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Edge Computing and its Application in Robotics: A Survey

Nazish Tahir Ramviyas Parasuraman

Abstract— The Edge computing paradigm has gained promi-
nence in both academic and industry circles in recent years.
By implementing edge computing facilities and services in
robotics, it becomes a key enabler in the deployment of artifi-
cial intelligence applications to robots. Time-sensitive robotics
applications benefit from the reduced latency, mobility, and
location awareness provided by the edge computing paradigm,
which enables real-time data processing and intelligence at
the network’s edge. While the advantages of integrating edge
computing into robotics are numerous, there has been no
recent survey that comprehensively examines these benefits.
This paper aims to bridge that gap by highlighting impor-
tant work in the domain of edge robotics, examining recent
advancements, and offering deeper insight into the challenges
and motivations behind both current and emerging solutions.
In particular, this article provides a comprehensive evaluation
of recent developments in edge robotics, with an emphasis
on fundamental applications, providing in-depth analysis of
the key motivations, challenges, and future directions in this
rapidly evolving domain. It also explores the importance of
edge computing in real-world robotics scenarios where rapid
response times are critical. Finally, the paper outlines various
open research challenges in the field of edge robotics.

I. INTRODUCTION

Edge computing is emerging as a new research hotspot in
the computing landscape [1], [2], [3]. It is a novel computing
paradigm that performs computation at the network’s edge.
Edge computing differs from traditional cloud computing
concepts in that it allows computation to take place closer to
the source of data. It provides the same services as cloud
servers, but in close proximity, which facilitates quicker
processing and hence faster execution time [4]. Zha et al. [5]
defined the concept of edge computing. “Edge computing is
a computing model that unifies resources that are close to the
user in geographical distance or network distance to provide
computing, storage, and network services for applications.”

Edge computing, in essence, enables the migration of the
cloud’s network, computing, and storage capabilities to the
network’s edge and the provision of intelligent services at
the edge to meet the high computational demands of the
data optimization and application intelligence of the fast-
paced Information Technology (IT) industry. It facilitates the
execution of application intelligence on the network with low
latency and high bandwidth. It expands the cloud network by
enhancing computation, storage, and resource capabilities at
the network’s edge, close to the source of data, with the
goal of meeting critical needs such as real-time servicing,
application intelligence, security, and privacy, as well as the
network’s criteria for low latency and high bandwidth [6].
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Fig. 1: Taxonomy of existing computational domains.
Note: Fog computing is often used interchangeably with Edge
computing in literature and is classified accordingly here.

A brief taxonomy of existing computational domains re-
lated to cloud computing concepts is presented in Fig. 1.

The promising features of edge computing are fast data
processing and analysis, leading to quicker response time
and speed. Since edge devices are closer to the data source,
they eliminate the need for intermediate data pre-processing
and enable a faster transmission process. One of the most
crucial aspects of edge computing is its proximity to users,
which allows for the provision of better data-intelligent
services due to increased digital data transfer over networks
across shorter distances, minimizing latency. Furthermore,
unlike cloud computation, which entails total offloading of
data for processing and a centralized processing approach,
it allows for distributed and parallel processing, saving
time and ensuring data security [7]. It offers low-cost, low
bandwidth cost, and energy consumption [8] which makes it
an ideal alternative to cloud computing.

Outsourcing all the required tasks to the cloud data center
might place a significant strain on the network and trigger
network congestion and network delays, particularly for large
data volume exchange. Because of such network delays, the
cloud is inadequate for addressing real-time, low-latency, and
high-quality-of-service applications. The use of edge reduces
not only the stress on network bandwidth but also the entire
energy consumption of local devices associated with data
transmission and processing, thereby increasing computing
efficiency significantly.

A. Applications of Edge Computing in Robotics

In recent years, there has been a significant emphasis in
the industry on developing smart Cyber-Physical Systems
(CPSs) that are deployed in healthcare, transportation, and
agriculture sectors to conduct complex engineering processes
with less direct human intervention and improved cost and
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TABLE I: List of acronyms and their description

Acronym Description

ETSI European Telecommunications Standards Institute
MEC Mobile Edge Computing
CPS Cyber Physical Systems
SLAM Simultaneous Localization & Mapping
AWS Amazon Web Services
ROS Robot Operating System
MRS Multi Robot Systems
RAN Radio Access Network
FCN Fog Computing Nodes
OS Operating System
VM Virtual Machines
GPU Graphics Processing Unit
NPU Neural Network Processor Unit
FPGA Field Programmable Gate Array
TPU Tensor Processing Unit
APU Accelerated Processing Unit
UAV Unmanned Aerial Vehicle
LSTM Long Short-Term Memory
MRS Multi-Robot System

performance. Robots are a crucial component of this CPSs
system, which rely on automated tasks in the sense-compute-
act cycle [9].

Although a robot is equipped with sufficient computing
resources to perform small-scale operations, it is heavily
reliant on remote resources to perform large-scale compu-
tations, as the robot’s onboard computational capacity may
be insufficient to perform real-time data processing on large
chunks of data [10]. Offloading enables robot operators to
access data from anywhere at any time by providing global
storage and processing capabilities. Since the concept of CPS
is heavily reliant on the timely delivery of suitable data
with the node placement to the relevant computing entities,
robots that move resource-intensive tasks to remote resources
require efficient solutions with minimal latency.

To accomplish this objective, the concept of cloud comput-
ing has been applied to multirobot systems, known as cloud
robotics [11], [12]. In this paradigm, the cloud provides com-
putational resources such as virtual machines or containers,
as well as resources from both local and remote data centers,
allowing scalable and vast data processing [13]. However,
because Cloud servers are located in remote places, most
of which are multi-hop distance away, connection time and
data transfer latency might be categorized as a key drawback
of Cloud robotics, particularly for time-sensitive applications
[14].

Edge computing offers a promising solution to this limi-
tation by providing cloud-like infrastructure at the network’s
edge, allowing mobile robots to access computational and
storage resources. Edge computing capitalizes on the ne-
cessity for real-time task execution in close proximity to
these smart systems, such as image processing and path
planning (Fig. 2). In the context of CPS, edge computing
enables robots to conduct a variety of robotic applications
with remote support. It provides abstraction to classifying
robotic activities based on computing needs, and offers
distributed resources to analyze large amounts of data with

Fig. 2: Overview of robot applications supported by edge,
cloud, and fog (multi-robot collaboration) infrastructures.

minimal communication latency [15]. It also boasts the
robots’ competency in knowledge exchange by leveraging
local edge devices rather than distant cloud servers. More-
over, it contributes to lowering the bandwidth required for
data transfer to the cloud.

B. Survey Scope

Several studies published in reputable journals have sur-
veyed the use of edge computing in robotics, with a pri-
mary focus on specific experimental prototypes and system
architectures. These works have been instrumental in high-
lighting the limitations of cloud computing in addressing
the operational challenges of robotic systems. For example,
M. Groshev et al. [16] provide a valuable contribution
by analyzing the current landscape of edge computing in
robotics and experimentally evaluating an end-to-end robotic
system based on existing solutions. Their study identifies
key challenges related to system operation and network
limitations, as well as the need for improved orchestration
mechanisms. However, while their work offers important
insights into specific applications and experimental results,
it lacks a comprehensive review of the broader literature and
does not provide a detailed classification of existing solutions
in edge robotics.

Other works, such as [17], take a broader societal and
cross-domain perspective, focusing on taxonomy, standard-
ization, and human-machine interaction, rather than specifi-
cally addressing edge computing or architectural evaluations
in multi-robot systems. While they touch on certain aspects
relevant to Edge Robotics, they do not provide a comprehen-
sive or focused study of the field.

There has been other efforts in comprehensively designing
a survey study of edge computing in robotics in specific fields
like agriculture [18], industry 5.0 with one section focusing
on industrial robots [19] and healthcare service robotics [20].

Our work distinguishes itself by presenting a comprehen-



Fig. 3: Table of content and survey organization

sive survey of Edge Robotics, encompassing a structured
classification based on application domains, comparative
analysis, and an in-depth discussion of open research chal-
lenges. We begin by establishing the necessary background to
distinguish among various distributed computing paradigms,
positioning Edge Robotics within this broader context. The
survey then investigates the core characteristics of Edge
Robotics, reviews state-of-the-art applications across a range
of robotic tasks, and concludes with a discussion of key
challenges and potential future directions. Thus, the main
contributions of this paper are summarized as follows:

• A classification of the diverse computing paradigms
relevant to Edge Robotics

• A survey of the current landscape and core aspects of
Edge Robotics

• An identification and discussion of key research chal-
lenges and future directions

We conducted an in-depth literature review using three major
academic databases—IEEE Xplore, ScienceDirect, and the
ACM Digital Library—to investigate current and emerging
research on edge robotics. By employing search terms such
as edge computing in robotics, multi-robot edge systems,
multi-edge servers in mutirobot systems, and edge robotics,
we identified a substantial body of relevant publications
spanning from 2015 to 2025. This review provided valuable
insights into the evolution of edge robotics, highlighting
both historical developments and the current state of the
technology.

C. Article Organization

The remainder of the article is organized as follows:
Section II introduces the fundamental principles of cloud
robotics, edge robotics, fog robotics, MEC, and other sim-
ilar topics. Section III delves into the properties of Edge
Robotics as well as the reason for its adoption. Section IV

investigates the state-of-the-art in Edge robotics and presents
a comparative evaluation of research work that shows the
benefits and drawbacks of existing frameworks. Section VI
delves into the open research challenges of Edge Robotics
implementation. Section VII brings the paper to a close. For
a better understanding, the organization of this article is also
depicted in Fig 3.

II. BACKGROUND

A. Cloud Robotics

The term “cloud robotics” was first coined by Kuffner in
2010 [21]. It represents any robot or automation system that
utilizes cloud infrastructure for data or code execution - that
is, a system in which all sensing, computing, and memory
are not confined into a single independent unit. Cloud-
enabled robots can perform complex tasks considerably more
efficiently by leveraging massively parallel computation, grid
computing capabilities, and enhanced storage capacity [12].

Cloud computing offers dynamic and on-demand comput-
ing resources with centralized storage that can be accessed
from anywhere at any time enabling remote robot control
and monitoring [11]. Cloud robotics fosters collaboration
among geographically dispersed robots by providing access
to extensive datasets, including global maps for localization,
object models for manipulation, high computational machine
learning techniques, and shared code repositories. [22]. There
are several cloud robotics system architectures available, like
DAvinCi [23], which is a software framework based on a
Hadoop cluster with Robot Operating System (ROS) as a
messaging framework, which can be efficiently utilized in
applications like FastSLAM [24].

Another popular open-source cloud robotics platform
called Rapyuta [25], driven by cloud robotics, enables the
robots to offload computational tasks while offering them
access to the RoboEarth knowledge database. Similarly,
C2̂TAM [26] is a cloud robotics framework especially de-
signed for cooperative tracking and mapping to solve SLAM
problems. Amazon’s AWS RobotMaker [27] has recently
emerged as a cloud-based simulation tool that allows de-
velopers to perform simulations without the need to manage
underlying infrastructure.

Cloud robotics applications span a wide range of domains
including localization, navigation, grasping and manipula-
tion, perception and computer vision, service robots, social
and medical robots, manufacturing, and human-robot interac-
tion. The current research problems in cloud robotics include
establishing effective resource and task allocation schemes
via the Cloud, minimizing communication delays associated
with network and data processing, and enhancing privacy and
security for cloud-based robotic applications [28].

B. Fog Robotics

In order to overcome the challenges associated with cloud
robotics, Cisco introduced the concept of fog computing
[29]. Based on the same concept as edge robotics, fog
robotics (FR) can be defined as an architecture that deploys
small platforms placed at the network edge to offer storage,



network functions, and control with decentralized computing
closer to robots. The fog robotics architecture also involves
a cloud system in addition to a Fog Robot Server (FRS)
[30]. Any multi-robot system (MRS) requests the fog layer
for data access and, upon availability, can efficiently utilize
the resources available at the fog without querying the cloud
[31].

The benefits of using fog robotics for robotic applications
are closely similar to the ones offered by edge robotics i.e.,
offering remote computational offloading, remote monitoring
and control of the robots, security services, communica-
tion services, storage and caching services, offering global
synchronization and collaboration within MRSs, mobility
support, navigation and scalability. Fog Robotics helps assist
household robotics by allowing models trained on the cloud
to be regularly pushed to a smart home gateway rather than
directly downloaded to individual robots. In other words, it
offers a local model repository cache to robots so that they
may adapt models or run a shared inference service for local
robots to support those with restricted onboard resources.

Different architectures are supported by the fog-based
MRS system [32]. They have been classified as Nanoscale
MRS designed to efficiently service nanoscale robots, Body
Area MRS which comprises of an MRS system deployed on
a single mobile body like a human or a mobile structure
like wearable robots, that require wireless connectivity with
a single fog node, Local Area MRS that is deployed in
a limited geographic area, allowing robots to connect to
each other through a wireless connected fog layer for better
performance, reliability and scalability.

There are various issues associated with fog robotics that
may be investigated in the literature. The data stored at the
fog layer should be maintained depending on the local move-
ment of the robots; therefore, effective data maintenance
and storage are required. There is a handover delay during
data transfer between robots and fog servers that should be
examined and regulated. Robust security protocols must be
in place to prevent malicious robot users from accessing fog-
based systems. Additionally, the status of a robot’s battery
must be taken into account when processing tasks at the
fog so that the robot can complete the entire task execution,
including data transfer from the fog layer.

C. Edge Robotics

Edge robotics aims to address the issues associated with
cloud and fog robotics by extending the storage and pro-
cessing capacity of a large number of robots linked to a
network, offering an intermediary layer between the robots
and the cloud. Unlike fog robotics, edge robotics can handle
computational data distributively at the edge devices without
the need to offload it to the cloud. Fog computing nodes
(FCNs) handle the task by computing and storing the data
from mobile robots locally before handover to the Cloud,
while edge nodes may solve the data query solely on the
edge layer. The existence of network edges reduces the
computational load of mobile robots by allowing them to
handle some of the requests addressed to the cloud locally -

those that do not require cloud intervention. This minimizes
delay in resolving queries and enables real-time handling of
either a subset of requests or the entire dataset in parallel.

D. MEC and similar concepts

Mist Computing is another term that originates from the
traditional edge computing domain. Mist computing involves
the use of complementary embedded peripheral devices to
preprocess or filter sensory input before sending it to the
fog or cloud level. Complex sensors and actuators, such as
cameras, 3D scanners, and laser range finders, are equipped
with a microcontroller unit or field-programmable gate ar-
ray that may execute certain functions; nevertheless, their
processing capabilities are restricted. Mist computing is the
initial computing point in the robot-fog-cloud continuum,
allowing compute, storage, and networking capabilities from
the fog to the objects [33].

Another computing paradigm to emerge from edge com-
puting is Mobile Edge Computing (MEC) standardized by
European Telecommunications Standards Institute (ETSI)
[34]. As of 2017, the ETSI renamed MEC to ”Multi-Access
Edge Computing” to reflect growing interest by non-cellular
operators [35]. MEC is an edge computing technology that
brings processing and storage capability to the network’s
edge within the Radio Access Network (RAN) to minimize
latency and increase context awareness. MEC servers func-
tion in tandem with radio network controllers or macro base
stations. The servers execute many instances of the MEC
host, which may compute and store data across a virtual-
ized interface. MEC reduces the computational and energy
consumption of mobile devices by bringing the resources
closer to the base stations, thus enabling one-hop services,
minimizing the latency associated with data transmission.

Although originally developed to cater to the computa-
tional incapacity of cellular mobile devices like smartphones,
MEC has been extended to the CPS systems. Since MEC
falls under the broader umbrella of edge computing, we
consider robotic applications using MEC to be part of the
Edge Robotics paradigm in our survey of state-of-the-art
approaches. MEC provides a logical solution to enhance
robot collaboration because it can not only offer efficient
communication among robots but also efficiently distribute
tasks. The authors in [8] proposed a computational resource
allocation strategy between mobile users and MEC servers to
reduce task implementation delay and energy usage. Many
such works utilizing MEC are discussed in Section IV.

Further extending the particularities of MEC, Cloudlets
as envisioned by the researchers [36], are small clusters
or data centers capable of processing and storage that are
located closer to mobile devices.Often referred to as mini-
clouds, cloudlets address the drawbacks associated with
traditional cloud computing platforms. The primary purpose
of a cloudlet is to improve the interactive performance of
mobile apps, particularly those with high end-to-end latency
and jitter requirements. To meet the need for minimal delay,
the proximity of cloudlets allows servers to deliver highly
responsive cloud services to mobile nodes. The authors



of [37] target the energy consumption and service delay
reduction of multirobot systems by distributing resources
in a cloudlet-based emergency management service within
a smart factory.

Another concept to emerge from the umbrella of remote
computational platforms is Dew computing, which is beyond
the scope of our survey.

E. Difference between Cloud, Edge, Fog, MEC, Cloudlets

The primary distinction between the aforementioned com-
puting paradigms is that although Cloud Computing provides
centralized processing, other computing paradigms, such as
Edge, Fog, Mist, and Cloudlets, are built for distributed
processing. Cloud computing allows for high scalability
and cost-effective storage, but edge and other computing
architectures may necessitate smaller, specialized processing
equipment. Edge computing provides lower latency and
response times, reduced power consumption and bandwidth
costs, and enhanced security compared to the cloud.

The terms “Edge” and “Fog” are sometimes used inter-
changeably due to conceptual similarities; however, there are
important distinctions. Both permit data transmission from
robots to the cloud, but edge computing allows complete,
localized data processing at the edge, removing the need
for a cloud entirely. In contrast, fog computing acts as a
mediator between the edge and the cloud for data pre-
processing before cloud upload. Edge robotics may entail
connecting to the robot’s sensors and controllers to deliver
large amounts of data to the cloud, or alternatively, this data
may be processed entirely at the network edge. The fog,
on the other hand, is a computational layer that may accept
data from the edge layer and analyze it before sending it
to the cloud. Fog computing eliminates unnecessary data
to reduce clutter in the cloud, offering lower latency and
better efficiency of data traffic. However, one downside of
fog computing is that it cannot fully replace edge computing,
and the latter can be implemented without the additional
infrastructure overhead that fog requires. Edge computing,
on the other hand, has fewer peripheral layers than Fog and
thus offers less scalability. It cannot provide resource pooling
and interoperability to the extent that fog can. Nonetheless,
it relies on multiple links for data transport, which is a
significant disadvantage of fog computing. In short, both
edge and fog computing in robotics facilitate low-latency,
secure, and efficient processing close to robotic platforms,
enabling real-time tasks such as object detection and control.
Edge computing primarily involves static infrastructure for
computation offloading [40], whereas fog computing builds
upon this by incorporating mobile and resource-constrained
devices, offering enhanced flexibility, security, and context-
awareness across the cloud-to-edge spectrum [41]. Table II
provides a side-by-side comparison of edge and fog com-
puting in the context of robotics. For a deeper exploration
of the challenges involved in integrating fog computing into
robotic systems, we refer readers to [42] and [43].

For fog, MEC, and cloudlet paradigms, end devices and
edge servers all install operating systems and application-

specific software. Edge servers or the cloud serve as plat-
forms for end devices to offload computation-intensive tasks
to ensure timely data processing and energy efficiency.
However, for fog and cloudlets, complete offloading is not
feasible, as they are generally capable of executing only
the necessary code rather than the entire program. Cloudlets
mainly use virtual machines (VMs) for virtualization, while
MEC and fog can also leverage containers for lighter-weight
and faster deployment [44].

III. KEY CHARACTERISTICS OF EDGE ROBOTICS

Edge Robotics possesses several characteristics that mirror
those of edge computing. The following are the defining
features of edge computing that make it beneficial for de-
ployment in robotics applications.

A. Proximity

Edge computing makes remote computational resources
and services available to the robots in close proximity, which
can improve their performance for time-sensitive applica-
tions. The availability of computing resources and services
directly at the edge of the network enables robots to use
context-aware network information to make offloading and
service-based decisions. Robots can be made more intelligent
by utilizing the remotely available services to realize the
concept of “remote brain” for the efficient execution of
logical algorithms.

B. Low latency

Edge computing brings processing resources and services
closer to robots, reducing latency in service access. Edge
computing’s low latency enables robots to run resource-
hungry and delay-sensitive applications on resource-rich
Edge devices (e.g., router, access point, base station, or
dedicated server) for faster execution of algorithms like
SLAM, navigation, object detection, gesture recognition, etc.

C. Geographical distribution

Unlike cloud services, which are located far from local
robots, edge computing brings the compute infrastructure
closer by allowing similar service provisioning as the cloud.
Their dense geographical distribution makes them an excel-
lent contender for computational offloading in mobile robots,
as it allows better fault tolerance or resilience to network loss
through faster backups and recovery.

D. Mobility support

Edge computing offers mobility by utilizing protocols
like the Locator/ ID Separation Protocol (LISP) to interact
directly with mobile devices or robots. The LISP protocol
separates host identity from location identity and creates
a distributed directory system. The basic idea that enables
mobility support in edge computing is this decoupling,
allowing mobile robots to access services closer to their
current location, thereby enhancing performance.



TABLE II: Comparison Between Fog and Edge Robotics

Aspect Fog Robotics Edge Robotics
Scope Broader, covers intermediate layers between cloud and

robots (e.g., gateways, local servers)
Narrower, focused on computing at or near the robot or
sensor

Location Distributed across network nodes between cloud and
robots

Located directly at or on the robots or edge devices

Control & Coordination Managed across multiple network nodes, e.g., ware-
houses or local hubs

Mostly local control near the robot or sensor

Latency & Bandwidth Reduces latency and bandwidth usage by intermediate
processing

Minimizes latency by ultra-local processing near the
robot

Example Use Case Warehouse robots coordinating via local servers with
occasional cloud access [38]

Robots processing sensor data on nearby embedded
devices for real-time tasks [39]

Administrative Domain Can span multiple trusted domains with policies on data
flow

Typically operates within a single domain, such as a
smart home or manufacturer

E. Heterogeneity

The existence of various platforms, architectures, in-
frastructures, processing, and communication technologies
employed by edge computing elements is referred to as
heterogeneity in edge computing (end devices, edge servers,
and networks). Edge devices can also be customized, adding
further layers of heterogeneity, including software, hardware,
and technological variances, APIs, custom-built policies,
and platforms. In addition, network-level heterogeneity may
emerge, leading to a variety of communication technologies
that influence the delivery of edge services to the mobile
robots.

IV. STATE OF THE ART: EDGE ROBOTICS

This section critically analyzes the literature on Edge
Robotics paradigms, including Mobile Edge Computing
(MEC) in robotics, with a focus on their objectives and
outcomes.

A. Computational Offloading

By employing a multi-tier cloud and edge computing ar-
chitecture to dynamically offload computationally expensive
parts of the algorithm, Dey et al. [45] demonstrates the
usefulness of an edge computing platform for SLAM perfor-
mance optimization. The edge server decides on offloading
depending on compute and communication load, as well as
energy utilization, with the goal of reducing execution time.
To solve the SLAM challenge, the authors used a modified
particle filter technique in conjunction with a dynamic of-
floading decision-making mechanism, evaluating the strategy
through experiments conducted on VMs. The results revealed
that the proposed dynamic offloading strategy consistently
outperformed the static offloading, significantly reducing the
mean execution time. However, no real-world testing was
performed, where the communication layer could become a
bottleneck due to high data transmission between robots and
edge gateways.

Dechouniotis et al. [46] presented a uniquely developed
architectural testbed, NETMODE, based on the edge comput-
ing domain, designed to manage heterogeneous computing,
network resources, and mobile robots for complex smart

manufacturing scenarios. An edge-assisted SLAM applica-
tion is deployed and tested using the suggested architecture
which advanced previous efforts through experiments with
SLAM algorithm variations based on map update interval
value (in seconds) implemented on local and edge de-
vices provided a comparison of CPU use of the gmapping
method on the two resources, thus addressing earlier lack of
real-environment testing. The experimental findings showed
considerable acceleration in the performance of compute-
intensive workloads when edge infrastructure was used.

Li et al. [47] suggest an intelligent control approach
to meet the computing power needs of AI high precision
algorithms, particularly when a large number of robots create
vast data in real time. The authors evaluated and compared
existing working techniques for robotic inspection of power
grid stations, and introduced an intelligent control strategy
for live robot operation based on cloud and edge computing
infrastructure. They analyzed the results of experiments
on live working robots, which show that by using edge
computing to filter data for the cloud platform, their proposed
control method can meet the computational power require-
ments of AI deep learning, neural network coordinated
control, self-learning control models, and so on, and can
be extended to multiple large numbers of robots working
simultaneously generating massive data. Their edge module
comprised of several heterogeneous components equipped
with GPU, NPU, TPU, APU, and FPGA capabilities. It
processed sensor inputs, generated operation instructions,
filtered status information and algorithm parameters, and
received updates and training from the cloud. Thus, their
proposed work moved beyond SLAM to support scalable,
real-time AI computation across robot fleets, enabled by a
diverse hardware edge ecosystem.

A new perspective of integrating UAVs for adaptive cov-
erage is proposed by Wang et al. [48] thus shifting focus
to a collaborative mobility-aware strategy. The proposed
collaborative task offloading strategy uses improved genetic
algorithms in mobile edge computing (MEC), introducing the
unmanned aerial vehicle (UAV) cluster, addressing the lim-
itations of fixed base stations in geographically constrained
areas. They put forward a collaborative task offloading model
to offload tasks to UAVs or a base station. An objective



function is put forward to jointly minimize task latency
and energy consumption, and the genetic algorithm solves
the resource optimization problem by proposing an optimal
collaborative task offloading strategy. Although simulation
results provide supportive evidence for performance gains,
the model’s applicability under dynamic and unpredictable
conditions in real-world scenarios remains unanswered.

Recent work by Tahir and Parasuraman [49] introduced
a utility-aware dynamic task offloading strategy for multi-
edge robotic systems, aiming to minimize task latency and
enhance resource utilization for sequential multi-robot tasks.
In another study [50], the authors proposed a decentralized,
edge-enabled scheduling strategy for collaborative multi-
robot systems, optimizing resource use and task performance,
and demonstrating improvements in latency, throughput, and
frame rates compared to traditional edge-based methods.
This work provides a distinctive perspective on multi-robot
coordination and utility-driven decision-making under edge
environments, moving from individual offloading to team-
based offloading decisions.

Baruffa et al. [51] add a communication-centric approach
to the existing literature by proposing a testbed architecture
that combines cloud/edge computing and multi-RAT (Radio
Access Technology) networks for mobile robotic applica-
tions. Their proposed work enables computational offloading
for AI-driven robotic navigation via Kubernetes, Istio, and
5G/mmWave networks. The system is validated through a use
case in which a ground robot offloads intensive vision tasks
to distributed data centers in real time. Their work broadens
the design space to include network heterogeneity alongside
computing resources.

B. Context Awareness

Klaas et al. [52] propose context-aware semantic path
optimization for mobile robots that takes advantage of edge
computing capabilities inside a distributed microservice-
based autonomous control architecture. The objective is to
add a semantic layer with a ROS-based modular naviga-
tion stack to include significant environmental data from
RGB cameras into local path planning. Convoluted Neural
Networks are used to semantically classify RGB pictures
(CNNs). Similarly, to improve the quality of the computed
path from ordinary local planners, several approach inte-
grates robot policies based on the semantic classification
of the robot’s surroundings [53], [54]. These works only
emphasize their importance by exploiting edge computing for
the goal of embedding semantics into navigation stacks, but
no significant improvement in decreasing operational time
was assessed.

Likewise, the same authors, Lambrecht et al. [55] pre-
sented a micro-service-based architecture for autonomous
mobile robots that offloads the entire navigation stack to-
wards the edge and found advantage of edge computing in
terms of energy consumption and on-board computational
requirements, however, offloading of navigation took a longer
operation time for them.

The authors Antevski et al. [56] present an advanced
control algorithm in MEC to control the robot speed re-
motely. They begin by running a series of tests to determine
the relationship between robot control latency and Wi-Fi
signal intensity. The resultant characterization was utilized
as a starting point for creating, implementing, and testing a
control algorithm that uses context information from the Wi-
Fi signal to adjust the robot’s speed for smoother driving. The
results of their experiments indicate that adjusting the robot’s
speed depending on the Wi-Fi signal given by the MEC
information service may successfully generate smoother driv-
ing at high speeds. This enhancement enables the robot to
perform faster than if no context information is consumed.
The proposed approach advanced the real-time adaptation of
edge-robot control systems from compute-centric approach
to a communication context-aware autonomy.

A context-aware testbed architecture, COTORRA, pro-
posed by Groshev et al. [57] operates on the edge of the
network. In addition to offering deployment of serverless
plugins, it supports testing of time-sensitive applications.
It can also emulate unpredictable network conditions that
enable a realistic environment where plugins can be tested.
They validated through experiments the feasibility of their
architecture by running an orchestration algorithm that inter-
acts with the network infrastructure and mobile robots, and
performed autonomous navigation that improved task latency
to less than 15ms. The authors claim COTORRA to be the
first edge/fog-based robotic testbed of its kind. The approach
solidifies testing of context-aware edge-based robotic control
under variable network conditions compared to specific con-
trolled conditions employed by previous works.

In the 6G communication domain, Zeng et al. [58] present
a semantic communication (SemCom) framework tailored to
robotic edge-AI systems where a robot collaborates with
a remote edge server acting as its “brain.” The system
uses a Knowledge Graph (KG) to represent task-relevant
object-action sequences, known as Knowledge Paths (KPs),
enabling the server to guide the robot in achieving specific
goals based on its environmental observations. A key inno-
vation is a Robotic SemCom protocol that includes semantic
matching between KG elements and server-side classifiers,
enabling the robot to stream compressed feature data to the
server for real-time object recognition and path identification.
This work primarily meets ultra-low-latency requirements
through a feature transmission scheme (ULL-FT) that lever-
ages the classifier’s robustness to tolerate channel errors,
achieving a communication-efficient balance between relia-
bility and speed. The effectiveness of the proposed approach
is demonstrated using synthetic and real-world datasets,
showing significant latency reductions without compromis-
ing inference accuracy. Overall, the work pioneers a goal-
oriented air interface for 6G robotic applications where task-
driven communication is prioritized over raw data fidelity.

C. Localization

According to the authors of [59], it is critical to use edge
computing and cloud services to create a well-developed



Autonomous Mobile Robot (AMR) system since edge and
cloud may minimize AMR power consumption and make
integration with sensors or IoT devices easier. They created
an efficient AMR system from scratch, using an NVIDIA
Jetson TX2 as an edge computing power-efficient module
that can handle the operation of AMR in unstable or un-
reliable network conditions, a serverless architecture based
on Amazon Web Services (AWS) for Cloud computing, and
a user interface built in React Native They evaluated the
performance of their systems by running an indoor delivery
service, a face-recognition function for identifying sender
and recipient, and caching all requests and responses via
cloud-based microservices for rapid task execution.

Many seminal works in tackling the resource constraints
posed by local onboard computing in executing SLAM algo-
rithms have turned to edge computing to improve efficiency
and reduce task latency. P. Huang et al. present a collabo-
rative multirobot laser SLAM [60] that leverages the edge
computing concept for SLAM execution optimization. The
robot-edge synergy uses edge computing to enable robots to
execute SLAM and produce a global map. Previous mea-
surements on total SLAM offloading on an Alibaba Cloud
server showed a significant transmission delay. Because
feature extraction, matching, and transform optimization are
critical submodules of map fusion, the core of multirobot
SLAM, they consume more than 70% of the processing time.
ColaSLAM addresses this issue by deploying map fusion
and mapping modules to edge servers to build a number
of sub-maps and conduct feature extraction and matching
by recognizing overlaps between these maps, resulting in
map fusion. They propose an adaptive map redistribution
approach to speed up map fusion among several edge servers.

A coordinator generates an undirected graph composed of
submaps while taking into account the overlapping degree
and bandwidth condition, then splits the graph and generates
an offloading decision in which each edge cluster is assigned
a submap for execution, and finally, the edge server merges
the received sub-maps and uploads the results to the cloud
center to minimize the latency from data collection to the
cloud side. Experiments on simulation and prototype evalu-
ate their results on workload balancing against greedy and
random approaches and latency, and realize that the proposed
algorithm can reduce the processing latency up to 40%
compared to the direct offloading to the cloud and brings
up to 52% on average improvement compared to random
and up to 15% against the greedy algorithm.

Same authors propose RecSLAM [61], a hierarchical
robot–edge–cloud system designed to enable low-latency,
multi-robot laser SLAM. It addresses the limitations of
traditional SLAM approaches—such as excessive local com-
putation and high cloud offloading latency—by distributing
SLAM tasks across nearby edge servers. Through real-
world experiments and simulations, the system demonstrates
significant improvements in efficiency and latency reduction.

Liu et al. [62] propose a centralized multi-robot SLAM
system using a robot-edge-cloud architecture, where edge
servers handle lightweight optical flow tracking between non-

keyframes by receiving only keypoints, reducing computa-
tion on robots. Keyframes are compressed and sent to the
cloud for pose estimation and map fusion. This approach
minimizes communication load while maintaining SLAM
accuracy.

Researchers Sarkar et al. in [63] solve the SLAM op-
timization issue with energy efficiency and performance
guarantees as key objectives by leveraging both the Edge and
Fog layers for computationally heavy tasks while leaving the
Cloud primarily for monitoring, control, and visualization.
They suggest a system architecture with four layers: a robot
layer and an edge layer for data processing, a fog layer for
distributed storage, and a cloud layer for monitoring and
general mission control. When the robot moves from one
edge to another, the Edge layer takes a real-time decision
to reduce delay by sharing the computing load of the robot,
while the Fog layer conducts a handover mechanism with
negligible data loss.

This approach includes exchanging prior map data created
by the robot during SLAM edge handover. Robots save
energy by sending data to the gateway, i.e., the Edge and
Fog layer, rather than directly to the Cloud. They observe
decreased execution delay due to a shorter data path across
the entire cycle, improvement in network bandwidth as pos-
sible bottlenecks are addressed by avoiding robot-to-Cloud
data transmission, and considerable energy improvement on
the robots through trials. Although they conducted real-
world testing on a small automobile prototype, the results
were insufficient to demonstrate the efficacy of the suggested
method. Perhaps some stress testing on a real-world multi-
robot system may aid in further evaluating the algorithm.

A 3D semantic map creation approach for mobile robots
based on enhanced ORB-SLAM2 is proposed by Cui et al.
[64] to ensure that mobile robots have a certain capacity
to perceive targets in indoor environments and to improve
the degree of intelligence of robots. The proposed technique
involves first the implementation of an improved version of
YOLOv3 to detect indoor objects, then a real-time semantic
segmentation network model is employed based on deep
learning that segments the objects to classify their pixel
points on a two-dimensional image and to improve the
accuracy of semantic segmentation, the BAFF feature fusion
algorithm is applied. A 3D semantic map is then created
by the use of SLAM that estimates the pose of the image
as a result of semantic segmentation and using this depth
information, projects it onto the 3D environment.

Solving the resource optimization problem on robots, the
authors Ben Ali et al. [65] propose the implementation
of ORB-SLAM2 using edge computing to offload parts of
Visual-SLAM. They split the architecture of the algorithm
between the edge and the robot by keeping the tracking mod-
ule on the robot while moving more intensive computational
modules, i.e., local mapping and loop closure, to the edge.
By keeping the components tightly connected, they hope to
achieve their goal of lowering computational and memory
overhead without compromising performance precision.

Because the local mapping and loop closing modules



rely on the global map for some of their computation, it
is critical to update the local map whenever the global
map changes, necessitating close communication between
the modules, which is accomplished by introducing three
separate network connections. The first two connections are
responsible for getting data from the tracking module; i.e.,
one where the tracking module communicates the features
and local geometry in Frames, the other is to pass the
keyframe if tracking decides to create a new keyframe, which
is used for creating and storing the global map on the edge.
The third connection is for updating the local map on the
mobile robot and a map synchronization module on the
edge that synchronizes the local map updates with the latest
optimized changes.

Upon implementation on a prototype through rigorous
experiments, the split architecture proposed reduces compu-
tation and memory cost while keeping the execution time
to a minimum. The latency involved with an update of the
local map between the robot and the edge also substantially
reduces the overall VSLAM execution time. They estimate
their performance through mapping accuracy by mean local-
ization error, and observed negligible loss of accuracy in the
final map and the trajectory taken.

Another work by Chen et al. [66] investigates edge-
computed aided autonomous flight for UAV (ECAAF), in
which vision and communication modules deployed in the
framework interact and support each other using edge com-
puting and offloading to speed up the UAV mission. ECAAF
has three functionalities: 3D map acquisition with an edge
layer, radio map generation from the 3D map, and live
trajectory planning. A positive feedback loop also allows
interaction between edges and UAVs for video offloading,
3D map quality, and channel state of the trajectory form.
They test their suggested strategy using simulations, which
show that it can increase mission performance by boosting
interconnectivity.

D. Navigation

Many works in the literature attempt to address the MRS
navigation issue using edge computing. Palani et al. [68]
propose an edge computing-based autonomous robot, where
the edge is deployed for data processing to calculate the path
to the source of product boxes in a manufacturing industry
scenario to avoid accidents involving product damage. They
develop a six-degree-of-freedom manipulator in SolidWorks
and use it to test a navigation algorithm in an obstacle-filled
environment.

The edge computing module used in their suggested
system intends to solve the process of discovering the path
for navigation utilizing a small quantity of data at a fast
speed and with minimal time delay by employing obstacle
detection and avoidance, as well as enabling direct control.
Experiments are carried out to verify the accuracy of direc-
tion tracking and the time of operation of the robot, but no
important conclusions can be derived because the research
lacks comparison with benchmark methodologies, limiting
the study’s impact.

Fan et al. [69] offer a collaboration method based on
an edge computing framework, a robot ”StellaX,” and a
manipulator in an attempt to accomplish navigation and
object identification for grasping through cooperation across
heterogeneous robots. The mobile robot ”StellaX” features
three omnidirectional wheels and is outfitted with a LIDAR
scanner for SLAM and navigation, as well as a stereo camera
for object identification and grasping. The manipulator and
the robot communicate via edge servers, where information
about the object used for grasping is saved and transferred
so that the manipulator may access it. Docker Edge Robotics
Framework (DERF) is a container engine technology based
on Linux container (LXC) that provides the benefits of
quick and efficient deployment, high resource utilization, and
simple administration. DERF is divided into the following
categories: service provider, service requester, cloud center,
edge node, and physical layer.

A Docker container image is built and registered with the
cloud center in order to carry out the navigation (gmapping
with AMCL ROS package as described in the article). As
the requester, the user can send the service request over
the network, and once received, the management module
in the cloud center performs a service query in the image
repository to confirm that the service exists and the robot is
idle, after which the image is instantiated to form a functional
application that will send task instructions to the physical
layer via edge node. Experiments on object identification and
navigation demonstrate the differences between local, cloud,
and edge computing. The entire execution time was greatly
decreased by using edge computing, and the upload time for
edge computing is always less than that of the cloud. The
use of the edge layer also considerably decreased CPU and
memory usage rates, as well as navigation execution time.

Authors Li et al. [70] propose a visual navigation algo-
rithm implemented on the edge computing platform for agri-
cultural robots based on deep learning image understanding.
To process pictures acquired by the proposed vision system,
the approach initially employs a cascaded deep convolutional
network and a hybrid dilated convolution fusion algorithm.
The modified Hough transform technique is then used to
extract the path from processed pictures. At the same time,
the agricultural robot’s posture is being adjusted to enable
autonomous navigation. Their proposed method is validated
using non-interference and noisy experimental scenes in real-
world experiments. The results of the experiments reveal
that the algorithms proposed performed better in the non-
interference scene and complex noise scenes, but no experi-
mental data can be obtained from using an edge computing
platform or any knowledge of whether their objectives were
satisfied through the use of edge devices.

Qingqin et al. [71] investigate the state-of-the-art in visual
odometry-based autonomous navigation for MRS that are
confined by computing and sensor resources. Image com-
pression reduces the quality of navigation, but it is not the
only method for improving execution time and accuracy.
Through this experimental study, they discovered that image
size and network bandwidth may be reduced by an order



TABLE III: Comparison of Edge Robotics applications based on objectives

Reference Computational
Offloading

Context
Awareness Localization Navigation Minimizing

Latency
Resource

Optimization

Minimizing
Energy

Consumption
S. Dey et al. [45] ✓ ✗ ✓ ✗ ✓ ✗ ✓

D. Dechouniotis et al. [46] ✓ ✗ ✓ ✓ ✓ ✓ ✗

W. Li et al. [47] ✓ ✗ ✗ ✗ ✗ ✗ ✓

P. Wang et al. [67] ✓ ✗ ✗ ✗ ✗ ✗ ✗

H. Wang [48] ✓ ✗ ✗ ✗ ✓ ✓ ✓

N. Tahir et al. [49], [50] ✓ ✗ ✓ ✓ ✓ ✓ ✗

Baruffa et al. [51] ✓ ✗ ✗ ✓ ✓ ✓ ✗

T. Klaas et al. [52] ✓ ✓ ✗ ✓ ✗ ✗ ✗

J. Lambrecht et al. [55] ✓ ✓ ✗ ✓ ✗ ✗ ✓

K. Antevski et al. [56] ✗ ✓ ✗ ✓ ✓ ✗ ✗

M. Groshev et al. [57] ✓ ✓ ✗ ✗ ✓ ✗ ✗

Q. Zeng et al. [58] ✓ ✓ ✗ ✗ ✓ ✓ ✗

T. Thong Tran et al. [59] ✓ ✗ ✓ ✓ ✓ ✗ ✓

P. Huang et al. [60], [61] ✓ ✗ ✓ ✗ ✓ ✓ ✗

Lui et al. [62] ✓ ✗ ✓ ✗ ✓ ✓ ✗

V. Sarkar et al. [63] ✓ ✗ ✓ ✗ ✓ ✓ ✓

X. Cui et al. [64] ✗ ✗ ✓ ✗ ✗ ✗ ✗

A. Ben Ali et al. [65] ✗ ✗ ✓ ✓ ✓ ✗ ✗

Q. Chen et al. [66] ✗ ✗ ✓ ✓ ✓ ✗ ✗

U. Palani et al. [68] ✗ ✗ ✗ ✓ ✓ ✗ ✗

Z. Fan et al. [69] ✗ ✗ ✓ ✓ ✓ ✗ ✗

J. Li et al. [70] ✗ ✗ ✗ ✓ ✗ ✗ ✗

L. Qingqing et al. [71] ✓ ✗ ✓ ✓ ✓ ✗ ✗

S. Hayat et al. [72] ✓ ✗ ✓ ✓ ✓ ✗ ✓

G. Li et al. [73] ✓ ✗ ✗ ✓ ✓ ✓ ✗

C. Asavasirikulkij et al. [74] ✗ ✗ ✓ ✓ ✓ ✗ ✓

R. Yin et al. [75] ✓ ✗ ✗ ✗ ✓ ✓ ✓

N. Tahir et al. [76] ✓ ✗ ✗ ✓ ✓ ✓ ✗

K. Chen et al. [77] ✓ ✗ ✗ ✗ ✓ ✓ ✗

L. Qingqing et al. [78] ✓ ✗ ✗ ✗ ✓ ✓ ✗

D. Spatharakis et al. [79] ✓ ✗ ✓ ✓ ✓ ✓ ✗

X. Huang et al. [80] ✓ ✓ ✗ ✗ ✓ ✗ ✗

S. Bouhoula et al. [81] ✓ ✗ ✗ ✗ ✓ ✓ ✓

Wang et al. [82] ✓ ✗ ✗ ✗ ✓ ✗ ✓

F. Farahbaksh et al. [83] ✓ ✓ ✗ ✗ ✓ ✗ ✓

Zeng et al. [84] ✓ ✗ ✗ ✗ ✗ ✓ ✓

Legend: ✓ Yes indicates that the objective is fully or partially explored in the research; ✗ No indicates that the objective is not considered.

of magnitude without compromising the accuracy of the
odometry methods, even in challenging environments. Their
tests look at two parameters: network latency and odometry
algorithm accuracy. Using the EuRoC dataset, they examine
the processing time required for the feature extraction and
posture estimation processes for each of the image compres-
sion ratios.

Their findings show that reducing picture quality to a
certain amount has no effect on odometry accuracy, indi-
cating that the system can benefit from a computational of-
floading approach using edge computing. They demonstrate
through findings that offloading does not cause odometry
delays and actually enhances frame rate performance when

powerful edge gateways are deployed. They suggest an
edge computing offloading strategy that can provide several
benefits to a large MRS system, including reduced cost and
energy consumption, as well as improved performance and
reliability.

Hayat et al. [72] analyze the importance of edge comput-
ing in 5G for vision-based navigation algorithms for drones.
They deployed edge devices to offload computing tasks for
image processing. They test various modes of computational
offloading, including onboard, fully offloaded to the edge,
and partially offloaded. Their findings reveal that for all
image resolutions, the image processing time for complete
offloading is longer than for partial offloading, and this



difference gets more pronounced as resolution increases.
When the computational power of the server is twice that of
the drone, partial offloading results in faster image processing
times than onboard processing. This is not true for complete
offloading, however. Full offloading necessitates long image
transmission times, and increased edge compute power has
little effect on overall image processing time.

The authors then investigate the effect of 5G data rates
on image processing time in each mode. They conclude
that higher up-link speeds can meet the image transmission
requirements of the full offloading mode. Extracting features
onboard and sending them to the edge provides more advan-
tage than delivering the entire image. They also highlight that
partial offloading will place less strain on the communication
network in terms of transmission rate than full offloading, but
still needs some onboard processing.

Li et al. [73] propose an Edge Accelerated Robot Naviga-
tion (EARN) framework that enhances robot navigation by
adaptively switching between local and edge-based motion
planning based on resource availability. Unlike traditional
approaches that focus solely on algorithm design, EARN
integrates decision-making and motion planning under com-
munication and computation constraints using model pre-
dictive switching. It effectively utilizes edge resources to
enable advanced collision avoidance and optimized path
planning. While the framework demonstrates strong perfor-
mance in both simulated and real-world settings, its reliance
on low-latency edge connectivity and complex optimization
algorithms may pose deployment challenges in dynamic or
resource-constrained environments.

E. Minimizing task latency

Minimizing task latency is largely attributed to improv-
ing the network conditions in the edge computing domain.
Asavasirikulkij et al. [74] devise a new peer-to-peer wireless
communication platform for communication between a mo-
bile robot and an edge device in a smart factory scenario.
The application tested includes a mobile robot equipped with
sensors and connected to an edge device and a serial link
manipulator. Through their proposed wireless platform that
offers high bandwidth and low communication latency via
the use of a Software-Defined Wireless Networking (SDWN)
approach, they implement a pose estimation through SLAM
on the edge device based on LIDAR scan data transmitted
from the robot to the edge.

They extend their work further by proposing a wireless
network connecting several machines in an automation cell,
i.e., a robot, a manipulator, a warehouse, and an edge server.
The edge is deployed to collect all the data from the machines
in-house to generate an updated map for controlling the
automation cell during robot collaboration. They test their
proposed setup through a use case scenario where the mobile
robot picks up a package from the manipulator and delivers
it to the warehouse using the pose estimates provided by
the edge device in the automation cell. Experimental results
evaluate the collaborative map generated as well as the path
execution comparison between the planned path and the

mobile robot’s actual path used for navigation. Compared to
two other benchmark techniques, their proposed architecture
undergoes less processing latency to compute SLAM.

Another work put forth by Yin et al. [75] elaborates on
a MEC-based multirobot cooperation (MRC) system with
Master Robot (MR) and Slave Robots (SRs). They envision
the MR as an edge device in charge of making decisions
based on sensing conducted by the SRs. In addition to
sensing data, the SRs offload various functions to the MR in
order to reduce energy utilization onboard. The research pro-
vides two resource management solutions for minimizing and
balancing energy usage across multiple SRs while ensuring
task completion on time. The energy consumption of the SRs
is minimized and balanced in the first scheme to increase the
function duration of the MRC systems. The residual energy
of the SRs is employed in the second scheme to deal with
the unpredictable wireless communication environment. As
a result, instead of transferring the data to the MR, each
SR may handle it locally. The latter scheme is more durable
than the first, although it may consume more energy. They
test their methods using simulations, which show that MEC
can help MRC handle time-critical heavy computing tasks
effectively.

The mobility of robots poses an additional challenge for
computational offloading, particularly when multi-robot sys-
tems depend on real-time decision-making from AI systems
deployed on edge servers. Frequent access point handovers
lead to service migration between edge servers, resulting in
increased latency and negatively impacting the performance
of tasks such as autonomous navigation.

Tahir and Parasuraman [76] propose a deep reinforcement
learning framework based on the Deep Deterministic Policy
Gradient (DDPG) algorithm to address the joint problem
of task migration and access-point handover in vehicular
networks. They introduce a joint allocation method for
communication and computation across access points to min-
imize computational load, service latency, and interruptions,
with the goal of maximizing Quality of Service (QoS).
Their framework, evaluated through simulated experiments,
enables smooth task switching among edge servers, reducing
latency and improving service efficiency.

The authors K. Chen et al. [77] introduce the FogROS2-
Latency-Sensitive (FogROS2-LS) framework, which dynam-
ically selects the most suitable cloud or edge server to min-
imize latency for robots offloading computationally inten-
sive tasks. Their framework offloads conventional on-board
state estimators and feedback controllers to cloud and edge
devices without requiring modifications to existing ROS2
applications. When multiple identical services are available,
FogROS2-LS dynamically identifies and switches to the
optimal service deployment that meets latency requirements,
enabling robots with limited on-board computing power to
safely and efficiently navigate dynamic, human-populated
environments.

Because the majority of the works in the literature in-
volving computational offloading to edge computing focus
on latency minimization, either in terms of execution time



or transmission time, such studies are not repeated in this
section for the sake of brevity.

F. Resource Optimization

Qingqing et al. [78] suggest using FPGAs at the edge
for computational offloading with low latency and high
parallelism in a multirobot feature-based lidar odometry
system. In three phases, their approach performs feature-
based lidar odometry: The extraction of features from lidar
data comes first. These characteristics might be geometric
in form or stable points observed in two successive sweeps.
Second, it employs feature correspondence by calculating the
position difference between the sweeps.

Finally, the time interval between two successive sweeps
is used to estimate the LIDAR movement. The purpose of
employing FPGAs is to process scan data in real time with
minimum computational resources and to parallelize data
processing. They compare their technique to their own initial
and unoptimized design, in terms of resource usage and
concurrency gained, which was shown to be superior for the
optimized proposed version.

Spatharakis et al. [79] provide a set-based estimation
approach for the robot offloading mechanism in the context
of edge robotics. Using a case study of a unicycle robot
performing navigation and path planning, they assess the
tradeoff between performance and resource consumption.
An offloading strategy is introduced to compensate for the
uncertainty of local estimation techniques with more accurate
remote sensing, while balancing navigation accuracy and
mission duration. While traversing its environment, the uni-
cycle robot uses remote estimates to correct inaccuracies in
local estimates. Offloading is performed via a framework that
considers network conditions and computational availability
while maintaining the stability of the control system.

Their decision-making computational offloading strategy
is framed as a utility-based function that incorporates two
localization techniques: an error-prone one, i.e., odometry-
based localization (executed locally), and a more accurate,
computationally intensive vision-based localization method
executed on the edge server. They compared their utility-
based offloading scheme with two others—exclusively local
implementation and exclusively remote—in terms of average
mission duration (in seconds), average offloading triggers,
and success rate. They also presented a comparison of their
utility-based offloading scheme under five different time-
triggered settings, where remote estimation is triggered every
µ seconds across a total of 35 experiments. Their technique
outperformed all others by providing convergence guarantees
while keeping mission duration low.

Huang et al. [80] develop an offloading service provider
in Collaborative Vehicular Edge Computing (CVEC) system
by launching an MEC server and scheduling PVs (Parking
vehicles) on demand to perform offloading tasks. To optimize
network-wide task scheduling, efficient workload allocation
and user-centric utility maximization are studied. Each task’s
offloading destination is determined probabilistically in a
dynamic context. When necessary, the offloading service

provider acts in the capacity of an offloading user to initiate
a contract-based incentive mechanism for PVs. The authors
base the offloading user’s subjective assessments of utility in
computational offloading using contract theory and prospect
theory, and develop an ideal contract to maximize subjective
utility under formation asymmetry. Numerical data collected
through experiments indicate the proposed scheme’s efficacy
and efficiency.

Bouhoula et al. [81] present a DRL-based task schedul-
ing strategy designed for MEC-enabled robotic systems in
dynamic environments by jointly optimizing task execution,
robot trajectory planning, and energy consumption, address-
ing the challenges caused by robot mobility, transmission
delays, and resource constraints. The authors transform the
problem into a Markov Decision Process (MDP), enabling
real-time adaptive decisions such as local processing versus
offloading, and device-to-device (D2D) task sharing. Their
extensive evaluations demonstrate significant improvements
over baseline methods in reducing delays and energy use.
While the approach excels in scalability and adaptability,
it remains dependent on simulation scenarios and may face
challenges in deployment complexity in the real world.

G. Minimizing energy consumption

Wang et al. [82] propose a remote computational offload-
ing mechanism for a swarm of robots connected to an edge
server. The primary goal of their method is to reduce energy
consumption and task execution time. They developed a deep
reinforcement learning system for task scheduling that takes
the robot’s mobility into account. They showed the efficiency
of their technique in decreasing energy consumption and
delay through simulation. However, their system paradigm is
based on a single edge server for management and compute
offloading, rendering the study incomplete with respect to
the deployment of multiple edge devices and their impact on
the performance.

Farahbaksh et al. [83] present a computational offloading
approach based on Bayesian learning automata for mo-
bile edge computing. Their method incorporates contextual
information awareness which influences decision-making
for computational offloading from mobile devices to edge
servers. Context information is captured via a control loop.
Several metrics are studied to evaluate the proposed scheme,
including energy consumption, execution time, resource uti-
lization, network usage, task latency, module size, and of-
floading intervals.

Zeng et al. [84] address the problem of aggregated and
centralized training which strains on long-range backhaul
transmission. They propose a collaborative edge training
framework that leverages idle resources from trusted edge
devices as a resource pool for efficient and sustainable
training of large AI models. The authors design the system
architecture, analyze scheduling strategies for energy opti-
mization, and evaluate different parallelism methods using
realistic testbeds.

There is some overlap among the aforementioned efforts
that address energy consumption using edge robots. Although



not exhaustive, this list omits certain works for brevity.

V. RESEARCH GAPS AND LIMITATIONS

Real-world evaluations of edge-assisted robot systems are
critical for validating performance, yet many existing studies
exhibit significant limitations in scope, generalizability, and
experimental rigor. For example, Dey et al. [45] conducted
comprehensive hardware evaluations but relied solely on
virtual machines as edge devices, with no physical robot
deployment. Their experiments assumed idealized network
conditions—constant bandwidth, uniform processing capa-
bilities, and negligible variability—thereby overlooking cru-
cial factors such as real-time network dynamics, energy
constraints, and fault tolerance that are essential for practical
SLAM offloading in mobile robotics.

Similarly, the NETMODE testbed by D. Dechouniotis et
al. [46] employs Raspberry Pi 3 units as mobile robots,
which offer limited computational capacity. While the system
evaluates CPU usage, it omits other essential performance in-
dicators such as latency, task completion success, localization
accuracy, and energy consumption. Moreover, their manu-
ally configured architecture lacks support for dynamic task
orchestration, scalability to multi-robot systems, or resource-
aware decision-making at the edge, severely limiting its
applicability to complex, long-term, or large-scale robotic
deployments.

In another instance, the cloud-edge hybrid architecture
proposed in [47] reduces latency by offloading lightweight
AI inference to the edge while relegating heavy model train-
ing to the cloud. While effective for improving processing
speed, the system’s dependence on stable connectivity and
the limited computational capacity of the edge restricts its ro-
bustness and scalability in dynamic environments, especially
those involving multiple robots or unpredictable wireless
conditions.

P. Wang et al. [67] utilize a greedy task allocation strat-
egy based on proximity (e.g., up/down/left/right neighbors),
which, while computationally simple, does not scale to
complex environments or guarantee globally optimal solu-
tions. Their real-world experiments are confined to static
and known layouts with fixed obstacles, lacking dynamic
obstacle avoidance, uncertainty modeling, or real-time adap-
tive behavior. Similarly, H. Wang et al. [48] evaluate per-
formance under static terminal assumptions, predictable task
distributions, and idealized communications, which fail to
reflect the nuanced variability of bandwidth, mobility, and
hardware resource contention inherent in real-world mobile
robotic systems.

Baruffa et al. [51] present a modular testbed integrating
5G, mmWave, and cloud/edge infrastructure for robotic navi-
gation, yet the system relies on specialized infrastructure and
evaluates only a narrow slice of performance metrics. No-
tably, it lacks comprehensive testing for scalability, security,
and adaptability to diverse deployment scenarios. Likewise,
the work by J. Lambrecht et al. [55] shows impressive
CPU and RAM offloading benefits and up to 38.59% energy
savings during navigation and vision tasks. However, these

benefits are measured under controlled conditions—fixed
robot velocity, no payload, and static workload—without
accounting for edge-side energy costs or network-induced
overheads. Moreover, the system lacks stress testing under
fluctuating workloads, making it difficult to generalize to
unpredictable operational contexts.

The COTORRA testbed [57] suffers from reliance on
synthetic network variability via NetEm, using artificially
injected delays rather than real-world wireless channel dy-
namics. Conducted in constrained indoor corridors, the ex-
periments omit outdoor, user-interactive, or heterogeneous
multi-robot environments. Orchestration evaluations are lim-
ited to a strict 15 ms latency target without assessing
robustness against threshold violations, and the DLT fed-
eration component exhibits a prohibitively high 19-second
delay—unsuitable for time-sensitive applications. Robot au-
tonomy was limited to pre-programmed paths, lacking re-
sponsiveness to environmental complexity or uncertainty.

The ColaSLAM system [60] successfully demonstrates
collaborative multi-robot mapping using tiered edge-cloud
fusion, significantly reducing on-robot computational load.
However, it assumes uninterrupted wireless connectivity and
performs no local data preprocessing, increasing transmission
demands and vulnerability to network disruptions. Addition-
ally, the system’s coordinator operates intermittently, which
may introduce scheduling delays in dynamic conditions.
Real-world tests also reveal mapping inaccuracies at bound-
aries and dependence on precise overlap detection, both of
which can hinder map fusion reliability.

Finally, the Edge-SLAM framework by A. J. Ben et al.
[65] is evaluated using a minimal hardware setup involving
only two mobile devices and one edge server, which limits
the generalizability of results to more complex settings. The
use of replayed datasets over private Wi-Fi networks and a
wired edge connection fails to capture performance under
variable mobility, fluctuating bandwidth, or real-time wire-
less interference. While Edge-SLAM demonstrates accuracy
comparable to ORB-SLAM2, architectural decomposition
and latency could exacerbate drift in longer or more complex
deployments. Moreover, tracking sensitivity issues inherited
from ORB-SLAM2 remain unaddressed, highlighting gaps
in robustness for real-world SLAM scenarios.

As evident from the critical examination of existing ex-
perimental frameworks, edge robotics has made substantial
strides through innovative system architectures, distributed
offloading mechanisms, and the integration of heteroge-
neous computing platforms. These developments have im-
proved real-time processing for tasks such as SLAM and
autonomous navigation, particularly in controlled environ-
ments. However, the evaluation of these systems often falls
short of capturing the operational complexity of real-world
deployments. Many experimental setups rely on idealized
assumptions—such as stable, high-throughput wireless net-
works, deterministic robot behaviors, or fixed environmental
layouts—that do not reflect the variability and uncertainty en-
countered in practical field conditions. Furthermore, reliance
on small-scale testbeds, synthetic data replay, and limited



performance metrics hinders the ability to assess scalability,
fault tolerance, and adaptability under stress.

Deep learning and AI-based methods, though promising,
add layers of computational and interpretive complexity that
are rarely stress-tested under constrained edge resources.
The absence of standardized benchmarks, dynamic work-
load orchestration, and thorough evaluations across diverse
scenarios remains a critical bottleneck. To unlock the full
potential of edge-enabled robotics, future research must
prioritize robust, scalable, and generalizable experimental
frameworks—grounded in real-world constraints—that can
systematically address the challenges of interoperability, re-
silience, communication, and continuous adaptation across
multi-robot and multi-environment systems.

VI. CHALLENGES FOR FUTURE RESEARCH

Computational offloading for robots offers a multitude
of benefits for ground and aerial robots in real-world de-
ployments. It allows for leveraging the computational and
storage facilities available at the remote resources to perform
latency-sensitive and computationally-intensive operations,
particularly algorithms involving deep learning or computer
vision, and it also allows for maintaining communication
between its distributed platform.

However, network conditions associated with such frame-
works introduce implementation challenges related to delay
and energy consumption. Offloading is a critical step in
increasing the quality of experience for robots and facilitating
the execution of applications with low latency requirements.
Undoubtedly, significant efforts were made to increase the
robot’s performance via computational offloading on edge-
based systems. Several challenges, however, remain open
study areas for further investigation. Some of these problems
are discussed more below.

A. Security

Security [85] is a key performance parameter in all net-
worked robotic applications. Communication and data trans-
mission between robots and distant computing resources can
lead to security concerns such as modification of data, denial
of service, and information leakage [86]. Unfortunately, in
the studies mentioned above, security was not considered a
primary optimization objective. Like other objectives stated,
the security aspect should be incorporated as a key decision-
making parameter to mitigate risks associated with data
vulnerabilities.

B. Context Awareness

As evident from Table III, context awareness has re-
ceived limited attention in the design of offloading mecha-
nisms, despite improvements in related works. Given that we
are discussing dynamic computational offloading, context-
awareness is a critical aspect that warrants deeper explo-
ration. It should inform every stage of the offloading process.
For example, the program partitioning stage must be aware
of the application’s resource requirements to offload. The

offloading decision should therefore be informed by the con-
text information, such as distant server availability, network
quality, and device workload, at all times [87].

C. Handover Mechanism

During the crossover between multiple edge devices, there
is a huge possibility of data loss. While the task finishes
itself on one edge device and switches to another, the robots
either go into an idle state or halt their execution, which can
introduce latency and can also become costly and a safety
hazard while performing tasks like navigation. All dynamic
computational offloading schemes must be designed to be
equipped with an efficient handover mechanism to avoid
computational cost, latency, or task failures.

D. Network failure

Connectivity loss is another major concern that can happen
during offloading, where the robots end up losing connection
with the remote resources and keep waiting for the communi-
cation to resume, when it could be a complete network failure
or a temporary connectivity loss [88], [89]. Accordingly,
it’s beneficial if the robots take charge of the execution by
performing the tasks locally, which should work ideally, but
can be a serious problem in performing algorithms that have
been split among resources to save on energy consumption
and execution latency.

E. Fault tolerance

The dependence on network circumstances is one of the
most crucial issues in the computation of offloading for
mobile robots. This might result in a failure of the offloading
process, either due to a weak connection between robots and
remote resources or an issue with the remote edge server.
Because mobile robots are intended to be used in critical
scenarios like search and rescue missions, it is critical to
avoid these problems and ensure the application’s proper
execution. Other alternatives must be devised whereby the
robots can switch to local execution or offload their tasks to
other emergency backup remote resources to avoid any delay
in task execution.

F. Heterogeneity

Although heterogeneity is a desirable feature in the imple-
mentation of the edge computing domain, its integration with
robots can cause major interoperability concerns, which can
be a hurdle in the effective deployment of an edge comput-
ing framework in a heterogeneous or otherwise multirobot
system.

All such failures that might occur during task offloading of
computational intensive tasks lead to either increased energy
consumption or increasing latency time for task execution
or data transmission. An efficient offloading strategy must
take into account all such factors to make informed deci-
sions or provide remedial solutions as part of the recovery
mechanism; therefore, it is suggested that fault tolerance and
recovery strategies must be an essential part of the offloading
decision-making process.



VII. CONCLUSION

This study presents a comprehensive review of the current
state-of-the-art in the edge robotics domain. While it offers
a broad overview, it is not exhaustive and can be extended
further, particularly by incorporating a detailed classification
of the literature based on Fog computing technologies. The
findings highlight that although many studies have leveraged
edge platforms to address the computational demands of
robotic applications, the field remains in its early stages.
There is significant potential to pursue overlapping objectives
and address persistent challenges related to the practical
implementation of edge computing in robotics. These lim-
itations—such as efficient resource management, scalable
system architectures, robust failure recovery mechanisms,
and strong security provisions—can be overcome through
well-designed solutions tailored to the unique requirements
of edge robotic systems.
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