

To structure the latent space, we use a hyperspherical
latent representation [19] by modeling the latent variable
distribution as a von Mises-Fisher (vMF) distribution instead
of a standard Gaussian distribution. This design choice is
crucial for streamlining the training of the motion synthesis
policy in the next stage, as it constrains the action space to
the bounded surface of a hypersphere [16].

The VAE training loss is defined as:

L = ∥vaext − vaex̂t∥22 + βDKL (q ∥ p) , (6)

where q(zt|vaext,
vaext−1) is the posterior distribution ap-

proximated by the encoder and p(zt) is the vMF prior. We
refer the readers to the work by Davidson et al. [19] for the
derivation of KL divergence term for vMF distribution. In our
experiments, we set the weighting coefficient to β = 0.05.

Following Ling et al. [4], we initially train the VAE using
state transitions (vaext−1,

vaext) from the motion database for
20 epoch. We then gradually shift to autoregressive training
over 60 epochs, where the decoder’s prediction vaex̂t is
recursively used as the next input condition (i.e. vaex̂t →
vaext−1). This training strategy improves the stability of
sequence prediction in downstream tasks.

B. Motion Synthesis Policy

In the second stage, we train the motion synthesis policy
using RL to navigate the hyperspherical latent space con-
structed in the previous stage and generate states that follow
the user’s velocity commands.

The policy observes the user’s forward and turning speed
commands ct := [cfwd,t, cturn,t] and the previously generated
motion state vaex̂t−1. The action is defined as a vector z̃t ∈
R18 which is later projected onto the hyperspherical latent
space by zt = z̃t/∥z̃t∥2.

The policy is trained with Proximal Policy Optimization
(PPO) algorithm [24] using a reward function designed to
align the ground-projected forward speed of the robot’s base

TABLE III: Motion tracking policy reward hyperparameters.

Reward terms ry Sensitivity σy

Base linear velocity rv 0.2
Base angular velocity rw 0.25
Base height rz 0.1
Base orientation rϕθ 0.8
Feet position rfeet [0.3, 0.3, 0.1]∗

Global position rxy 0.5
Global orientation rh 0.5
Action rate r∆a 2.0
Action scale ra 10.0
Feet slip rslip 0.1

∗ Non-scalar values are applied element-wise.

vfwd and yaw rate ψ̇ with their commanded values:

r = exp

(
− (vfwd − cfwd)

2

0.25
− (ψ̇ − cturn)

2

0.1

)
(7)

The trained RL policy, together with the decoder, consti-
tutes the motion synthesis module, which generates reference
motions in real time in response to user commands. The list
of the PPO hyperparameters used is provided in Table II.

VI. MOTION TRACKING VIA RESIDUAL POLICY

As a final step, we use RL to train a policy that tracks
a synthesized reference motion robustly. We design the RL
policy to generate a residual joint position action added
to the joint position components of the reference motion.
Additionally, to facilitate the training for highly dynamic gait
patterns such as Gallop, we adopt the asymmetric actor critic
approach [25] which incorporates privileged information in
the observation of the critic, to better guide the training.

A. Observation and Action Space

At timestep t, the policy (actor) takes as input a noisy
robot’s state observation denoted as stateot ∈ R42, which
includes the base orientation (represented as a gravity vector
in the base frame), angular velocity, joint angles, and previ-
ous joint commands of the robot, along with the reference
base height, orientation, linear velocity, angular velocity,
joint positions, joint velocities and foot heights denoted as
refot ∈ R26. The base velocity components are expressed
in the base frame. The full observation vector is formed as
a stack of the state and reference motion observation with
their history, with the history length H = 4. Additionally,
the latent vector zt ∈ R18 from the motion synthesis module
is included:

ot =
[

stateot−H:t
refot−H:t zt

]
∈ R358. (8)

As animal motions involve frequent flying phases and irreg-
ular stepping patterns, estimating the robot’s base height and
linear velocity becomes challenging. Therefore, we chose to
exclude these components from the observation.

The critic takes as input the noise-free version of the policy
observations, along with privileged information including the
base height, linear velocity, actual and reference foot posi-
tions relative to the base, and foot velocities. Additionally,
it receives the position and orientation error of the base in
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Fig. 4: (a) Our kino-dynamic MR enables reliable transfer of dog motion sequences to the real-world robot. We evaluate its
effectiveness by comparing RL training curves against the UVM baseline method for two motions: Spin (b) and Gallop (c).

the world frame to encourage exploration for highly dynamic
motions.

The output of the policy is residual joint actions a ∈ R12,
which is added to the reference joint angles refθt with a
scaling factor and set as the PD targets of the robot joints,
PDθt =

refθt + 0.15 · at.

B. Reward Design

The reward function is formulated as a weighted sum of
the imitation reward rI , world frame pose reward rW , and
regularizer rR, with corresponding weights wI , wW , and wR:

r = wI · rI + wW · rW + wR · rR. (9)

The imitation reward encourages the robot to follow the
reference motion, and is defined as:

rI = rz · rv · rw · rϕθ · rfeet (10)

where rz matches the base height, rv matches xy com-
ponents of base linear velocity, rw matches z component
of base angular velocities, rϕθ matches the roll and pitch
angles of the base, and finally rfeet matches the relative foot
positions with respect to base. All components are expressed
in the robot’s base frame.

The world frame pose reward matches the (x, y) position
and orientation of the robot’s base and that of the reference,
expressed in the world frame: rW = rxy · rh. This reward
term improves base motion tracking for dynamic movements
at high velocities.

Finally, the regularizer term rR = r∆a · ra · rslip consists
of penalties on action rate, action value, and foot slip.

Note that the subterms of rI , rW , and rR are multiplied
together, where each subterm follows the following form:

ry = exp

(
−
∥∥∥∥ ŷ − y

σy

∥∥∥∥2
)
, (11)

where ŷ is the desired value of the robot quantity y,
and σy denotes sensitivity parameter. The detailed reward
hyperparameters are listed in Table III.

C. Other Training Details

The tracking policy is trained in a physically simulated
environment using NVIDIA IsaacLab [26]. The simulated
Unitree Go2 robot is equipped with a joint PD controller
with Kp = 30 and Kd = 0.5. The policy is queried at 50Hz,
with each control action executed over four simulation steps.

To facilitate exploration around the reference motion, we
implemented reference state initialization [27]. Additionally,
we apply domain randomization to improve the general
robustness of the tracking policies against the sim-to-real
gap and external disturbances. Specifically, we randomize the
friction coefficient within the range [0.5, 1.5], vary the mass
of each link by ±10%, perturb the center of mass of each link
by up to 0.05m, and apply random external perturbations to
the robot base every 1.5 to 2.5 s.

The tracking policy is also trained using PPO with the
same set of hyperparameters as the motion synthesis policy,
except for the entropy coefficient, which is set to 0.002.

VII. RESULTS

We conducted a series of simulation and real-world ex-
periments to evaluate each component of our framework and
to demonstrate the full control pipeline developed using the
proposed approach. In our experiments, we used a subset
of a dog motion dataset [28], consisting of 13076 samples
along with their left-right mirrored counterparts.

In the first set of experiments, we evaluate our kino-
dynamic MR strategy for reliable motion imitation. We
selected three representative animal motion sequences—Sit-
pace-sit, Spin, and Gallop—and retargeted them using both
our method and the UVM baseline. Motion tracking policies
were then trained to execute these sequences on Go2 using
five random seeds over 5000 PPO update steps.

As shown in Figure 3, the UVM baseline results in
hind limb penetrations during the Sit-pace-sit motion, which
prevents successful tracking due to persistent ground contact.
Similarly, for Spin, the UVM-retargeted motion exhibits
frequent foot slippage. Although the RL policy appears to
track the motion, the per-step regularizer reward curve in
Figure 4(b) reveals unstable contact behavior, making the
motion less suitable for real-world deployment. For the
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Fig. 6: Sample distribution from the motion DB visualized
as a scatter plot over forward and turning speeds (left). Com-
mand tracking error of the motion synthesis module shown
as a heatmap. Gray cells indicate the synthesized motion fails
to respond to the command and remains stationary (right).

dynamic Gallop motion, the UVM-retargeted version causes
the imitation reward to saturate prematurely, as shown in
Figure 4(c), indicating poor tracking performance. In con-
trast, our kino-dynamic MR approach produces dynamically
feasible motions that lead to better tracking quality and
overall more reliable motion imitation.

In summary, our kino-dynamic MR effectively transforms
agile and expressive animal motions into robot-compatible
trajectories, enabling reliable motion execution on hardware
as illustrated in Figure 4(a).

Shifting our focus to motion synthesis, we evaluate the
ability of our motion synthesis module to generate motions
that accurately follow velocity commands and exhibit appro-
priate gait transitions. Starting from a nominal standing pose,
we apply a range of forward speed commands [0.6, 2.4]m/s
and turning speed commands [−1.0, 1.0] rad/s, and measure
the tracking error over 10 s. The heatmap in Figure 6 visual-
izes the weighted sum of mean squared forward speed error
efwd and turning speed error eturn, computed as efwd+10·eturn.
A higher weight is applied to the turning error to balance the

visualization, as its magnitude is relatively small.
The heatmap reveals that the motion synthesis module

occasionally fails to respond accurately to user commands,
particularly in regions where the motion data is sparse.
Nonetheless, the module generally tracks the commands well
and, most notably, is able to capture and reproduce the
diverse gait patterns present in the dataset.

To better examine the behavior of the synthesized motion,
we generated a motion sequence using our motion synthesis
module under varying forward speed commands. We then
trained a motion tracking policy to follow this sequence and
executed it on the physically simulated Go2, as shown in
Figure 5. As the forward speed profile indicates, the reference
motion produced by the motion synthesis module responds
smoothly and accurately to the commands, transitioning
seamlessly from Gallop to Trot to Pace as the speed varies
from 1.8m/s to 1.2m/s to 0.7m/s. The tracking policy
successfully reproduces this motion on the robot, achieving
a root mean squared base velocity error of 0.11m/s.

Finally, we deployed the full control pipeline—comprising
the motion synthesis module and the RL tracking
controller—on the robot hardware to enable responsive, real-
time steering. For this experiment, the RL motion tracking
policy was trained with the motion synthesis module in the
loop, which generates reference motion for the policy based
on randomly sampled velocity commands. Due to a stability
limitations on hardware, we restricted the forward speed
command range to [0, 1.3]m/s, and focused our demonstra-
tions on lower-speed locomotion.

As shown in Figure 1, the control pipeline enables the
robot to navigate freely with animal-like gait patterns and
demonstrates adaptive gait switching in response to velocity
commands. Readers are referred to the supplementary video
for comprehensive footage of the experiments 1.

1The video is available at https://youtu.be/DukyUGNYf5A



VIII. CONCLUSION AND FUTURE WORK

This work presents a learning-based framework that re-
produces diverse behaviors from unstructured animal motion
data. In so doing, it enables steerable control in legged
robots with natural gait transitions that emerge in response
to velocity commands. Our framework effectively bridges
both the morphological and physical gaps between a source
animal and a target robot, reliably reproducing expressive
and agile animal movements while preserving the diversity
of the original dataset.

During development, we identified several limitations in
the methodologies adopted within our framework. Most
notably, we observed that the VAE-based motion synthesis
module often introduces artifacts—such as unrealistically
aggressive motions—particularly at high velocity command
ranges. This limitation stems from the fact that the motion
synthesis module is trained purely kinematically. While prior
work has explored incorporating physics into the training
process [18, 17], such approaches often suffer from mode
collapse, particularly for dynamic behaviors, which are in-
herently more difficult to learn. Addressing this issue and
enabling consistent, artifact-free motion synthesis remains an
important and promising direction for future research.

Additionally, we found that training a single RL-based
motion tracking policy to reliably execute a wide range
of motion patterns is highly challenging, as different skills
often exhibit significantly different dynamic properties. For
example, a policy trained to track both Pace and Gallop
gaits tends to show compromised performance on Gallop,
failing to specialize effectively. We are interested in adopting
a mixture-of-policies approach, similar to the concurrent
work by Chen et al. [29], which could enable more reliable
execution of diverse motion behaviors on robot hardware.

A promising extension of our work is its application to
humanoid robots, where natural and efficient motor skill
learning through motion imitation is gaining increasing at-
tention. In particular, we are interested in developing a loco-
manipulation pipeline that supports a diverse set of skills
with seamless transitions between them, adapting fluidly to
both environmental context and user commands.
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M. Bächer, “DOC: Differentiable Optimal Control for Retargeting Mo-
tions onto Legged Robots,” ACM Transactions On Graphics (TOG),
vol. 42, no. 4, pp. 1–14, 2023.

[13] F. Zargarbashi, J. Cheng, D. Kang, R. Sumner, and S. Coros,
“Robotkeyframing: Learning locomotion with high-level objectives
via mixture of dense and sparse rewards,” in Proceedings of The 8th
Conference on Robot Learning, ser. Proceedings of Machine Learning
Research, P. Agrawal, O. Kroemer, and W. Burgard, Eds., vol. 270.
PMLR, 2025, pp. 916–932.

[14] S. Clavet, “Motion matching and the road to next-gen animation,” in
Proc. of GDC, 2016.

[15] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp:
Adversarial motion priors for stylized physics-based character con-
trol,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–20,
2021.

[16] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, “Ase: large-
scale reusable adversarial skill embeddings for physically simulated
characters,” ACM Transactions on Graphics (TOG), vol. 41, no. 4,
2022.

[17] H. Yao, Z. Song, B. Chen, and L. Liu, “Controlvae: Model-based
learning of generative controllers for physics-based characters,” ACM
Trans. Graph., vol. 41, no. 6, Nov. 2022.

[18] J. Won, D. Gopinath, and J. Hodgins, “Physics-based character con-
trollers using conditional vaes,” ACM Trans. Graph., vol. 41, no. 4,
Jul. 2022.

[19] T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak,
“Hyperspherical variational auto-encoders,” 34th Conference on Un-
certainty in Artificial Intelligence (UAI-18), 2018.

[20] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with
mujoco,” 2022.

[21] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 4906–4913.

[22] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[23] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[25] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric actor critic for image-based robot learning,” in Proceed-
ings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June
2018.

[26] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A unified simulation framework for
interactive robot learning environments,” IEEE Robotics and Automa-



tion Letters, vol. 8, no. 6, pp. 3740–3747, 2023.
[27] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne, “Deepmimic:

Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions On Graphics (TOG), vol. 37, no. 4,
pp. 1–14, 2018.

[28] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Trans. Graph., vol. 37,
no. 4, Jul. 2018.

[29] Z. Chen, M. Ji, X. Cheng, X. Peng, X. B. Peng, and X. Wang, “Gmt:
General motion tracking for humanoid whole-body control,” 2025.


