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Stable Tracking of Eye Gaze Direction During Ophthalmic Surgery
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Abstract— Ophthalmic surgical robots offer superior stability
and precision by reducing the natural hand tremors of human
surgeons, enabling delicate operations in confined surgical
spaces. Despite the advancements in developing vision- and
force-based control methods for surgical robots, preoperative
navigation remains heavily reliant on manual operation, limit-
ing the consistency and increasing the uncertainty. Existing eye
gaze estimation techniques in the surgery, whether traditional
or deep learning-based, face challenges including dependence
on additional sensors, occlusion issues in surgical environments,
and the requirement for facial detection. To address these
limitations, this study proposes an innovative eye localization
and tracking method that combines machine learning with tra-
ditional algorithms, eliminating the requirements of landmarks
and maintaining stable iris detection and gaze estimation under
varying lighting and shadow conditions. Extensive real-world
experiment results show that our proposed method has an
average estimation error of 0.58 degrees for eye orientation
estimation and 2.08-degree average control error for the robotic
arm’s movement based on the calculated orientation.

I. INTRODUCTION

Ophthalmic surgical robots demonstrate significant sta-
bility and precision compared to human surgeons when
performing surgical tasks. The design of robotic arms ef-
fectively eliminates or substantially reduces natural hand
tremors during surgery, enabling more refined and controlled
operations in extremely confined surgical spaces, such as
those encountered in retinal surgery. This stability advantage
not only increases the success rate of surgeries but also
minimizes the risk of damage to surrounding healthy tissues.

Significant progress has been made in the development of
ophthalmic surgical robots. Various studies have proposed
vision- and force-based compliant control methods for oph-
thalmic surgical robots to achieve precise movement control
of surgical instruments during contact with ocular tissues [1],
[2]. However, despite the advancements in surgical robotics,
the preoperative navigation in ophthalmic surgery largely
remains dependent on manual operation. This reliance not
only limits the consistency and repeatability of surgeries but
also increases the uncertainty during the surgical process.

In the field of ophthalmic surgery, preoperative and intra-
operative navigation serve distinct roles. Particularly before
surgical operations commence, the lack of physical contact
between the instruments and ocular tissues prevents surgical
robots from utilizing force feedback mechanisms for accurate
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position determination [3]. Consequently, preoperative nav-
igation primarily relies on eye-gaze estimation techniques
guided by visual cues to achieve precise positioning of the
robotic arm. Currently, eye-gaze estimation techniques are
categorized into two main types: traditional edge detection-
based algorithms [4] and the more recent deep learning-based
approaches [5], [6].

Eyeball

Fig. 1: A mock ophthalmic surgical environment with a
robotic arm.

There are several key challenges in recognizing eye gaze
direction in surgical environments (see Fig. 1). Firstly, the
primary perception equipment used in the surgery is a vari-
able focal length endoscope. [7] and [8] utilized Kinect depth
sensors for real-time eye tracking. Although the methods
are simple and low-cost [9], they requires the introduction
of depth-sensing devices, thereby increasing the uncertainty
in the surgical setting. Secondly, some methods choose to
identify the eyes using fixed-point light reflections [10], [11].
Unfortunately, maintaining stable light reflection positions
in the operating room is challenging, as they are often
obstructed during surgery. Lastly, the patient’s face are
typically covered by a surgical pad sheet during the surgery,
making the face not visible. Some learning-based methods
[12], [13] are less sensitive to environmental interference.
For instance, the authors in [14] employed an unsupervised
approach to improve algorithm performance across different
domains, while [15] used a weakly supervised method for un-
constrained gaze estimation. These methods generally require
initial face detection before identifying the eye’s position and
orientation, lacking stability during the tracking process.

To address the aforementioned challenges, this study pro-
poses an eye localization and tracking method that inte-
grates machine learning techniques with traditional algo-
rithms. Firstly, a fine-tuned YOLO [16] model is employed
to accurately identify the sclera and iris regions, effectively
overcoming the limitations associated with face detection.
Then, the RANSAC method is used to stably determine
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the eye position within the identified region, enhancing the
robustness of the tracking process. Finally, the positional
relationship between the eye and pupil is used to resolve
ambiguities in gaze estimation. Our approach provides a
stable solution for eye localization and tracking suitable
for use with robotic arms. Extensive real-world experiments
demonstrate that the proposed method achieves an average
orientation estimation error of 0.58◦, an average robotic arm
control error of 2.08◦, and a relative distance error of 6.4mm
between the eye and camera.

II. RELATED WORKS

In research on eye gaze tracking, accurate eye localization
is a fundamental and critical step, involving the recognition
of the iris or sclera. In [17], researchers estimate the center
position of the eye by calculating the intersections of multiple
lines passing through the edges of the iris. However, this
method does not address the problem of precise localization
of the iris center in the visual frame. Another study [18]
proposed an approach based on facial feature point detection,
where key facial landmarks are firstly identified. The eye-
related features are further recognized. While this method
can assist in eye localization to some extent, it remains
limitations by the recognizability of facial features.

In estimating eye gaze direction, the method proposed in
[19] requires obtaining facial orientation information before
accurately estimating the eye’s gaze, which is challenging
in cases of facial occlusion or unclear vision. Similarly, the
approaches in [20] and [21] rely on accurate recognition of
facial features for eye gaze estimation, leading to the reduced
accuracy or failure to estimate when facial features are indis-
tinct or obscured. Additionally, the method in [22] requires
facial features such as eyelids to estimate eye gaze direction,
thus also being limited by the detectability of the features.
Although the study in [17] provides gaze information under
certain conditions, its effectiveness depends on the relative
stability of the camera and eye positions, which is difficult to
maintain in a dynamically changing surgical environment. In
[23], the authors achieve surgical robot navigation by identi-
fying trocars, providing an innovative solution for eye gaze
estimation. However, this method requires pre-placement of
trocars on the sclera.

III. METHOD

The proposed method in this study consists of several
steps: (1) accurately and stably identifying the position of the
iris in the camera frame under varying lighting conditions;
(2) calculating the eye gaze direction using the camera’s
intrinsic parameters and the position of the iris; (3) resolving
the ambiguity in gaze estimation by analyzing the relative
positions of the iris and sclera centers.

A. Iris Position Acquisition

To determine the position of the iris in an image, a fine-
tuned YOLO model is first employed to identify the region
containing the iris, avoiding the target loss issues caused by
interference from other similar objects in the camera’s field

of view, which can occur when directly using the pupiltrack
method mentioned in [24]. The YOLO model is trained on
a dataset of approximately one hundred annotated images of
eyes. The fine-tuned model demonstrates robustness against
interference and can accurately detect the general region of
the iris, although its determination of the precise iris position
remains somewhat unstable.

To achieve stable localization of the iris in the image, the
region identified is firstly subjected to a binarization process
to distinguish the darker and the lighter area of the sclera.

To enhance the stability of detection and ensure consistent
differentiation of the iris’s dark region under varying shadow
or lighting conditions, an adaptive thresholding method for
binarization is employed.

thd = avg∗ k. (1)

Here, thd represents the threshold, avg is the mean color
value within the region, k is a scaling factor. When the overall
brightness within the region decreases, the threshold will also
decrease accordingly to ensure that the iris region can still
be distinguished after binarization (see Fig. 2b and Fig. 2c).
Additionally, performing the assessment within the defined
region helps to avoid interference from variations in ambient
lighting and shadows.

(a) Original. (b) Fixed. (c) Adaptive.

Fig. 2: Binarization results with fixed and adaptive threshold
under shadow conditions.

Within the defined region, edge detection is firstly per-
formed to extract points located at the boundaries (Fig. 3a). It
can be observed that some reflective spots on the iris are also
identified as edge points, which introduces a certain degree
of interference in the recognition process. Subsequently, a
convex hull is constructed based on the detected edge points
(Fig. 3b). This step helps to filter out the interfering points
located at the edges. However, some noise points within the
iris region are also detected as a separate convex hull. To
accurately identify the true convex hull corresponding to the
iris, we utilize the region defined by YOLO and select the
largest convex hull by area, which represents the iris, to
effectively filter out smaller convex hulls formed by noise
points. The vertices of this convex hull are then extracted
(Fig. 3c). Finally, an ellipse is fitted to the selected vertices,
providing the precise position of the iris (Fig. 3d).

B. Calculating Eye Position and Gaze Direction

The ellipse fitted in the previous section represents the
projection of the iris in 3D space onto the camera frame
(see Fig. 4), The iris in 3D space can be considered as a
circle with a radius of IrR, measured in millimeters.

Let the major and minor axes of the ellipse defined as
axma j and axmin (in pixel units), respectively. The center of



(a) Edge detection. (b) Convex hull.

(c) RANSAC iteration. (d) Fit ellipse.

Fig. 3: Binarization results with different thresholds under
shadow conditions.

the ellipse in the image is located at px and py, with the
ellipse’s rotation angle relative to the image’s x-axis being ψ .
fx and fy represent the x-axis and y-axis pixel focal lengths of
the camera, while prx and pry denote the pixel coordinates of
the screen’s center. To compute the coordinates of the eyeball
in three-dimensional space, let fz = ( fx+ fy)/2. Based on the
similar triangles, the relative coordinates [Irx, Iry, Irz] of the
iris to the camera frame center are given by:

Irz = fz ∗ IrR/axma j

Irx =−Irz ∗ (px − prx)/ fx

Iry = Irz ∗ (py − pry)/ fy.

(2)
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Fig. 4: The projection of the iris from 3D space onto the 2D
camera frame.

The rotation angle θ of the eye relative to the camera
plane is defined as the follows:

θ = arccos(axmin/axma j). (3)

Thus, the normal vector n⃗ of the eye gaze direction is
defined as follows:

n⃗ = [−sin(θ)∗ cos(ψ),−sin(θ)∗ sin(ψ),cos(θ)]⊤. (4)

When the eye is not centered in the camera’s field of view,
the obtained eye gaze direction needs to be adjusted. Firstly,

the distance d between the center of the ellipse and the center
of the field of view is calculated by:

d = (Ir2
x + Ir2

y)
1/2. (5)

The angle of rotation γ required is given by,

γ = arctan(d/Irz). (6)

The rotation axis l⃗ is given by,

l⃗ = [Iry/d, Irx/d,0]⊤. (7)

The normal vector n⃗ of the eye gaze direction is corrected
using Rodrigues’ rotation formula, resulting in the corrected
normal vector n⃗′,

n⃗′ = n⃗ · cos(γ)+ (⃗l × n⃗) · sin(γ)+ l⃗(⃗l · n⃗)(1− cos(γ)). (8)

C. Ambiguities in Eye Gaze Direction
In the process of recovering the 3D eye orientation from

2D images, ambiguity arises because a single projection
may correspond to two different eye orientations. Therefore,
resolving this ambiguity is essential to accurately determine
the eye’s orientation.

Iris in 3D

Camera 

frame

Iris Projection

Normal vector

Fig. 5: For an elliptical projection, two possible circular
orientations can be reconstructed.

As shown in Fig. 5, when the 2D projection in the camera
is reconstructed into the 3D space of the iris, two distinct
solutions can arise, corresponding to the two different normal
vectors. To resolve this, a method similar to that described in
Section 3.A is used to obtain the sclera’s pixel coordinates,
which are then compared with the iris’s pixel coordinates to
determine the true orientation of the iris (see Fig. 6).

Fig. 6: The true orientation of the eye is determined by
comparing the relative positions of the iris and sclera centers.

IV. EXPERIMENTS

To validate the stability and accuracy of the proposed
method, three sets of experiments are designed. The first



experiment compares the iris recognition performance. The
second experiment evaluates the accuracy of eye-gaze di-
rection estimation and the ability to resolve ambiguities.
Finally, in the third experiment, a camera is mounted on
a robotic arm. The proposed method is used to compute the
eye’s position and orientation, enabling the end-effector of
the robotic arm to follow the eye’s movements in real-time.
The proposed approach runs on a computer equipped with
an Intel i5-10400 processor and an NVIDIA Titan V GPU
for YOLO inference.

A. 2D Iris Recognition

In this experiment, the camera remains stationary while
the eye model rotates around a fixed axis. The goal of
the experiment is to compare the different methods for iris
recognition and tracking in the camera’s field of view. Five
different methods are evaluated: our proposed method, the
RANSAC-based Pupiltrack [24], the learning-based GazeML
method [25], the CNN-based Pupil-Locator [26](Abbreviated
as Locator), and the 3D Eye Tracker [27].

The experiments are conducted under two different res-
olution settings. The first setting uses a resolution of 1920
× 1080 at 30Hz, with the camera positioned approximately
100mm from the eye. However, under these conditions, 3D
Eye Tracker failed to detect the iris. To address this, the
camera is adjusted to a position approximately 50mm from
the eye, with the resolution set to 640 × 360 at 30Hz.
At this closer distance, Locator struggled to detect the iris.
Additionally, GazeML required landmarks to identify the iris,
YOLO is employed to predefine the region containing the eye
for more effective detection.

We set the eyeball rotation duration to 10 seconds, rotating
around an axis parallel to the y-axis of the camera frame,
from −30◦ to +30◦, resulting in a total of 300 frames
for analysis. A tracking failure is defined as a deviation
exceeding 30 pixels. Tab. I presents the number of frames
in which each recognition method lost tracking out of the
300 frames. Cases where recognition was not possible are
denoted by a ”-” symbol. The frame loss statistics for each
method are displayed in Tab. I.

TABLE I: The number of lost frames in iris detection tasks
in 300-frame videos at two different resolutions.

Resolution 1920×1080 Resolution 640×360

Ours 0 0
GazeML[25] 3 16
Pupiltrack[24] 5 10
Locator[26] - 0
3D Eye Tracker[27] 7 -

As shown in Tab. I, all methods except ours experienced
varying degrees of tracking loss. By using YOLO to define
the region of the eye and employing an adaptive thresholding
approach, our method is able to consistently detect the iris’s
position in the image under various lighting conditions.

Fig. 7 illustrates the tracking failures of other methods un-
der conditions with lighting variations and shadows. The Lo-

cator (Fig. 7c) performs well when the camera is positioned
at a greater distance from the eye (Resolution 1920×1080),
but exhibits significant tracking loss at closer distances
(Resolution 640×360). Both Pupiltrack (Fig. 7b) and 3D
Eye Tracker(Fig. 7d) are highly susceptible to interference
from shadows. The GazeML (Fig. 7a) tends to deviate in
recognition process, leading to unstable positioning.

(a) GazeML. (b) Pupiltrack.

(c) Locator. (d) 3D Eye Tracker.

Fig. 7: The instances of frame loss for each method.

Fig. 8 depicts the positional shifts of various recognition
techniques within the camera’s coordinate system throughout
the eye movement. The horizontal and vertical axes represent
pixel measurements. For clarity, only the coordinates of
points where the tracking remains uninterrupted are shown. It
should be noted that Pupiltrack is omitted from the figure due
to its coordinates closely aligning with those of our proposed
method when tracking is uninterrupted.

As shown in Fig. 8, our method closely matches the
Ground Truth during the tracking process. In contrast, the
two learning-based methods (GazeML and Locator) demon-
strate less stability. The detailed tracking results are pre-
sented in Tab. II.

Tab. II presents the mean and standard deviation of pixel
deviation from the ground truth for different methods at
two resolutions. The mean metric represents the accuracy of
each tracking method, while the standard deviation metric
indicates the stability of the tracking. Since points with
significant deviation (considered as tracking loss) are ex-
cluded from the statistics, our method and the Pupiltrack
method show similar performance. The GazeML method
exhibits a higher level of jitter, while the Locator and 3D
Eye Tracker methods are relatively more stable but exhibit
lower adaptability.

B. 3D Eyeball Orientation Estimation

In this experiment, we firstly set the eyeball to rotate 30
degrees around an axis parallel to the x-axis of the camera
frame. Then, we control the eyeball to rotate from −30◦ to
+30◦ around an axis parallel to the y-axis of the camera
frame while calculating the normal vector of the eyeball
relative to the camera.

In this experiment, we do not include a comparison with
Locator, as it cannot provide a 3D eyeball orientation.
Additionally, the 3D Eye Tracker requires a pre-established
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(a) Iris center at resolution 1920×1080.
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(b) Iris center at resolution 640×360.

Fig. 8: The instances of frame loss for each recognition method.

TABLE II: The mean and standard deviation of the error
from the ground truth during tracking, measured in pixels.

Resolution 1920×1080 Resolution 640×360
Mean Standard Mean Standard

Ours 0.119 0.103 0.749 0.278

GazeML 8.631 6.591 17.019 10.439

Pupiltrack 0.095 0.087 0.814 0.258

Locator 3.423 2.421 - -

3d Eye Tracker - - 11.704 3.835

model to compute the orientation, which is not suitable for
our current experimental setup.

The purple arrows in Fig. 9 represent the eye orientations
estimated by different algorithms. The GazeML method
suffers from instability when detecting the iris position,
which adversely affects the accuracy of its eye orientation
estimation (see Fig. 9a). As a result, the estimated normal
vector significantly deviates when the eye deflection angle is
large. On the other hand, Pupiltrack lacks a mechanism to
resolve ambiguity, leading to instances where the direction
is incorrectly identified as the opposite (see Fig. 9b).

(a) GazeML. (b) Pupiltrack.

Fig. 9: Errors in eye orientation estimation.

Profit from stable tracking, our method also demonstrates
consistent performance in estimating eye orientation. Fur-
thermore, by resolving the ambiguity issue, our approach
avoids misjudgment of the eye’s direction. Even when the
significant changes occur in the projection’s rotation angle

(πs), the method accurately identifies the eye’s orientation
throughout the rotation process. The experimental results are
illustrated in Fig. 10.

(a) Orientation in 2D. (b) Orientation in 3D.

Fig. 10: Eyeball position and orientation in 2D image and
3D coordinate system.

Fig. 10 illustrates the estimated eye orientation and posi-
tion using our proposed method. The purple arrows indicate
the estimated eye orientation. Fig. 10a shows the estimated
orientation and position of the eye plotted in the camera
frame while Fig. 10b displays the estimated eye position and
orientation in a 3D coordinate system. From the results, it
can be concluded that our method exhibits both stability and
accuracy in estimating the eye’s position and orientation.

In Tab. III, we present the estimated normal vectors and
their corresponding ground truth values at 5-degree intervals.
Angle metric denotes the rotation angle of the eye, Estima-
tion metric represents the estimated normal vector. Ground
Truth metric indicates the actual normal vector of the eye.
Error metric shows the angular deviation.

As shown in Tab. III, our method not only resolves the
ambiguity issue but also achieves a small deviation between
the estimated and true angles, with an average error of
0.584◦. Generally, larger errors occur when the deflection
angle approaches to ±30◦. This can be attributed to the
fact that, as the deflection angle increases, the ratio between
the major and minor axes changes more drastically, thereby
amplifying the error.



TABLE III: Comparison of estimated normal vectors and
ground truth normal vectors at various eye rotation angles,
along with the corresponding angular errors.

Angle Estimation(x,y,z) Ground truth(x,y,z) Error

−30◦ 0.428 0.514 -0.742 0.433 0.5 -0.750 0.968◦
−25◦ 0.364 0.507 -0.780 0.365 0.5 -0.784 0.514◦
−20◦ 0.299 0.501 -0.811 0.296 0.5 -0.813 0.303◦
−15◦ 0.227 0.494 -0.838 0.224 0.5 -0.836 0.418◦
−10◦ 0.150 0.491 -0.857 0.150 0.5 -0.852 0.572◦
−5◦ 0.073 0.490 -0.868 0.075 0.5 -0.862 0.659◦
0◦ 0.006 0.494 -0.869 0.0 0.5 -0.866 0.517◦
5◦ -0.076 0.493 -0.866 -0.075 0.5 -0.862 0.406◦

10◦ -0.150 0.493 -0.856 -0.150 0.5 -0.852 0.451◦
15◦ -0.224 0.497 -0.838 -0.224 0.5 -0.836 0.188◦
20◦ -0.292 0.505 -0.811 -0.296 0.5 -0.813 0.351◦
25◦ -0.365 0.515 -0.775 -0.365 0.5 -0.784 1.010◦
30◦ -0.429 0.518 -0.739 -0.433 0.5 -0.750 1.241◦

C. Eye Tracking with a Surgical Robotic Arm

In this experiment, we mounted a camera on a 7-degrees
robotic arm and rotate the eye model to allow the robotic
arm to track the eye’s movement. This setup is designed to
test the stability and accuracy of our proposed method for
eye tracking.

The experimental setup is shown in Fig. 1, where a
RealSense camera is mounted at the end of a robotic arm
with an eye model rotated by a motor. In the world coordinate
system, the eye rotates around the x-axis from -30 degrees
to +30 degrees. In this experiment, the end-effector of the
robotic arm is controlled to perform rotational or transla-
tional movements, ensuring that the camera remains oriented
directly towards the iris while maintaining a fixed distance
from it. We record the position and orientation of the robotic
arm’s end effector at 10-degree intervals, compared them
with the computed position and orientation of the eye, and
plotted the results in Fig. 11, coordinates are in millimeters.

500

600

100

0

100

0

100

200

Fig. 11: The position and orientation of the eye model and
the camera.

In Fig. 11, the coordinate system is based on the world
coordinate frame, with units in millimeters. The purple
arrows indicate the orientation of the eyeball and the position
of the iris center, which are computed based on the motor

rotation values along with the dimensions of the eyeball and
iris. The green arrows represent the position and orientation
of the camera controlled by the robotic arm. As the eyeball
rotates, the end effector of the robotic arm, guided by our
method, also rotates around the eyeball. Throughout the
entire process, the camera maintains a consistent orientation
facing the eyeball and keeps a relatively fixed distance from
it. The specific data is presented in Tab. IV.

TABLE IV: Comparison of estimated normal vectors and
ground truth normal vectors at various eye rotation angles,
along with the corresponding angular errors.

Eyeball angles Distance(mm) Error angles

−30◦ 212.189 3.750◦
−20◦ 206.088 2.918◦
−10◦ 208.020 1.792◦

0◦ 208.424 1.187◦
10◦ 207.224 0.681◦
20◦ 211.029 3.255◦
30◦ 212.557 0.967◦

Tab. IV presents the distance and orientation angle errors
between the camera and the eye when the eye is rotated
to seven different angles. In the table, ”eyeball angles”
represents the angles of rotation of the eye around the x-
axis in the world coordinate system, ”distance” indicates
the distance between the camera and the eye, and ”error
angles” refer to the angle between the eye’s orientation and
the camera’s orientation (with the camera orientation inverted
to calculate the angle). Throughout the entire process, the av-
erage distance between the camera and the eye was 209.362
mm, and the average error angle was 2.078◦. According to
Tab. III, approximately 1.494◦ of error can be attributed to
the position and orientation control of the robotic arm’s end-
effector. The table shows that under our method’s control,
the surgical robotic arm can maintain a consistent distance
from the eye and continuously keep the camera aligned with
the eye.

V. CONCLUSION

In this study, we propose a robust method for estimating
the 3D orientation of the eyeball from 2D images. Our ap-
proach effectively addresses the ambiguity in determining the
eyeball’s orientation by leveraging adaptive thresholding and
the accurately detect the iris region under varying lighting
conditions. Through extensive experiments, we demonstrate
that our method outperforms other existing approaches in
both stability and accuracy. Our method shows consistent
performance across different resolutions and lighting con-
ditions. Additionally, our approach accurately estimates the
eyeball’s orientation with minimal errors, particularly when
the rotation angles are small, and resolves ambiguity by
comparing the relative positions of the iris and sclera centers.
Overall, our method offers a significant improvement in
tracking and orientation estimation of the eyeball, which
could be beneficial for various applications in computer
vision and human-computer interaction.
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