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Abstract

Deep reinforcement learning has become a powerful tool for complex decision-making in machine learning

and AI. However, traditional methods often assume perfect action execution, overlooking the uncertainties

and deviations between an agent’s selected actions and the actual system response. In real-world engineering

applications—such as robotics, mechatronics, and communication networks—execution mismatches arising from

system dynamics, hardware constraints, and latency can significantly degrade performance.

This work advances AI by developing a novel control-optimized deep reinforcement learning framework that

explicitly models and compensates for action execution mismatches, a challenge largely overlooked in existing

methods. Our approach establishes a structured two-stage process: determining the desired action (e.g., force

or torque) and selecting the appropriate control signal (e.g., voltage) to ensure proper execution. It trains the

agent while accounting for action mismatches and controller corrections. By incorporating these factors into the

training process, the AI agent optimizes the desired action with respect to both the actual control signal and

the intended outcome, explicitly considering execution errors. This approach enhances robustness, ensuring that

decision-making remains effective under real-world uncertainties.

Our approach offers a substantial advancement for engineering practice by bridging the gap between idealized

learning and real-world implementation. It equips intelligent agents operating in engineering environments with

the ability to anticipate and adjust for actuation errors and system disturbances during training. We evaluate the

framework in five widely used open-source mechanical simulation environments we restructured and developed

to reflect real-world operating conditions, showcasing its robustness against uncertainties and offering a highly

practical and efficient solution for control-oriented applications.

Keywords— artificial intelligence, autonomous systems, decision making, deep reinforcement learning, opti-

mization and control.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has become a cornerstone in the field of AI, particularly for solving

complex decision-making problems in dynamic and uncertain environments. By enabling agents to learn optimal

behaviors through interaction with their surroundings, DRL has shown remarkable success across various
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rudman@post.bgu.ac.il; yakovsec@bgu.ac.il).

Open-source code for the algorithm and simulations developed in this paper can be found on GitHub at [1].
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TABLE I

LIST OF ABBREVIATIONS

Abbreviation Description

AI Artificial Intelligence

BEMF Back Electromagnetic Force

CO-DRL Control-Optimized Deep Reinforcement Learning

D3QN Dueling Double Deep Q-Network

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

IRL Integral Reinforcement Learning

KLD Kullback–Leibler Divergence

LQR Linear Quadratic Regulator

LQT Linear Quadratic Tracker

MAB Multi-Armed Bandit

NN Neural Network

PD Proportional-Derivative

PI Proportional-Integral

PID Proportional-Integral-Derivative

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

RL Reinforcement Learning

SARSA State–Action–Reward–State–Action

applications, including robotics, autonomous vehicles, and mechatronic systems. These systems often operate

under uncertain conditions, where the link between an agent’s decisions and the resulting actions can be

influenced by factors such as delays, noise, and system dynamics. This makes DRL an ideal approach for tasks

requiring adaptive and resilient decision-making. As the demand for intelligent, autonomous systems continues

to grow, the ability of DRL to handle real-world complexities makes it a powerful tool for advancing the next

generation of autonomous technologies. In this paper, we focus on addressing the challenge of uncertainty in

action execution by modeling the dynamics of the agent’s actuation system, improving the alignment between

desired and actual actions in real-world systems.

A. Contributions

To address the challenge of uncertain and imperfect action execution in real-world AI-driven autonomous

systems, we propose Control-Optimized Deep Reinforcement Learning (CO-DRL), a novel DRL framework that

integrates control theory to enhance decision-making and execution. By incorporating a feedback loop control

mechanism, CO-DRL ensures that intended actions are effectively carried out despite inner system dynamics,

disturbances, and model uncertainties. CO-DRL distinguishes between determining the desired action (e.g.,

force/torque) and selecting the control signal (e.g., voltage) needed to achieve it. By incorporating a feedback
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loop control mechanism, our approach optimizes both decision-making and execution, ensuring consistency

between intended and realized actions.

Our framework extends OpenAI Gym’s classic control environments by incorporating a DC motor model

with a Proportional-Integral-Derivative (PID) controller for action tracking. This modular implementation allows

flexible customization of the actuation system, control architecture, and DRL algorithms, enabling a seamless

combination of decision-making and execution strategies. To support both research and engineering applications,

we release an open-source Python implementation of CO-DRL, available on GitHub (see [1]). The software is

designed with object-oriented principles, facilitating integration into a variety of control-oriented AI systems.

For researchers and developers, CO-DRL offers a practical toolset for improving the robustness and reliability

of DRL-based autonomous systems. By explicitly modeling and compensating for execution mismatches, it

enables more stable and predictable policy behavior in complex, real-world settings. The provided environments

serve as a testbed for developers and engineers to evaluate and refine DRL policies under realistic conditions,

supporting applications in robotics, industrial automation, and other domains where execution fidelity is critical.

We evaluate CO-DRL across five widely used OpenAI Gym environments—Acrobot, CartPole, Mountain

Car, Continuous Mountain Car, and Pendulum—chosen for their relevance to classic control tasks and their

representativeness of common challenges in engineering systems. To demonstrate the generality and adaptability

of our framework, we integrate it with a range of DRL algorithms, including Proximal Policy Optimization

(PPO) [2], Deep Q-Networks (DQN) [3], Tile Coding [4], and Deep Deterministic Policy Gradient (DDPG)

[5]. Experimental results show that CO-DRL consistently improves performance under conditions of actuation

uncertainty and system disturbance. These findings highlight its practical utility and robustness, making it a

strong candidate for deployment in AI-driven autonomous systems within engineering domains such as robotics,

control systems, and automation.

B. Related Work

RL and particularly DRL algorithms have been implemented as part of a control law design for various

autonomous dynamic systems, such as the pendulum (including cartpole and acrobot) [6]–[9], intelligent trans-

portation and autonomous vehicles [10], [11], drones and quadrotors [12], [13], and robotic systems [14]–

[16]. These methods have been increasingly integrated into control law design for autonomous systems, with

frameworks such as Associative Search Element, Adaptive Critic Element [17], Tile Coding [4], Deep Q-

Networks (DQN) [18], and DRL-based proportional-derivative (PD) control [6]. In recent studies, DRL-based

methods continue to push the envelope in areas like multi-agent systems and optimization tasks. These DRL

frameworks generally optimize decision-making by maximizing rewards, assuming perfect action execution.

However, real-world systems, such as those with actuators (e.g., motors), introduce discrepancies between

desired and actual actions due to inner dynamics, disturbances, and model uncertainties, as considered in this

paper.

Classical RL methods, such as multi-armed bandit (MAB) and tabular Q-learning, have long been used

in engineering to solve decision-making problems under uncertainty in diverse areas, such as biomedical
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engineering, financial investment, robotics and mechanic systems, and communication networks [19]–[25].

Moreover, reinforcement learning has been applied to other specific classic control problems. For example, [26]

applies off-policy integral reinforcement learning (IRL) to solve optimal linear quadratic tracker (LQT) problems

for continuous-time two-time-scale processes, addressing both slow and fast states with linear quadratic regulator

(LQR) and LQT. In [27], the authors investigate an online reinforcement Q-learning algorithm to design a model-

free H∞ tracing controller for unknown discrete-time linear systems, which is demonstrated in a simulation

of a single-phase voltage-source UPS inverter. Additionally, [28] explores a reduced-dimensional reinforcement

learning approach for linear time-invariant singularly perturbed systems, focusing on the separation of slow and

fast states, with the action determined by LQR control subject to the slow states.

While classic approaches are effective mainly in structured environments with low-dimensional state and

action spaces, as engineering systems have grown in complexity, DRL has emerged as a powerful extension,

combining the strengths of RL with deep learning to handle complex, unstructured problems. This advancement

has led to significant progress across a wide range of engineering domains. In AI-based communication networks,

DRL has been employed for dynamic spectrum access, resource management, and cognitive radio [29]–[37]. In

the context of computer vision, it has been used for image categorization [38], automated classification [39], and

intelligent expert-aided classification [40], [41]. Additionally, DRL methods have been adopted for AI-based

anomaly detection and active hypothesis testing [42]–[47], as well as health-related applications that require

adaptive and robust decision-making [39], [41], [48]. These diverse applications demonstrate the adaptability

of DRL in solving complex, real-world problems beyond classical control, further highlighting its growing role

in modern engineering systems.

However, despite these advancements, existing DRL-based controllers often lack explicit mechanisms to track

and correct execution mismatches caused by actuator inner dynamics and external disturbances. In this work,

we address this gap by developing CO-DRL, a novel framework that optimizes both decision-making and

execution during training. This approach ensures consistency between intended and realized actions, enhancing

robust decision-making and execution in real-world autonomous systems.

II. METHODOLOGY

We begin with a formal introduction of the system model and problem statement, followed by a presentation

of the proposed control-optimized DRL framework designed to address the problem.

A. System Model and Problem Statement

In a mechanical system environment, the state space S consists of the continuous set of positions (both linear

and angular) and their corresponding velocities for the bodies and particles within the system, determined by

its degrees of freedom. Let st ∈ S represent the system’s state at discrete time t.

An agent in the mechanical system corresponds to the actuation component that applies external forces or

torques to certain bodies within the system. Let A denote the action space available to the agent, with at ∈ A
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representing an action taken at time t. The action space A can be either continuous or discrete. Fig. 1 illustrates

a basic RL framework.

Agent

Environment

Action

at

st+1

rt+1

State

st

Reward

rt

Fig. 1. An illustration of a basic reinforcement learning framework.

At each iteration, the state st and reward rt are provided to the Agent block. The agent selects an action

aimed at maximizing the future accumulated reward. This action is then passed to the Environment block, which

generates the next state st+1 and the corresponding reward rt+1.

In practical mechanical systems, each action at is mapped to an external force/torque as follows:

Ft = ActionFeature(at) = F{at}, (1)

where ActionFeature(·) (or F{·} for brevity) is the function that maps an action at to an external

force/torque Ft. For a continuous action space, it is often convenient to define the mapping as a simple linear

relationship, where the action directly represents the applied force/torque: Ft = at. In the discrete case, it is

often convenient to define the action space as a finite set of indexed actions {0, 1, . . . , N − 1}, where each

index k corresponds to a predefined external force/torque value F{k} ∈ R.

At each time t, a new state st+1 is generated by

st+1 = EnvStateUpdate(st, Ft), (2)

where EnvStateUpdate(st, Ft) is a function of the current state st and the force/torque Ft = F{at}

associated with the current action at. Let pt and vt denote the position and velocity of the mechanical object,

respectively. Applying Newton’s Second Law, a typical next-state update is performed as follows:

vt+1 = vt + Acceleration(st, Ft)∆t, (3)

pt+1 = pt + vt∆t, (4)

where Acceleration(·,·) is a function of the current state st and the force/torque Ft, representing the

acceleration of the bodies, and ∆t is the integration time step. The following integration methods are used in

the five openAI Gym environments analyzed in this work. In MountainCar (both discrete and continuous), the

next position pt+1 is updated using semi-implicit Euler integration, meaning it is computed based on the next

velocity vt+1 rather than the current velocity vt. In Pendulum, the next position is updated via regular Euler

integration, using the current velocity vt. In CartPole, either regular Euler integration or semi-implicit Euler

integration can be selected. In Acrobot, integration is performed using the Runge-Kutta method.
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After the state update, the next reward rt+1 is updated as follows:

rt+1 = Reward(st+1, st, Ft), (5)

where Reward is a function of the updated state st+1, the pre-update state st, and the applied force/torque

Ft corresponding to the action. The reward function can take various forms, such as quadratic or boolean. The

next observations ot+1 are given by:

ot+1 = getObs(st+1, st, Ft). (6)

In general, the observations ot and the states st are not identical. For instance, in Pendulum, the state consists

of the pendulum’s angle and angular velocity (dimension = 2), whereas the observation represents the angle

using its sine and cosine components instead (dimension = 3).

The objective of the algorithm is to enable an agent to make effective sequential decisions in a dynamic

environment. The DRL algorithm receives observations of the environment and, in some cases, the underlying

state, along with the corresponding rewards. Based on this information, the algorithm outputs an action to be

executed. The goal is to solve the decision-making problem by learning an optimal policy that adapts to the

environment’s dynamics and selects actions that maximize cumulative rewards over time. The learning is done

by training a deep neural network (DNN) to approximate the value function or the policy, which is updated

iteratively based on the agent’s interactions with the environment, allowing it to improve decision-making over

time.

Unfortunately, the design and implementation of DRL algorithms for applying the optimal force/torque as

an intended action in Gym’s classic control environments do not account for the agent’s uncertainty caused by

the actuator’s internal dynamics. Our approach is to generalize the action mechanism so that the force/torque

in (1) incorporates the uncertainty introduced by the inner dynamics of an actuation system, such as a DC

motor. Additionally, we extend the DRL block diagram in Fig. 1 to be based on a closed-loop tracking control

framework, as illustrated Fig. 2.

Controller Plant+
ue

x

−
xref

Fig. 2. An illustration of a reinforcement learning framework with closed-loop tracking control considered in this paper.

In control theory notation, the state vector x is fed back and compared with a reference signal xref. The

resulting error, e = xref−x, is input to the Controller block (analogous to the Agent), which generates a control

signal u (corresponding to the Action). This control signal u is then applied to the Plant block (analogous to

the Environment), producing a new state x, and the loop continues.
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B. The Control-Optimized Deep Reinforcement Learning (CO-DRL) Framework for AI-Driven Autonomous

Systems

We model the agent’s uncertainty by defining the force/torque in (1) as the desired force/torque rather than

the actual one. This desired force/torque, along with the actuated body’s velocity, is input into a subsystem

comprising a DC motor electrical circuit and a PID controller.

1) Integration of DC Motor and PID Controller into the CO-DRL Framework: For simplicity and as a

proof of concept, we assume a linear relationship between force and electrical current, as well as between the

voltage drop across the DC motor (the BEMF) and the velocity of the body (in m/sec). These assumptions are

motivated by fundamental mechanical relationships:

τ = r × F, (7)

v = ω × r, (8)

where τ represents torque, F denotes force, v is the linear velocity, ω is the angular velocity, and r is the arm

parameter or the rotation radius. In the DC motor model, the following linear relationships hold:

τ = kT i, (9)

VBEMF = kEω, (10)

where i represents the electrical current fed into the DC motor, VBEMF is the voltage drop on the DC motor,

and kT and kE are the torque constant and the BEMF constant, respectively. The discrete time version of the

electrical current it in a DC motor is given by:

it+1 = it +
ut − V BEMF

t −Rit
L

∆t (11)

where ∆t denotes the integration time, ut the voltage control input, R is the resistor, and L is the inductor.

The voltage control input ut is constructed by a PID controller subject to the electrical current error (defined

later in (19)). A typical PID controller in discrete time has the following structure:

ut = kP et + kIIet + kDDet , (12)

where

Iet = Iet−1
+ et∆t, (13)

Det =
et − et−1

∆t
. (14)

Here, Iet represents the recursive approximation of the integral of the error, Det is the approximation of the

error’s derivative, and kP , kI , and kD are the PID gains for the proportional, integral, and derivative terms,

respectively. However, we modify the standard PID control structure by introducing the kEω term to compensate

for the BEMF, enabling pre-analysis of the DC electrical circuit without a motor. Additionally, we apply a

saturation to the control signal, i.e.,
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utemp
t = kP et + kIIet + kDDet + kEω,

ut = sat(utemp
t ,−umax, umax),

(15)

where,

sat(u, umin, umax) =


umin, u < umin,

u, umin ≤ u ≤ umax,

umax, u > umax.

For each input ut in (12), a new electrical current it+1 is calculated using (11), which generates the actual

torque (9) on the mechanical system. Thus, the actual torque (and force) is assumed to be linearly related to

the subsequent electrical current:

Ft+1 = kT it+1. (16)

2) Architecture of the Complete CO-DRL Framework for Autonomous Systems: We now introduce the

complete CO-DRL framework for autonomous systems. To define the agent’s actions in terms of a desired

force/torque, we reformulate (1) as follows:

F desired
t = ActionFeature(at) = F desired{at}, (17)

where the superscript desired refers to a desired force/torque. Using (9), we compute the desired electrical

current as a reference value

iref
t = F desired

t /kT , (18)

and the error

et = iref
t − it. (19)

To construct the electrical model of the DC motor, we extract the velocity of the actuated body from the current

state st as it corresponds to the motor speed. Let

wt = ActuatedVelocity(st) (20)

represent the velocity of the actuated body. The error et and the actuated velocity wt are fed into a DC motor

sub-environment, which then generates the next actual force/torque based on (11), (13)-(16):

Ft+1 = DCMotorENVStep(et, wt), (21)

and this computed version of the actual force/torque Ft+1 is then used in the state update equation (2). Notably,

in this formulation, Ft+1 depends on at rather than Ft.

Our proposed approach is illustrated in Fig. 3. Fig. 3(a) illustrates a novel extension of the DRL framework

to address uncertainty in action execution by optimizing system operation through key components: Action

Features, Actuated Velocity, and CTRL+DC Motor. Specifically, in addition to feeding the current state st and

reward rt into the Agent component, st is also processed by the Action Features component, which extracts the

velocity associated with the actuated body via the DC motor (20). This velocity is then fed into the CTRL+DC
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Motor component. The agent’s current action at is mapped to a desired force/torque via the Action Features

component (17), which is subsequently passed to CTRL+DC Motor. The CTRL+DC Motor component is a

key enhancement that determines the actual force/torque applied to the main mechanical environment (MECH

ENV), which in turn generates the next state st+1 (as per (2)) and the corresponding reward rt+1 (as per (5)).

Further details on the CTRL+DC Motor component are provided in Fig. 3(b) and elaborated on in the following

discussion.

In Fig. 3(b), we illustrate the implementation of the feedback tracking control loop for tracking the applied

force/torque. The DC Motor component models the electrical equation for updating the electrical current (11),

while the CTRL component governs the control process based on the error between the reference electrical

current iref
t and the actual current it (19). The actuated velocity wt is fed into both the DC Motor and CTRL

components, though with distinct roles. When fed into the DC Motor component, wt influences the motor speed

(an internal state) and generates an actual BEMF voltage within the electrical circuit. Conversely, when fed

into the CTRL component, wt is measured (or estimated) and incorporated into the control law by multiplying

it by the constant kE . This artificially generates the BEMF (based on (10)), which is then integrated into the

PID control structure (15). Further details on the PID control law structure within the CTRL component are

provided in Fig. 3(c) and discussed in the following section.
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Agent
Action

Features

MECH

ENV

at
CTRL+

DC

Motor

F desired
t

Ft+1

Actuated

Velocity

wt

rt+1

st+1

rt
st

(a) An illustration of the proposed CO-DRL framework.

1
kT

+
F desired
t iref

t
CTRL

et
DC Motor

ut
kT

it+1
Ft+1

it
−

wt

(b) An illustration of the CTRL+DC Motor component in the CO-DRL

framework.

et ∆t
1−z−1

Integrator

1−z−1

∆t

Derivative

kI
Iet

kD
Det

kP

+

kE

wt

sat(·,·,·)

(-umax,+umax)

ut

(c) An illustration of the CTRL component within the CTRL+DC

Motor component.

Fig. 3. A block diagram of the proposed CO-DRL framework for autonomous systems.

In Fig. 3(c), we illustrate the CTRL component and the PID control law structure (15), incorporating the

time-shift relation in the z-domain:

z−1{xt} = xt−1. (22)

We represent the integral using the transfer function:

∆t

1− z−1
, (23)
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and the derivative by the transfer function:
1− z−1

∆t
. (24)

The proportional, integral and derivative parts are multiplied by the coefficients kP , kI , and kD, respectively,

and summed with the the term kEwt. The final control signal ut is then passed through the Sat component to

ensure it remains within predefined bounds.

3) Pseudocode of the CO-DRL Algorithm: The CO-DRL algorithm is summarized in the following pseu-

docode in Algorithm 1. Let s0 represent the initial state of the mechanical and original environment, and

i0 the initial electrical current supplied to the DC motor. The algorithm starts at discrete time t = 0 and

loops until termination, which is indicated by the Boolean variable terminated. Termination is determined

by the environment’s conditions, such as maximum time iterations or the success/failure of meeting specific

state and action criteria. These conditions are defined by the Gym library for each environment (prior to

our development). At each step, an action at is chosen according to the DRL algorithm designed for the

environment. This action is then converted into a desired force/torque F desired
t through the ActionFeature. While

the ActionFeature is implemented within each Gym environment, we refer to it as the desired force/torque,

rather than the actual force/torque. The desired force/torque is converted into a reference electrical current iref
t ,

and the error et = iref
t − it is computed. From the current state st, the velocity of the actuated body wt, which

is related to the DC motor speed, is obtained through the ActuatedVelocity function. The actual force/torque

Ft+1 is generated based on the error et and the velocity wt by the PID controller and the DC motor electrical

equations, as described in the DCMotorENVStep(et, wt) function below the main loop (our new development

for each environment). Using the actual force/torque Ft+1, we update the state st+1, reward rt+1, observations

ot+1, time step, and the termination flag terminated.
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Algorithm 1: The CO-DRL Algorithm

Initialization s0, i0 ;

t=0;

while Not terminated do

Choose action: at;

Map action to desired force: F desired
t = ActionFeature(at);

Set reference electrical current: iref
t = F desired

t /kT ;

Compute error: et = iref
t − it;

Extract actuated body velocity: wt = ActuatedVelocity(st);

Get actual force: Ft+1 = DCMotorENVStep(et, wt);

Update state: st+1 = EnvStateUpdate(st, Ft+1);

Get new reward: rt+1 = Reward(st+1, st, Ft+1) ;

Get new observations: ot+1 = getObs(st+1, st, Ft+1);

t = t+ 1;

Update terminated flag as necessary;

end

Function DCMotorENVStep(et, wt):

Get previous error et−1, and previous error integral Iet−1 saved in DCMotorENV;

Update integral: Iet = Iet−1
+ et∆t;

Update derivative: Det =
et−et−1

∆t ;

Compute voltage input:

ut = sat(kP et + kIIet + kDDet + kEwt,−umax, umax);

Update current: it+1 = it +
ut−V BEMF

t −Rit
L ∆t;

Compute actual force: Ft+1 = kT it+1;

return Ft+1;

4) Open Source Software: For the benefit of researchers and developers in related fields, we developed

an open source software implementation of the CO-DRL framework for autonomous systems. Practitioners in

related fields are welcome to integrate our implementation in their working environment. Our implementation

was developed using Python and is available at GitHub (see link in [1]). The implementation details of the

open source software are described in the Appendix.

III. EXPERIMENTAL RESULTS

In this section, we present a comprehensive experimental study to evaluate the performance of the CO-

DRL algorithm, which accounts for uncertainties in action execution due to the internal dynamics of AI-driven

autonomous systems. We conduct simulations using various fixed values for the PID controller’s coefficients,

representing a manual tuning approach. These simulations reflect scenarios where the PID controller within the

DC motor functions as a black box from the DRL designer’s perspective.

Table II provides a summary of all Gym environments used in our implementation, and Fig. 4 provides the

illustrations of those Gym environments. It details the following aspects: the type of desired action (continuous
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or discrete), the DRL algorithm employed to determine the agent’s actions (e.g., DDPG, DQN, etc.), and the

Python platform used for implementing the DRL algorithm (e.g., TensorFlow, PyTorch).

The parameters of the DC motor’s electrical circuit remain consistent across all environments with the

following values: resistance R = 1 Ω, inductor L = 0.1 H, torque constant kT = 1 Volt per meter per

second (or radian per second).

TABLE II

SUMMARY OF IMPLEMENTED GYM’S ENVIRONMENTS

Gym ENV

Disc./Cont.

Action Algorithm Platform

Pendulum Continuous DDPG TesnsorFlow

Mountain Car

(Disc.)
Discrete

Ep. Semi-Grad

SARSA

+Tile Coding

tile3

[4], [49]

Mountain Car

(Cont.)
Continuous DDPG Pytorch

Acrobot Discrete DQN Pytorch

Cartpole Discrete PPO TesnsorFlow

(a) Pendulum environment (b) Mountain Car environment

(c) Acrobot environment (d) Cartpole environment

Fig. 4. Illustrations of the OpenAI Gym environments that have been restructured and augmented in this work to capture the complexities

of real-world action uncertainties.
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A. Solving the Pendulum Environment

In the Pendulum environment, a pendulum is attached to a fixed point at one end, while the other end is free.

which is allowed to move along the x-axis, as illustrated in Fig. 4(a).

The goal of this environment is to apply torque to the free end of the pendulum to swing it upright, positioning

its center of gravity above the fixed point. The state space consists of the pendulum’s angle θ ∈ [−π, π] (radians)

and angular velocity θ̇ ∈ [−8, 8] (rad/sec). The observation space represents the pendulum’s position in Cartesian

coordinates, where x = cos(θ) and y = sin(θ), with x, y ∈ [−1, 1]. The action space is a continuous torque

input ranging from [−2, 2] Nm. In our approach, action feature extraction is defined by:

F desired
t = sat(at,−max torque,+max torque), (25)

where at is the action input, max torque=2 denotes the nominal value of the maximal desired torque to be

applied, and F desired
t the result of the desired torque to be fed into the PID control to generate the actual torque

Ft+1. The reward is defined by:

rt+1 = −θ2t − 0.1θ̇t
2 − 0.001F 2

t+1. (26)

In Gym, the reward is updated before the state update. The minimum reward is -16.27, and the maximum is

zero (when the pendulum is upright, with zero velocity and no torque). The episode is truncated after 200 time

steps, each lasting 0.05 seconds.

The agent’s desired action architecture is DDPG. The actor’s neural network (NN) consists of: an input

layer (2 units), two hidden layers (64 units each, with Rectified Linear Unit (ReLU) activation), and an output

layer (1 unit, with Tanh activation, multiplied by 2). The critic’s NN has the following structure: State input

layer (2 units), state output layer (1 unit, ReLU), action input layer (1 unit), action output layer (32 units,

ReLU), followed by concatenated state and action layers, two hidden layers (256 units each, ReLU), and a final

output layer (1 unit). Other parameters include: learning rates αactor = 0.001 and αcritic = 0.002, discount factor

γ = 0.99, target NN update parameter τ = 0.005, 500 episodes, and the ADAM optimizer.

The results are shown in Fig. 5. With PID coefficients KP = 1, KI = 20, and KD = 1e − 6, the desired

torque was tracked almost perfectly (Fig. 5(b)), yielding similar agent performance, reward (Fig. 5(a)), and

pendulum observations (Figs. 5(c) to 5(f)) compared to the ideal environment. Within 10 seconds, the agent

successfully held the pendulum vertically (x = 1, y, θ, θ̇ = 0).

B. Solving the Mountain Car Environment

This subsection covers solutions for both versions of the Mountain Car environment (Fig. 4(b)): the discrete

version (Mountain Car in Gym) and the continuous version (Mountain Car Continuous in Gym).

The goal is to drive the car to the top of the right hill, starting from the bottom of the left hill. The state

(and observation) space is continuous, including the car’s position along the x-axis x ∈ [−1.2, 0.6] (in meters)

and velocity v ∈ [−0.07, 0.07] (in m/sec). The action space applies a force (in N) between −1 and +1. In the

continuous version, the action space is [−1, 1], defining the action feature as F desired
t = sat(at,−1,+1). In the
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(a) Average Episodic Reward (b) Desired Torque and Actual Torque

(c) Vertical Position x = cos(θ) (Positive Direction: Up) (d) Horizontal Position y = sin(θ) (Positive Direction: Left)

(e) Angle θ = atan2(y, x) (f) Angular Velocity θ̇

Fig. 5. Simulation results for the Pendulum environment. Simulation parameters: KP =1, KI =20, KD =1e-6.

discrete version, there are three action indices at ∈ {0, 1, 2}, mapping to forces F desired
t = at − 1 ∈ {−1, 0, 1}.

State updates in Gym’s Mountain Car environment follow the dynamic equations below [50]:

vt+1 = vt + CfFt+1 − Cg cos(3xt), (27)

xt+1 = xt + vt+1. (28)

The new velocity vt+1 and position xt+1 are clipped to [−0.07, 0.07] and [−1.2, 0.6], respectively. The ac-

tual applied force is Ft+1 (Ft+1 = F desired
t in the original environment). Constants include Cf for force

(self.force=0.001 in the discrete version, self.power=0.0015 in the continuous version) and Cg

for gravity (self.gravity=0.0025). Since position updates (28) mix terms with different units—position

in [m] and velocity in [m/sec]—Gym assumes a 1-second integration time, which may be too coarse for state

updates and PID control. To refine this, we adopt a continuous formulation using integral equations:

v(t+∆t) = v(t) +

∫ t+∆t

t

[
CfF (t′)− Cg cos(3x(t

′))
]
dt′, (29)

x(t+∆t) = x(t) +

∫ t+∆t

t
v(t′ +∆t)dt′. (30)

Integration occurs over the interval [t, t + ∆t] with ∆t = 1 second (as in the original environment), but the

integrals are approximated using a Riemann sum with a finer partition ∆t′ < 1 (e.g., 0.05). This approach,
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detailed in Algorithm 2, introduces an inner loop. The state st updates every ∆t, while integration occurs

at intervals of ∆t′ = ∆t/N for some N ∈ N. Before entering the loop, the desired force F desired
t is set as

a reference, and the current state is stored in a temporary variable s′ = st. The loop iterates from 0 to ∆t

(excluding ∆t) with step ∆t′ (similar to numpy.arange in Python). Within each iteration, the temporary

velocity w′, actual force F ′, and next state s′ are updated. The GetActualForce function encapsulates force

computation, including conversion to reference current, error calculation, PID control, and current-to-force

conversion. To keep the algorithm concise, step-by-step details are minimized (see Algorithm 2 for further

explanation).

Algorithm 2: Inner Loop Integration for State Update

Initialization s0, ∆t;

∆t′ = ∆t/N ;

t=0;

while Not terminated do

Choose action: at;

F desired
t = ActionFeature(at);

s′ = st;

for t′ ∈ arrange(start=0, stop=∆t, step=∆t′) do

w′ = ActuatedVelocity(s′);

F ′ = GetActualForce(F desired
t , w′);

s′ = EnvStateUpdate(s′, F ′);

/* e.g., s’+=func(s’,F’)∆ t’ */

end

st+1 = s′;

Ft+1 = F ′;

rt+1 = Reward(st+1, st, Ft+1) ;

ot+1 = getObs(st+1, st, Ft+1);

t = t+ 1;

Update terminated flag as necessary;

end

In the discrete Mountain Car environment, the reward is −1 per time step (∆t = 1 second) with no additional

reward for reaching the goal. In the continuous version, the reward is a negative quadratic function of the applied

force: rt+1 = −0.1F 2
t+1, where the −0.1 factor follows Gym’s original design for consistency. Additionally, a

reward of +100 is given if the cart reaches the goal. The reward function is defined as:

rt+1 = 100 · [xt+1 ≥ xGoal]− 0.1F 2
t+1, (31)
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where xGoal = 0.45 is the goal position at the top of the right hill, and [xt+1 ≥ xGoal] is a Boolean indicator (1

if true, 0 otherwise).

The episode ends if the car’s position exceeds the goal (xGoal = 0.45 in the continuous version, xGoal = 0.5

in the discrete) or if the episode reaches 999 steps (continuous) or 200 steps (discrete).

For the discrete case, the agent’s desired action is modeled using Tile Coding and Episodic Semi-Gradient

SARSA. Tile Coding parameters include 8 tilings, 3 actions, 2 state variables, and a total of 1,944 tiles, with

a learning rate of 0.0375. The Episodic Semi-Gradient SARSA parameters are a discount factor γ = 1.00, an

epsilon-greedy parameter ε = 0.001, and 600 episodes.

For the continuous case, the agent’s desired action is modeled using DDPG. The actor network consists of

an input layer of size 2 (number of observations), followed by two fully connected hidden layers with 64 units

each and ReLU activation, and an output layer with one unit and Tanh activation. The critic network processes

the state through an input layer of size 2 and a fully connected output layer with 64 units and ReLU activation.

The action is processed through a separate input layer of size 1 before being concatenated with the state output.

This is followed by a fully connected hidden layer with 64 units and ReLU activation, and a final output layer

with one unit. Other parameters include a learning rate of 1e-3 for the actor and 4e-5 for the critic, a discount

factor γ = 0.85, target network update parameter τ = 0.45, 200 episodes, and the ADAM optimizer.

For the discrete version (Fig. 6), results with KP = 1, KI = 1, and KD = 1e − 2 show that while force

tracking (Fig. 6(b)) was imperfect and took time to converge, the car reached the goal in under 85 seconds

(Fig. 6(c)), outperforming both the ideal environment (160 sec) and a setup with perfect force tracking (100

sec for KP = 2, KI = 10, KD = 1e − 6). The average reward over the last 50 episodes was approximately

-114 (Fig. 6(a)).
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(a) Accumulated Episodic Reward (b) Desired Force and Actual Force

(c) Horizontal Position x

Fig. 6. Simulation results for the Discrete Mountain Car environment. Simulation parameters: KP =1, KI =1, KD =1e-2.

For the continuous version (Fig. 7, using KP = 1e − 1, KI = 10, and KD = 1e − 3, force tracking was

nearly perfect (Fig. 7(b)), reward converged to ∼ 95 (Fig. 7(a)), and the car reached the goal in 75 seconds

(Fig. 7(c)).
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(a) Accumulated Episodic Reward

(b) Desired Force and Actual Force

(c) Horizontal Position x

Fig. 7. Simulation results for the Continuous Mountain Car environment. Simulation parameters: KP =1e-1, KI =10, KD =1e-3.
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C. Solving the Acrobot Environment

Acrobot Environment (Fig. 4(c)) is a mechanical system consists of two connected links forming a chain

with one end fixed. An external torque (in [Nm]) actuates the joint between the links, aiming to swing the free

end upright.

The State Space includes the first joint’s angle θ1 and angular velocity θ̇1, along with the relative angle θ2

and its velocity θ̇2. The Observation Space represents angles using cos θ1, sin θ1, cos θ2, and sin θ2.

The action space is discrete with three options, at ∈ {0, 1, 2}, defining the desired torque as F desired
t =

at − 1 ∈ {−1, 0, 1}. This torque is processed by a PID controller and DC motor to generate a continuous

actual torque Ft+1. The state updates follow a 4th-order Runge-Kutta method with a 0.2-second interval. We

implement a 10-step integration, as in Algorithm 2, similar to the Mountain Car Environment, using a step size

of 0.02 seconds.

The agent’s desired action is determined using a DQN with a NN comprising an input layer of size 6 (equal

to the number of observations), two fully connected hidden layers with 64 and 128 units respectively, both

using ReLU activation, and an output layer with 3 units (equal to the number of actions). The model parameters

include a learning rate of α = 1e − 3, a discount factor of γ = 0.99, 500 training episodes, and the ADAM

optimizer.

Results are shown in Fig. 8. For KP = 1, KI = 10, and KD = 1e − 6, the desired torque is well-tracked

(Fig. 8(b)), the reward converges to approximately -200 (Fig. 8(a)), and the Acrobot reaches the goal in about

25 seconds (Fig. 8(c)).

(a) Average Episodic Reward (b) Desired Torque and Actual Torque

(c) − cos(θ1)− cos(θ1 + θ2)

Fig. 8. Simulation results for the Acrobot environment. Simulation parameters: KP =1, KI =10, KD =1e-6.
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D. Solving the Cartpole Environment

In the Cartpole environment (Fig. 4(d)), a pole is attached to a cart that moves along the x-axis. The state

space includes the cart’s position x and velocity ẋ, as well as the pole’s angle θ and angular velocity θ̇. At

each time step, the agent applies a force of either -10 N (left) or +10 N (right):

F desired
t =

−10, at = 0,

+10, at = 1.

(32)

Although the action space is discrete, mapping to desired forces of ±10 N, the actual force Ft+1 from the DC

motor is continuous, regulated by a PID controller. The pendulum starts upright, and the objective is to keep

it balanced. The agent earns a reward of +1 for each time step the pole remains upright. The cart’s position is

constrained to [−2.4, 2.4] meters, and the pole’s angle to [−0.2095, 0.2095] radians (or [−12◦, 12◦]); exceeding

these limits results in failure. The reward function is given by:

rt+1 =

1, xt+1 ∈ [−2.4, 2.4] and θt+1 ∈ [−0.2095, 0.2095]

0, xt+1 /∈ [−2.4, 2.4] or θt+1 /∈ [−0.2095, 0.2095].

(33)

The episode ends when the pole falls (rt+1 = 0) or remains upright for N time steps—500 in cartpole-v1, 200

in cartpole-v0—each lasting 0.02 seconds. The maximum reward per episode is N .

To evaluate our algorithm, we modified the cartpole environment and PID controller. First, we adjusted the

arm length r in the torque-force and velocity relations to keep the desired action signal within a reasonable

range. Instead of tracking a torque of ±10 Nm (with r = 1 m), we set r = 0.15 m, resulting in a lower torque of

±1.5 Nm. Second, we reshaped the reward function by penalizing the agent (reducing the reward from 1 to 0)

whenever the cart’s position exceeded |x| > 0.1, without terminating the episode. This encourages the agent to

keep the cart near x = 0 while avoiding the termination zone at |x| > 2.4. Lastly, we introduced a feedforward

term Kffi
ref
t into the control signal ut to improve tracking of the fast-switching reference current. The control

law was modified accordingly, incorporating Kff = 0.6, along with KP = 4.3, KI = 1, and KD = 1e−6.

The agent’s desired action is determined using PPO-clip with a NN consisting of an input layer of size 4

(number of observations), two fully connected hidden layers with 64 units each and Tanh activation, and an

output layer distinguishing between the actor and critic. The actor has two units computing logits, with actions

sampled from a categorical distribution based on log probabilities. The critic has one unit estimating the value

function. Key parameters include a learning rate of 3×10−4 for the actor and 1×10−3 for the critic, a discount

factor γ = 0.99, Generalized Advantage Estimation parameter λ = 0.97, clipping ratio ϵ = 0.2, 60 training

epochs, 4000 time steps per epoch, a target Kullback–Leibler Divergence (KLD) of 0.01, and optimization using

ADAM.

The learning process runs for 60 epochs with up to 4000 time steps per epoch. A new episode begins upon

termination (pole falling) or reaching the time limit, whichever comes first, with policy and value function

updates occurring within episodes. Each epoch records the number of episodes, average episodic return, and

average episode length, which differ due to the penalty imposed for keeping the cart within [−0.1, 0.1]. After
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training, the model was tested for 500 time steps (10 seconds) or until termination, with results presented in

Fig. 9.

From the learning graphs of average episodic reward, episode length, and number of episodes per epoch

(Fig. 9(a)), we observe that initially, there are many episodes as the agent tries to keep the pole upright, with

higher rewards and episode lengths. As training progresses, the reward and episode length averages increase up

to the 4000 step limit, while the number of episodes decreases to 1. This indicates that the agent has kept the

pole upright for the full epoch, though the average reward may not reach 4000. For example, in epoch 32, the

episode length jumps to 4000, but the reward averages 240 due to occasional zero rewards when the cart is near

the edges of the allowed region. After epoch 35, the average reward approaches 4000 within a single episode.

In the action graph (Fig. 9(b)), the actual torque (red) closely tracks the desired torque (blue), with the error

(green) bounded within ±0.1 [Nm]. From the graphs of the pole’s angle (Fig. 9(c)) and the cart’s position (Fig.

9(d)), we see that the agent successfully kept the cartpole within the required bounds (cart position between

[-2.4, 2.4] and pole angle between [-0.2095, 0.2095]). Additionally, through our reward shaping (penalizing the

agent with zero reward for cart positions outside [-0.1, 0.1]), the agent was encouraged to keep the cart near

the origin rather than an arbitrary point within the range.

IV. CONCLUSION

In this research, we introduced a novel DRL framework that incorporates control theory to address uncer-

tainties in action execution. By distinguishing between the Planner, which determines the desired action, and

the Controller, which selects the control signal to align execution, our approach optimizes both processes in a

unified manner.

Through simulations in various mechanical environments, we demonstrated the framework’s robustness in han-

dling execution uncertainties. Integrating control mechanisms into DRL enhances adaptability and performance,

particularly in automation and robotics, where precise execution is crucial. Our results highlight the importance

of addressing real-world uncertainties to improve the reliability of AI-driven decision-making systems.

Our findings bridge the gap between high-level decision-making and low-level execution, offering a practical

solution for deploying DRL in real-world applications. The open-source implementation provides a valuable

resource for practical adoption, and this work has the potential to contribute to the broader success of DRL

in automation and control. By enhancing robustness and adaptability, this approach paves the way for more

effective deployment of AI-driven systems in dynamic and uncertain environments.
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(a) Simulation results of Average Episodic Reward (blue star),

Average of Episode’s Length (red square) and Number of

Episodes (green dot) in each epoch.

(b) Desired Torque and Actual Torque

(c) Pole’s angle, θ (d) Cart’s position, x

Fig. 9. Simulation results for the Cartpole environment. Simulation parameters: KP =4.3, KI=1 and KD=1e-6. Additionally, the

force-to-torque ratio is 0.15 (torque = 0.15×force), and the control voltage ut includes an additive feedforward term of 0.6iref
t .

V. APPENDIX

A. Implementation Details of the Open Source Software

This appendix summarizes the implementation details of our open-source Python software ( [1]). For each

Gym classic control environment, we provide a Python notebook implementing feedback control on the desired

action using a PID controller and a DC motor model (see Fig. 10 for the list of notebooks). Each notebook

includes:
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Fig. 10. The project’s directory of the feedback control of the desired action in GitHub [1]

1) A customized version of Gym’s classic control environment class, incorporating a DC motor model. This

model calculates the actual force/torque applied based on the desired input, the actuated body’s velocity, and a

PID-controlled DC motor field. Users can modify system parameters or adjust reward shaping.

2) A new ElectricalDCMotorEnv() class, defining DC motor parameters (e.g., resistor, inductor, torque

and voltage constants) and PID control settings. It also offers optional approximations for integral and derivative

components via low-pass and high-pass filters. The motor model updates electrical current at each step and

outputs the applied force/torque.

3) A DRL implementation for selecting the desired action. For instance, we use DDPG in TensorFlow for

the Pendulum environment, but users can employ different frameworks (e.g., PyTorch) or test custom DRL

algorithms.

4) Training and test results, showing accumulated rewards over episodes and comparisons of desired vs. actual

force/torque, along with state/observation graphs.
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