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Abstract

High-accuracy and low-latency 3D object detection is
essential for autonomous driving systems. While previous
studies on 3D object detection often evaluate performance
based on mean average precision (mAP) and latency, they
typically fail to address the trade-off between speed and ac-
curacy, such as 60.0 mAP at 100 ms vs 61.0 mAP at 500 ms.
A quantitative assessment of the trade-offs between differ-
ent hardware devices and accelerators remains unexplored,
despite being critical for real-time applications. Further-
more, they overlook the impact on collision avoidance in
motion planning, for example, 60.0 mAP leading to safer
motion planning or 61.0 mAP leading to high-risk motion
planning. In this paper, we introduce latency-aware AP (L-
AP) and planning-aware AP (P-AP) as new metrics, which
consider the physical world such as the concept of time and
physical constraints, offering a more comprehensive eval-
uation for real-time 3D object detection. We demonstrate
the effectiveness of our metrics for the entire autonomous
driving system using nuPlan dataset, and evaluate 3D ob-
ject detection models accounting for hardware differences
and accelerators. We also develop a state-of-the-art per-
formance model for real-time 3D object detection through
latency-aware hyperparameter optimization (L-HPO) using
our metrics. Additionally, we quantitatively demonstrate
that the assumption “the more point clouds, the better the
recognition performance” is incorrect for real-time appli-
cations and optimize both hardware and model selection
using our metrics.

1. Introduction

As autonomous driving technology advances, the ability to
perceive and understand the environment is crucial. While
2D object detection has been a mainstay in computer vi-
sion, 3D object detection is vital for autonomous vehicles
to navigate complex environments safely. 3D object detec-
tion is more challenging than 2D object detection because
it requires understanding both position and orientation with
more dimensions, which is critical for tasks such as colli-

sion avoidance in motion planning. Research in 3D object
detection has focused on the average precision (AP) met-
ric, with state-of-the-art models being evaluated based on
mean average precision (mAP) using open datasets such as
nuScenes [7] and Waymo Open Dataset [38].

However, when considering real-time applications in
robotics, such as autonomous vehicles, traditional evalua-
tion metrics like mAP may not accurately reflect real-world
performance. As shown in Fig. 1, a model might achieve
a high mAP yet still perform poorly in practice. Fig. 1 (a)
shows the case where detection accuracy is high, but infer-
ence time is too long. This is primarily because 3D object
detection metrics have been adapted from those used in 2D
object detection, which do not account for the dynamics of
robotic systems. Evaluation in computer vision is typically
conducted in a static environment, whereas robotics oper-
ates in a time-dependent context. As shown in Fig. 1, while
the error in image space is small even with 500 ms latency
and IoU (Intersection over Union) is sufficient in 2D ob-
ject detection, the results show discrepancies, as the IoU in
the BEV (Bird’s Eye View) space approaches 0 in 3D ob-
ject detection. Moreover, Fig. 1 (b) shows the model may
treat yaw measurements for large and small vehicles identi-
cally, even though larger vehicles’ yaw fluctuations have a
greater impact. Additionally, Fig. 1 (c) shows failure to de-
tect critical objects for motion planning can lead to unsafe
conditions, highlighting the gap between traditional mAP
metrics and real-world safety requirements.

For issue of latency, while previous works on 3D object
detection often evaluate performance based on mean aver-
age precision (mAP) and latency, they typically fail to ad-
dress the trade-off between speed and accuracy, such as 60.0
mAP at 100 ms vs 61.0 mAP at 500 ms. A quantitative as-
sessment of the trade-offs between device variations and ac-
celerators has yet to be researched, despite being critical for
real-time applications. Moreover, even in cases where per-
formance improves using large data inputs, such as merge of
multi-frame LiDAR pointcloud, a trade-off between perfor-
mance and inference time exists, which has yet to be quan-
titatively assessed. In practical applications, while using
more powerful GPUs or employing accelerators like Ten-
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Figure 1. The cases where a high score on existing mAP does not correspond to practical performance. Grey objects represent ground truths
(GTs), while color objects represent prediction (Pred) results. The image of (a) shows inference latency for 2D and 3D object detection.
Blue objects represent the results with a latency of 0 ms, while orange objects represent the results with a latency of 500 ms.

sorRT to reduce latency can sometimes “improve recogni-
tion performance,” evaluations have thus far been limited
to assessments along the latency axis only. In addition to
latency, they leave the impact on collision avoidance in mo-
tion planning, for example, 60.0 mAP leading to safer mo-
tion planning or 61.0 mAP leading to high-risk motion plan-
ning. Even if the mAP is high, a model becomes unusable if
it fails to detect objects that are critical for motion planning.

To address these issues, we rethink about the metrics for
3D object detection in the context of the physical world,
especially “time” and “’spatial perception”. It becomes evi-
dent that current evaluation methods in 3D object detection
do not account for ’time,” a fundamental concept in physics
with a long research history. Moreover, current evaluation
methods do not account for “’spatial perception”, a funda-
mental for motion planning which need the information to
avoid collision for planning-aware objects. In this study, we
proposes metrics for 3D object detection in real-time appli-
cations, by incorporating the concept of physicality. The
primary contribution of this work is to bridge the gap be-
tween academic algorithms in robotics perception and those
suitable for real-world implementation, advancing the de-
velopment of robotics perception. Specifically, we make
three key contributions:

1. We introduce latency-aware AP (L-AP) and planning-
aware AP (P-AP) as new evaluation metrics, and demon-
strate their effectiveness as a metrics for motion planning

in real-world scenarios using nuPlan dataset.

2. We evaluate current baseline 3D object detection models
accounting for device differences and the use of acceler-
ators using our metrics, and develop a high-performance
model for real-time 3D object detection that surpasses
existing models by performing latency-based hyperpa-
rameter optimization.

3. We show the optimal amount of point cloud in real-time
3D object detection and the optimization for hardware
and model selections through quantitative evaluation.

2. Related Work

Real-time 3D object detection. 3D object detection [9, 30]
is mainly divided into LiDAR-based and camera-based ap-
proaches. Researchers have developed 3D object detection
models using LiDAR point cloud [33, 34, 36, 37, 46, 47,
49, 53]. PointPillars [21] stands out as a model with perfor-
mance and speed, representing a breakthrough for LiDAR-
based 3D object detection in real-time robotics. Center-
Point [51] simplifies the architecture by using a center-
based representation, making it a popular baseline and prac-
tical choice in industry applications. There has also been
research into 3D object detection models based on camera-
LiDAR fusion [10, 13, 15, 16, 22, 24, 25, 27, 35, 40, 41].
TransFusion [4] is a baseline model using an attention-
based method. BEVFusion [29] unifies bird’s-eye view



(BEV) representation from multiple sensors and improves
the performance. Camera-based 3D object detection also
has been developed in computer vision researches [3, 39].
LSS [32] is commonly used as a baseline method in camera-
based 3D object detection, where it lifts 2D image features
to a BEV grid in 3D space. Recently, multi-camera 3D
object detection models have gained attention [14, 19, 23,
43,45, 48, 52]. BEVFormer [26] represents a breakthrough
in multi-camera 3D object detection using the transformer
mechanism and BEV representation, which transforms lo-
cal image features from a 2D image encoder into BEV
space. Several studies have focused on improving real-time
performance in 3D object detection. [44] proposes an eval-
uation method for LiDAR-based 3D object detection that
considers computational costs and adjusts the model ac-
cordingly. LidarNAS [28] uses neural architecture search
(NAS) to enhance real-time 3D object detection. UTR3D
[11] aims to achieve real-time 3D object detection with a
cost-effective sensor kit.

Metrics for 3D object detection. As metrics for 3D ob-
ject detection, the most common evaluation metric is Aver-
age Precision (AP), which extends the 2D mAP metric by
assessing object detection accuracy in 3D space, account-
ing for both spatial overlap and object localization across
all three dimensions. nuScenes detection score (NDS), pro-
posed in the nuScenes dataset [7], combines various per-
formance metrics including AP, orientation, and velocity to
evaluate detection performance. In Waymo Open Dataset
[38], not only AP but also AP weighted by heading (APH)
is used for 3D object detection.

In addition to the major metrics proposed from datasets,
several metrics have been reported to improve detection
performance. Stability index [42] provides the metrics of
consistency of 3D object detection models to create sta-
ble 3D object detection model. Pl-metrics [18] introduce
a planning cost function into perception evaluation and an-
alyze the relationship between perception failures and mo-
tion planning. OMNI3D [6] raises concerns about the ad-
equacy of IoU as the sole evaluation metric for 3D object
detection performance. LET-3D-AP [17] introduces a mod-
ified 3D AP that accounts for longitudinal errors, improving
the evaluation of camera-only 3D object detection. Long-
range Detection Score (LDS) [50] focuses on long-range
3D object detection. MultiCorrupt [5] evaluates the robust-
ness of LIDAR-camera fusion models for 3D object detec-
tion, with an emphasis on diverse sensor data corruptions.
Object Criticality Model [8] shows the importance of as-
sessing object detection systems not only for accuracy but
also for their safety and reliability. MTBF model [31] aims
to construct safety evaluation considering perception error.

[8, 18, 31] analyze the relationship between task-driven
metrics, however, they do not focus on developing higher-
performance models while considering latency. [5, 6, 17,
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Figure 2. The metric of L-AP. L-AP measures the accuracy of
detection at the moment when the inference is completed, consid-
ering the latency involved.

Table 1. Evaluation results with P-mAP for Fig. 3 (c). d. rep-
resents the error in the distance to the nearest surface. We use
distance thresholds for P-mAP as (0.5, 1.0, 1.5, 2.0) [m].

(a) (b) ()
de +0.25 | +0.75 | -0.75

Is matching? | Yes No Yes
P-mAP 1.0 0.0 0.75

Table 2. Comparison of different metrics across various cases in
Fig. 4. We use distance thresholds for mAP as (0.5, 1.0, 1.5, 2.0)
[m]. IoU is 0.55 in (b) and 0.27 in (d) and we use IoU thresholds
for mAP as (0.3, 0.5).

@ | ) | © | D | (e
mAP@IoU 0.5 1.0 | 05| 00 | 0.0
Planning-aware? | Yes | No | Yes | Yes | No
mAP@Center 1.0 | 025| 05 | 1.0 1.0
Planning-aware? | No | Yes | Yes | No | Yes
mAHS @Center 1.0 | 025 | 05 | 0.83 | 0.83
Planning-aware? | No | Yes | Yes | No | Yes
mAP@Corner 0.75 1 025 | 05 0 0.75
Planning-aware? | Yes | Yes | Yes | Yes | Yes

42, 50] apply their proposed metrics to high-performance
models but do not examine the relationship between these
metrics and downstream tasks. Furthermore, to the best of
our knowledge, no metric has been reported that incorpo-
rates latency and enables single-axis evaluation.

3. Method

3.1. Latency-aware Average Precision (L-AP)

In this work, we introduce Latency-aware Average Preci-
sion (L-AP) in the evaluation of 3D object detection, with
the goal of integrating the concept of “time” into real-time
3D object detection. As shown in Fig. 2, we measure how
accurate the detection is at the moment the inference is com-
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Figure 3. (a) Mis-detection towards unsafe and safe. If a 3D object detection model misidentifies objects as being farther away than their
actual positions, it can lead to planning errors, increasing the risk of collisions by causing inaccurate collision avoidance. In contrast,
misidentifying objects as being closer than their actual positions in 3D object detection generally results in a lower risk of collisions
in planning, showing behavior that appears to stop earlier. (b) Occlusion filtering for planning-aware objects. Occluded objects do not
significantly impact for motion planning in many cases. (c) Matching algorithm in planning-aware objects. d,, is the margin parameter
used in planning. If the distance error exceeds d,, and the object is farther than the ground truth, the object is considered not to match.

Figure 4. The case to evaluate of corner distance. Grey objects
represent ground truths, while blue objects represent prediction re-
sults. (a) Varying vehicle sizes. (b) Different vertical positions of
large vehicles. (c) Different horizontal positions of large vehicles.
(d) Yaw deviation of 7/6 in a large vehicle. (e) Yaw deviation of
/6 in a bicycle.

pleted. Specifically, we evaluate true positive (TP) metrics
by adjusting the evaluation based on the velocity multiplied
by latency, which effectively shifts the detection results in
time. To begin, 6,97, the velocity of the ground truth object
at time ¢ is calculated by

GT GT
5,67 — Ty — Tist )
t 5t )
where xfT represents the position of the object in

ground truth at time ¢, and ¢t is the time interval between
annotations. Next, we estimate the position of the object at
time (t + At) by

e = o7 + 6,97 - At, )

where At is the inference time. Note that we will dis-
cuss the accuracy of a:th_TAt in Appendix 6.2. The predicted
position at time (¢ + At) is calculated by

alred = gPred 4 pfred At — 09 AL, (3)
where z17¢? represents the position of the predicted ob-

ject at time t, v17¢? is the predicted velocity from the result

of 3D object detection at time ¢, and v;°?° is the velocity of
the ego vehicle at time .

By incorporating latency into the evaluation, we provide
a more practical metric for real-world applications of 3D
object detection. Specifically, accounting for latency allows
for a more accurate assessment of detection performance in
operational settings. First, latency highlights that evaluation
results can vary depending on the deployment hardware.
For instance, upgrading the hardware can improve detection
performance, as reduced latency leads to faster inference.
However, traditional AP metrics do not directly consider la-
tency, meaning these hardware improvements may not be
fully captured in conventional evaluations. Furthermore, in-
troducing latency enables a more consistent assessment of
the benefits provided by acceleration libraries, such as Ten-
sorRT. These libraries are designed to optimize inference
speed, and by incorporating latency into the evaluation, we
can more uniformly measure their impact on overall detec-
tion performance.

3.2. Planning-aware Average Precision(P-AP)

In the context of perception systems, mis-detection can be
categorized into two distinct types: safe mis-detection and
unsafe mis-detection as shown in Fig. 3 (a). Safe mis-
detections are those where the system’s errors do not lead
to hazardous consequences. On the other hand, unsafe mis-
detections are the ones which have the potential to cause
serious errors, such as collisions or failure to perform criti-
cal tasks. Typically, false negatives or overestimates of the
distance from an ego-vehicle to a target vehicle turn out to
be critical for planning algorithms. While traditional evalu-
ation metrics often fail to differentiate between these types



of mis-detections, it is critical for autonomous systems, par-
ticularly in real-time applications, to properly account for
unsafe mis-detections, as they pose significant safety risks.

Therefore, we propose a metric of Planning-aware Av-
erage Precision (P-AP). First, we apply occlusion filtering
to focus on planning-aware objects, as shown in Fig. 3(b).
Objects that are not occluded and have a significant impact
on motion planning are considered planning-aware objects
and included in the evaluation. Additionally, P-AP regards
mis-detections occurring at farther distances as overestima-
tion, reflecting the increased risk posed by such errors, as
illustrated in Fig. 3(c). While mis-detections closer to the
object tend to result in the system stopping safely at the
front, those occurring at greater distances can lead to dan-
gerous collisions. In robotics, it is common practice to plan
trajectories with a margin, which is often set as a parame-
ter. In this work, we define the margin parameter d,, for
planning as and set it to 0.5 [m]. In our proposed matching
process, we use the distance to the nearest surface instead
of the center position, which is often used in the matching
step in AP calculation, because motion planning should fo-
cus on the surface closest to the ego vehicle rather than the
center position. If the error of the distance of the nearest
surface d. exceeds d,,, and the object is further than ground
truth, the object is considered unsafe and not matching to
ground truth. We calculate the scores with the penalty of
farther distance in cases like those illustrated in Fig. 3 (c)
and summarized in Table 1.

In addition to filtering and matching for planning-aware
objects, we replace matching metrics from center distance
to corner distance. This modification is motivated by princi-
ples from motion planning. In motion planning, the primary
concern is not overlap-based metrics such as Intersection
over Union (IoU) or the center position but rather the safety
margin required to ensure a collision-free trajectory. Specif-
ically, the focus is on determining the necessary clearance to
avoid collisions, rather than merely assessing object prox-
imity in the detection space. In practice, the center-based
evaluation used in AP for nuScenes does not penalize mi-
nor misalignments, such as diagonal displacements, making
it suboptimal for planning purposes. Moreover, evaluation
metrics that account for yaw errors, such as AHS used in
Waymo Open Dataset [38], excessively penalizes from yaw
errors for small objects such as pedestrians and bicycles in
the same way as for trailers.

Instead of center distance, we calculate the average dis-
placement of the four corner points. First, the corner dis-
tance for each corner point d. (i) is calculated by d.(i) =

(xfred — 26TY2 (i € P), where i represents each corner

point, P is set of corner points of the bounding box, x4

is the position of the predicted object’s corner, and 87 is
the position of the ground truth object’s corner. The overall
corner distance d,. is then computed as the average of the

distances across all four corners by d. = + 3. d.(i).

In Fig. 4, we compare the performance of different met-
rics across various real-world cases, including mAP(IoU),
mAP(Center distance), mAHS, and P-mAP as shown in Ta-
ble 2. For the cases in Fig. 4 (a) and (d), P-mAP is able
to handle mis-detections of size, while AP and AHS fail to
account for this factor. In the cases of Fig. 4 (b) and (e),
P-mAP does not overestimate or underestimate the value,
showing a reasonable decrease. However, AP(IoU) tends to
produce a high score when size detection fails, or it under-
estimates the detection of small objects that are not signifi-
cantly misaligned in absolute terms.

3.3. Latency-aware Hyperparameter Optimization

Building on our previous proposals, we further conduct
latency-aware hyperparameter optimization (L-HPO) to en-
hance real-time 3D object detection. By incorporating la-
tency into the optimization process, we can achieve optimal
performance while ensuring timely decision-making and
maintaining system reliability in applications like robotics
and autonomous vehicles. Existing methods typically opti-
mize by assigning weights to both latency and metrics such
as mAP. However, by using the proposed metric, optimiza-
tion can be performed directly along an evaluation axis, en-
abling a more efficient search for the optimal model. In this
paper, we use the CenterPoint [51] model as base model
to optimize hyperparameters such as the number of layers,
the number of channels in each layer, the number of multi-
frame to merge point clouds, and the voxel size, aiming to
find the model for the highest L-mAP.

4. Experiment

4.1. Preparation

In Sec. 4.2, to evaluate the effectiveness of our metrics as
a comprehensive performance indicator for the application
based on 3D object detection, we evaluate the overall be-
havior of an autonomous driving system using nuScenes
dataset [7] and nuPlan dataset [20]. For 3D object detec-
tion, we use ground truth as prediction results and added
errors in latency of inference, yaw degree of objects, and
the position of objects to them in nuPlan dataset. To eval-
uate the contribution of the metrics to motion planning, we
use PDM-Hybrid [12] as the baseline with nuPlan dataset.
In our experiments, we use the closed-loop metric as nuPlan
score used in [12].

From Sec. 4.3 to Sec. 4.5, we evaluate 3D object detec-
tion based on our metrics using the validation dataset of the
nuScenes dataset. The hardware devices used for testing by
an RTX3090 and an RTX4060Ti. The software backend in-
cludes PyTorch and TensorRT [2], an optimized deep learn-
ing inference library by NVIDIA that accelerates latency re-
duction on GPUs. For the 3D object detection models, we



use PointPillars [21], CenterPoint[51], TransFusion-L [4]
(LiDAR-only model), BEVFusion [29], and BEVFormer
[26] (base model). LiDAR-only model of TransFusion is
prepared for comparison with BEVFusion. The inference
time for reference is based on the respective papers and their
TensorRT implementation [1].

4.2. Evaluation for Metrics

Table 3 (a) presents the results of L-mAP as latency of 3D
object detection increases. We observe that nuPlan score de-
creases in accordance with the increase in the latency, and
L-mAP also correspondingly declines. Table 3 (b) presents
the results of P-mAP with the error in yaw angle of objects.
We observe that nuPlan score decreases in accordance with
the increase in yaw difference, and P-mAP also correspond-
ingly declines. Notably, in both cases, mAP remains consis-
tently at 100.0, whereas L-mAP and P-mAP provide a more
relevant evaluation metric by incorporating planning-based
considerations. These results demonstrate that L-mAP and
P-mAP better reflect the actual performance of real-time 3D
object detection than traditional mAP.

Table 3 (c) presents the results of P-mAP with the dif-
ference in object positions. When errors are introduced to
objects close to the ego vehicle, the value of P-mAP de-
creases, and nuPlan score similarly decreases. For objects
close to the ego vehicle, when they are shifted slightly, mAP
drops from 83.2 to P-mAP 76.6, and nuPlan score increases
because the metrics related to collision risk improve. How-
ever, when these objects are displaced farther away, mAP
drops from 83.3 to P-mAP 24.7, and nuPlan score also de-
creases accordingly. This quantitatively demonstrates the
dangerous scenario of “mis-detection of nearby objects as
distant” and shows that this metric can effectively reflect
performance degradation in the planning metric. Moreover,
when objects are displaced over longer distances, the impact
on nuPlan score is smaller compared to objects displaced
nearby. This behavior is well-represented by P-mAP, which
aligns closely with the planning metric.

4.3. Benchmark with Our Metrics

In this study, we conducted an evaluation with our metrics
to assess the real-time performance of various 3D object de-
tection models, including our proposed model in Sec. 3.3.
The results are shown in Table 4. L-HPO outperforms other
models in L-mAP and demonstrates high performance for
real-time 3D object detection applications. Specifically, L-
HPO increase L-mAP by +8.4 from CenterPoint, by +1.5
from TransFusion-L, by +5.9 from BEVFusion. L-HPO
surpasses P-mAP by +9.6 from TransFusion-L and +10.6
from BEVFusion despite L-HPO being lightweight simi-
lar to PointPillars. In addition to it, it is comparable per-
formance in P-mAP to CenterPoint despite L-HPO being
lighter than CenterPoint. These results suggest that L-HPO

is a better choice in the context of real-time robotics.

As for the analysis of other models, it is noteworthy that,
when comparing TransFusion-L. and BEVFusion in terms
of L-mAP, the L-mAP of BEVFusion decreased by -4.4
(from 53.6 to 49.2) while its mAP increased by +4.1 (from
64.3 to 68.4). This indicates that the additional latency in-
troduced by Camera-LiDAR fusion led to a performance
drop in real-time 3D object detection. When comparing
BEVFormer with PointPillars between Camera-based de-
tection and LiDAR-based detection, mAP of BEVFormer
exceed the performance of PointPillars (41.7 vs 39.0), how-
ever, BEVFormer do not exceed in L-mAP (18.3 vs 38.0),
meaning that BEVFormer can be considered unsuitable for
real-time applications. CenterPoint provides highest per-
formance in terms of P-mAP, and both TransFusion-L and
BEVFusion were unable to achieve high scores in P-mAP
unlike mAP, making CenterPoint a more favorable model
for motion planning tasks in real-time applications.

Additionally, we evaluated the impact of weaker GPUs
and acceleration libraries on performance in Table 5. De-
vice performance improvements, such as reducing latency,
directly contribute to better perception performance in au-
tonomous driving systems in practical scenarios. By up-
grading from RTX4060Ti to RTX3090, we observed im-
provements in L-mAP as +15.1 in CenterPoint, +17.7 in
TransFusion-L, +18.0 in BEVFusion, and +14.1 in L-HPO.
Regarding the contribution of TensorRT acceleration, us-
ing accelerators to reduce latency improved real-time per-
formance significantly. TensorRT improved the follow-
ing models in L-mAP as +23.4 in CenterPoint, +27.1 in
TransFusion-L, +33.8 in BEVFusion, and +16.1 in L-HPO.
By using a single-axis metric for evaluation, it becomes pos-
sible to compare performance across different devices and
accelerators. For example, "RTX4060Ti + TensorRT + Cen-
terPoint” outperforms "RTX3090 + Pytorch + TransFusion-
L” in L-mAP (55.0 vs 53.6) and it suits for application with
real-time 3D object detection.

4.4. Rich Input Data Makes Better Perception?

In previous studies, merging several frame point clouds as
one input has primarily been used to improve the accuracy
of 3D object detection models. However, these approaches
have often overlooked the real-time performance require-
ments critical in real-world applications. The assumption
that a higher density of LiDAR point clouds automatically
leads to better recognition accuracy is a common, yet over-
simplified. This assumption fails to account for the con-
cept of “time”, which are fundamental in real-time appli-
cations. Despite the widespread nature of this misconcep-
tion, there is a noticeable lack of studies that quantitatively
demonstrate its impact. To address this gap, we evaluate
the optimal number of LiDAR points required for real-time
robotics. In this study, we focus on measuring latency as



Table 3. Evaluation in L-mAP and P-mAP with latency, yaw difference, and position difference using nuPlan dataset. NuPlan refers to the
score based on the closed-loop metric for nuPlan dataset. (a) Verification of effectiveness in L-mAP for latency. “Lat.” refers to latency.
(b) Verification of effectiveness in P-mAP for yaw difference. ”Yaw” refers to the yaw difference from the ground truth. (c) Verification
of effectiveness in P-mAP for the position error of planning-aware object. “Difference” refers to the positional difference between the
predicted and ground truth object positions. A positive value means the predicted objects are placed farther, and a negative value means
the predicted objects is placed closer.

Lat. L-mAP nuPlan Yaw | P-mAP nuPlan Difference | mAP P-mAP nuPlan

Oms 100.0  0.9277 0 100.0  0.9277 Om | 100.0 100.0 0.9277

50 ms 98.6 0.9274 /24 91.1 0.8539 -0.6m(< 20m) | 83.2 76.6(-6.6) 0.9354

100 ms 94.3 0.9267 /12 78.5 0.7976 +0.6m(< 20m) | 83.3 24.7(-58.6) 0.8578

200 ms 88.5 0.9143 /6 60.2 0.7183 0.6m(>20m) | 77.3 79.2(+1.9) 0.9310

500 ms 78.2 0.8978 /4 49.7 0.6544 +0.6m(>20m) | 77.3 25.0(-52.3) 0.9248
(2) (b) ©

Table 4. Evaluation results for 3D object detection on the nuScenes validation dataset using an RTX3090 GPU and the PyTorch environ-
ment. We recalculated mAP using the MMDetection3D base framework, establishing a baseline for comparison.

Modality Latency GPU memory NDS mAP | L-mAP P-mAP
PointPillars [21] LiDAR 34 ms 7512MiB 526  39.0 38.0 8.4
CenterPoint[51] LiDAR 80 ms 4285MiB 64.8 563 46.7 36.9
TransFusion-L [4] LiDAR 80 ms 4412MiB 69.1 643 53.6 27.0
BEVFusion [29] | Camera, LIDAR  119ms 8246MiB 71.2  68.4 49.2 26.0
BEVFormer [26] Camera 416 ms 5435MiB 51.8 41.7 18.3 18.4
L-HPO (Ours) LiDAR 45 ms 4136MiB 64.8 57.7 551 36.6

Table 5. Performance comparison of different models with latency
and various environments. (P) refers to the PyTorch backend, and

(T) refers to the TensorRT backend. Lat.” stands for latency.

Environment Model Lat. L-mAP
RTX4060Ti(P) CenterPoint 197 ms 31.6
RTX4060Ti(P) TransFusion-L | 202 ms 359
RTX4060Ti(P) BEVFusion 277 ms 31.2
RTX4060Ti(P) L-HPO (Ours) | 123 ms 41.0

RTX3090(P) CenterPoint 80 ms 46.7

RTX3090(P)  TransFusion-L | 80ms 53.6

RTX3090(P) BEVFusion 119 ms 49.2

RTX3090(P)  L-HPO (Ours) 45 ms 551
RTX4060Ti(T) CenterPoint 33 ms 55.0
RTX4060Ti(T) TransFusion-L 34 ms 63.0
RTX4060Ti(T) BEVFusion 47 ms 64.8
RTX4060Ti(T) L-HPO (Ours) 20 ms 57.1

RTX3090(T) CenterPoint 10ms 56.2

RTX3090(T)  TransFusion-L 9ms 64.3

RTX3090(T) BEVFusion 20 ms 68.0

RTX3090(T)  L-HPO (Ours) 7ms 57.5

Table 6. Performance evaluation of multi-frame point clouds for
CenterPoint with RTX3090 GPU and Pytorch backend. N is the
number of frames to merge point clouds. Py is the number of
merged point clouds.

N Py Latency | mAP L-mAP P-mAP
1 34k 3lms | 46.7 45.5 28.5
3 | 102k 44ms | 52.5 50.3 35.9
6 | 204k 67ms | 55.4 48.3 359
9 | 306k 99ms | 56.3 43.7 36.9

clouds takes 19 ms, making the total inference time 99ms
with 80ms of the model’s own inference time.

Table 6 shows the result for multi-frame point clouds.
As the number of input points increased, we observed
improvements in mAP, P-mAP, indicating a positive cor-
relation between point cloud density and detection accu-
racy. However, when considering L-mAP, a different trend
emerged. Specifically, the highest L-mAP was achieved
50.3 at 3 frames, but it decreased as the frames increased:
48.3 at 6 frames and 43.7 at 9 frames. This indicates that
the increased latency due to the larger point cloud size,

the sum of preprocessing time to merge point clouds and the
model inference time. Since each frame contains approxi-
mately 34k LiDAR points in nuScenes dataset, the merged
point clouds with 9 frames increases to about 300k points.
At this case, the processing time to merge multi-frame point

had a greater negative impact on the model’s performance
than the improvements in accuracy brought by denser point
clouds. Our findings demonstrate that, in real-time envi-
ronments where low latency is critical, indiscriminately in-
creasing the input data size offers diminishing returns. This



Table 7. Cost comparison for different models and backends with
different devices. "Cen.” represents CenterPoint and "Trans.” rep-
resents TransFusion-L. ”(P)” refers to the PyTorch backend, and
”(T)” refers to the TensorRT backend. ”C-1” represents cost for 1
systems, ”C-10" for 10 systems, ”C-100" for 100 systems ($).

Model Device L-mAP | C-1 | C-10 | C-100
Cen.  4060Ti(P) 31.6 21k | 30k 120k
Cen. 3090(P) 46.7 24k | 60k 420k
Cen.  4060Ti(T) 55.0 41k | 50k 140k
Cen. 3090(T) 56.2 44k | 80k 440k
Trans. 4060Ti(P) 35.9 41k | 50k 140k
Trans. 3090(P) 53.6 44k | 80k 440k
Trans. 4060Ti(T) 63.0 61k | 70k 160k
Trans. 3090(T) 64.3 64k | 100k | 460k

study provides a quantitative metric to show that a balance
must be struck between accuracy and latency to achieve
optimal performance in real-time 3D object detection for
robotics.

4.5. Optimize development cost with hardware

Furthermore, as an industry case study, we explore the op-
timization of development costs and hardware selection us-
ing L-mAP. By using L-mAP, we enable quantitative com-
parisons that extend beyond differences in hardware de-
vices and acceleration libraries. In this study, we formu-
late an optimization problem where L-mAP serves as the
objective function, considering both hardware and develop-
ment costs. The hardware cost is defined as $4k for a sys-
tem with an RTX3090 GPU and $1k for a system with an
RTX4060Ti GPU. The initial development cost is defined
as $20k for implementing CenterPoint in PyTorch (three
months of work for a single engineer). Upgrading the al-
gorithm from CenterPoint to TransFusion-L in PyTorch re-
quires an additional cost of $20k, while developing a Ten-
sorRT version of either CenterPoint or TransFusion-L re-
quires an additional $20k. The experiment considers a busi-
ness scenario in which 1, 10, or 100 perception systems
are deployed, with the goal of determining the most cost-
effective approach to maximizing L-mAP.

For a budget of $60k allocated to deploying 10 per-
ception systems, we compare three strategies: upgrading
the hardware by running CenterPoint in PyTorch on an
RTX3090, using an accelerator by implementing Center-
Point in TensorRT on an RTX4060Ti, and upgrading the
algorithm by employing TransFusion-L in PyTorch on an
RTX4060Ti. The results indicate that upgrading the hard-
ware leads to an L-mAP improvement to 46.7, using Ten-
sorRT improves it to 55.0, while upgrading the algorithm
to TransFusion-L results in a lower L-mAP of 35.9. These
findings suggest that, within this budget constraint, imple-
menting TensorRT for CenterPoint provides the best cost-

performance.

When considering the case of deploying a single per-
ception system, development costs become a more domi-
nant factor compared to the deployment of multiple sys-
tems. In this scenario, upgrading from an RTX4060Ti to
an RTX3090 is the most cost-effective option, as it im-
proves L-mAP to 46.7 at a relatively low additional cost.
In contrast, when deploying 100 perception systems, hard-
ware costs become the primary concern. Upgrading from
an RTX4060Ti to an RTX3090 across all systems incurs a
total cost of $400k, leading to an L-mAP of 46.7. However,
switching from CenterPoint to TransFusion-L and utilizing
TensorRT achieves a significantly higher L-mAP of 63.0 at
alower total cost of $140k, making it the more cost-efficient
choice. These results demonstrate that the optimal strat-
egy depends on the scale of deployment. For small-scale
deployments, upgrading the hardware provides the best bal-
ance between cost and performance, whereas for large-scale
deployments, algorithmic optimization and acceleration us-
ing TensorRT yield the highest cost efficiency. By quantita-
tively comparing different configurations using L-mAP, this
study provides insights into the tradeoffs between hardware
selection, algorithmic improvements, and deployment scale
in industrial applications.

5. Conclusion

In this paper, we propose latency-aware AP (L-AP) and
planning-aware AP (P-AP) as new metrics, which con-
sider the physical world such as the concept of time and
physical constraints, offering a more comprehensive eval-
uation for real-time 3D object detection. Using nuPlan
dataset, we evaluate the effectiveness of these metrics for
the whole autonomous driving system and demonstrate their
utility in capturing planning-relevant aspects of 3D object
detection. Furthermore, we develop a state-of-the-art per-
formance model for real-time 3D object detection through
latency-aware hyperparameter optimization (L-HPO) based
on our proposed metrics. Our metrics also enable quanti-
tative evaluation along a single axis, accounting for hard-
ware differences and accelerators. Additionally, we quanti-
tatively optimize the number of frames for point clouds, as
well as hardware and model selection, using our metrics.

We hope that this paper contributes to advancements in
both algorithmic development within the research commu-
nity and performance optimization for real-world applica-
tions in the industry. As future work, we aim to further
develop state-of-the-art models for real-time 3D object de-
tection using the proposed metrics. Additionally, we plan to
refine these metrics for 3D object tracking, motion predic-
tion, and motion planning to enhance real-time performance
across a broader range of tasks.
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6. Appendix
6.1. L-AP for Yaw Flipping

10m/s /s

GT (a) (b) GT (c) (d)

Figure 5. The case to evaluate for yaw flipping. (a) The velocity
estimation is sufficiently accurate. (b) The direction is estimated
in the opposite orientation. (c) The object is almost stationary.
(d) The object is almost stationary but estimated in the opposite
direction.

Table 8. Comparison of mAP and L-mAP at different inference
time with 7 yaw difference. The thresholds are (0.5, 1.0, 1.5, 2.0).

@ | b | © ] @

mAP 1.0 1.0 | 1.0 | 1.0
L-mAP for 100ms 1.0 | 025 | 1.0 1.0
L-mAP for 200ms | 0.75 | 0.0 | 1.0 | 1.0
L-mAP for 1000ms | 0.0 00 | 1.0 | 0.25

By introducing latency into the evaluation, it becomes
possible to assess objects whose yaw orientation is incor-
rectly estimated in the opposite direction. In the cases of
Fig. 5, we compare the performance of L-mAP with dif-
ferent inference time as shown in Table 8. Comparing (a)
and (c), the greater the relative velocity of the target, the
more significantly latency impacts recognition performance
degradation. In (b), where the yaw is reversed by 180 de-
grees, the AP remains 1.0 when latency is not considered.
However, when latency is taken into account, the model
properly reflects the performance degradation. In (d), since
the velocity is small, the performance degradation is less
severe compared to (b).

6.2. Annotation Frequency

Here, we consider whether the annotation frequency is ap-
propriate. We assume the velocity of ego vehicle v;9° as

0m/s. This assumption does not lose generality, as we can
consider it in a relative coordinate system.

First, we analyze the estimation error of z{}7,,. The
ground truth of the position z at the time (¢ + At), z;¢%, is

calculated by

1
23T, = 2fT 4o T At + 2atGTAt2 + JAt3 4)

, where a$'” is acceleration at the time ¢, j is jerk. In this
work, The jerk is assumed to be constant. The error of the

position E, between m;ffgt and {7, , is calculated by

By = 2iA — o ®)
_ (o 5t5152+ I po 4 (00 900 o, %At“f.
(6)

Eq. (6) indicates that the estimation error decreases as 0t
becomes smaller and At becomes smaller. Additionally, the
estimation error decreases as atG_TM becomes smaller and j
becomes smaller.

For each At and dt, we visualized the relationship be-
tween estimation error F, = (0.05m, 0.1 m, 0.2m, 0.5m)
and the corresponding values of j and atCiTét. As refer-
ence values, We also plotted the cases of normal driving
g = 1m/s af, = 0.2m/s?) and emergency case (j =
3m/s3, alt L, = 0.6m/s?). Fig. 6 shows the estimation er-
ror of xt+At for inference time At = 0.2 s. Fig. 7 shows the
estimation error of xth_TAt for inference time At =0.5 s.

In the nuScenes annotation, the annotation frequency is
set as 6t = 0.5s (2 Hz annotation). When At = 0.2, the
estimation error is approximately 0.05m in a normal driv-
ing scenario. This error is sufficiently small compared to
commonly used thresholds (0.5 m, 1.0 m, 1.5 m, 2.0 m), in-
dicating that the annotation frequency is adequate for over-
all evaluation using mAP. Even in emergency scenarios, the
estimation error remains within 0.2 m, which suggests that
the overall evaluation is still valid. However, when At =
0.5 s, the estimation error increases to approximately 0.2 m
in normal driving scenarios. In contrast, in emergency sce-
narios, the estimation error exceeds 0.5 m, surpassing the
threshold margin. This indicates that an annotation inter-
val of 6t = 0.5s is insufficient. To ensure an estimation
error within 0.2 m, as achieved when At = 0.2, a higher
annotation frequency of 6t = 0.1s (10 Hz annotation) is re-
quired. This corresponds to a fivefold increase in annotation
volume. Thus, the real-time constraint A¢ significantly im-
pacts the annotation cost to maintain an acceptable level of
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Figure 6. The estimation error of xtGJrTAt for inference time At =0.2s.

estimation error. Conversely, given the inference time 0t
and acceptable error in a system, the required annotation
interval can be determined as a specification requirement.

Next, we analyze the estimation error of vg_TAt. The
ground truth of the velocity v at the time (¢ + At), v;CX, is
calculated by

1
vigAe =i +afT AL+ DAL ()

The error of the velocity E, between v; X, and v’y is
calculated by

B, =v;¢%, — 6" (8)
 2a{%5, 6t + 6t

+aSTAt+ LA (9
4 2

For each At and dt, we visualized the relationship be-
tween estimation error F, = (0.2m/s, 0.5m/s, 1.0m/s,
2.0m/s) and the corresponding values of j and a&T,.

In the nuScenes annotation, for velocity estimation er-
rors at At = 0.2, the error remains within 0.2 m/s in nor-
mal scenarios and within 1.0 m/s in emergency scenarios.
However, in emergency scenarios at At = 0.5 s, the veloc-
ity estimation error reaches approximately 1.0 m/s, which

may negatively impact downstream tracking and planning
algorithms. Additionally, if the velocity estimation accu-
racy of the model is comparable to this F,,, it becomes dif-
ficult to ensure a reliable evaluation of velocity estimation
performance. For instance, if E,, < 0.20m/s and the mean
velocity estimation error from model inference is 0.3m/s,
it is reasonable to assume a velocity error of 0.5m/s and
incorporate this assumption into the parameter settings of
downstream tracking and planning modules.

Note that, in practical cases, annotation itself contains
position errors. As illustrated in Fig. 10, there are cases
where only a part of a vehicle is visible in a given frame,
and a 3D bounding box is annotated accordingly. In the
next annotated frame, the entire vehicle becomes visible,
leading to a different annotation. Since 3D bounding box
annotations are based on LiDAR point clouds, occlusions
or missing point clouds can result in incorrect annotations.
In such cases, velocity is calculated using the position dif-
ference between frames as:

2N pan
Uan _ t+At t (10)

At ’

where the annotation position error 3" propagates into
the velocity estimation v®™. For instance like Fig. 10, if the
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Figure 8. The estimation error of vg_TAt for inference time At =0.2 s.
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Figure 9. The estimation error of vg_TAt for inference time At = 0.5 s.

Ground Truth

t=T+dt

Figure 10. The error of annotation.

annotation position error is 0.5 m and the annotation inter-
val is 0.5 s (2 Hz annotation), the resulting velocity estima-
tion error can reach 1.0 m/s. Therefore, it is crucial to take
such annotation-induced errors into account when evaluat-
ing velocity estimation accuracy.
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