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Towards Open-World Human Action Segmentation Using Graph

Convolutional Networks

Hao Xing∗, Kai Zhe Boey∗, Gordon Cheng

Abstract— Human-object interaction segmentation is a fun-
damental task of daily activity understanding, which plays a
crucial role in applications such as assistive robotics, healthcare,
and autonomous systems. Most existing learning-based methods
excel in closed-world action segmentation, they struggle to
generalize to open-world scenarios where novel actions emerge.
Collecting exhaustive action categories for training is impracti-
cal due to the dynamic diversity of human activities, necessitat-
ing models that detect and segment out-of-distribution actions
without manual annotation. To address this issue, we formally
define the open-world action segmentation problem and propose
a structured framework for detecting and segmenting unseen
actions. Our framework introduces three key innovations: 1)
an Enhanced Pyramid Graph Convolutional Network (EPGCN)
with a novel decoder module for robust spatiotemporal feature
upsampling. 2) Mixup-based training to synthesize out-of-
distribution data, eliminating reliance on manual annotations.
3) A novel Temporal Clustering loss that groups in-distribution
actions while distancing out-of-distribution samples.

We evaluate our framework on two challenging human-
object interaction recognition datasets: Bimanual Actions and
2 Hands and Object (H2O) datasets. Experimental results
demonstrate significant improvements over state-of-the-art ac-
tion segmentation models across multiple open-set evaluation
metrics, achieving 16.9% and 34.6% relative gains in open-
set segmentation (F1@50) and out-of-distribution detection
performances (AUROC), respectively. Additionally, we conduct
an in-depth ablation study to assess the impact of each proposed
component, identifying the optimal framework configuration
for open-world action segmentation.

I. INTRODUCTION

Human-object interactions (HOIs) play a pivotal role in

understanding human activities, providing essential cues

for applications such as assistive robotics, healthcare, and

autonomous systems. Unlike traditional action recognition,

HOI analysis requires identifying human actions and objects

while also localizing and understanding their interactions

over time, a task known as action segmentation. Besides that,

for real-world deployment, especially collaborative systems,

they must recognize known interactions while detecting and

adapting to novel actions.

Recently, Graph Convolutional Networks (GCNs) have

presented promising results of action segmentation, par-

ticularly through skeleton-based representations that offer

robustness to occlusions and computational efficiency [1],

[2]. The Pyramid Graph Convolutional Network (PGCN) [1]
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Fig. 1: Open-World Human Action Segmentation: detecting

and temporally localizing both known and unknown actions.

improves frame-wise action segmentation through multi-

scale feature fusion. However, existing models operate in

closed-world settings, where training and testing datasets

share the same action categories. This assumption does

not hold in real-world scenarios, where models frequently

encounter unseen actions, leading to poor generalization in

open-world settings.

Current approaches to open-world recognition face crit-

ical limitations in reflecting true generalization. Existing

methods like the Nearest Non-Outlier (NNO) algorithm [3]

depend on human-annotated unknown samples during fine-

tuning, while ActionCLIP [4] leverages CLIP to extend

recognition to unseen actions, which is a large pretrained

visual-language model with inherent semantic knowledge

of unknown classes. Although effective, both strategies in-

troduce biases: NNO assumes unrealistic access to labeled

unknowns, and ActionCLIP leverages external knowledge

from pretrained models. These create an unfair advantage

that diverges from real-world open-world constraints. Re-

cent advances, such as the Uncertainty-Quantified Temporal

Fusion Graph Convolutional Network (UQ-TFGCN) [5],

address Out-of-Distribution (OOD) detection by preserving

physical distance in the feature space but overlook inter-class

discriminability among OOD actions.

To address these issues, we redefine open-world action

segmentation as a generalization task where models must

recognize and segment unseen actions using only knowledge

from training on closed-world classes, eliminating dependen-
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cies on external annotations or pretrained language models,

as shown in Fig 1. We discard the traditional softmax-

based classification output for unknown actions classifi-

cation, which inherently biases predictions toward known

classes due to its closed-world confidence calibration. In-

stead, we explore the relations between feature space and

Out-of-Distribution classification, propose a novel Temporal

Efficient Upsampling decoder that enables explicit modeling

of fine-grained relationships between different actions, and

leverages K-means clustering on feature embeddings to cat-

egorize OOD actions. In doing so, we propose a Temporal

Clustering Loss to enforce tighter feature grouping along

the temporal dimension, improving the model’s ability to

distinguish In-Distribution from OOD samples. Furthermore,

we incorporate Mixup-based augmentation to expose the

model to diverse scenarios during training. These innovations

ensure more effective OOD detection and classification,

enabling robust action segmentation in open-world scenarios.

Overall, the technical contributions of the paper are:

• We formally define the problem of open-world action

segmentation and establish a structured workflow.

• We propose an Enhanced Pyramid Graph Convolutional

Network framework with three key components: (i)

a novel Temporal Efficient Upsampling decoder for

better fusion of multi-scale spatio-temporal features,

(ii) a Temporal Clustering Loss that enhances the

temporal feature clustering, and (iii) Mixup-based data

augmentation to simulate OOD scenarios and improve

generalization.

• We conduct extensive experiments on two challenging

HOI datasets—Bimanual Actions (Bimacs) [6] and H2O

[7] and demonstrate that our approach consistently

outperforms existing baseline. Additionally, we perform

detailed ablation studies to assess the effectiveness of

our framework and evaluate alternative design choices.

II. RELATED WORK

A. Graph Convolutional Network

Recently, Graph Convolutional Networks (GCNs) have

emerged as a powerful deep learning framework for learning

from graph-structured data. Graphs represent non-Euclidean

data structures, and conventional neural networks such as

Multilayer Perceptrons (MLPs), Convolutional Neural Net-

works (CNNs), or Recurrent Neural Networks (RNNs) are

not inherently designed to effectively learn from graph

data, as they are primarily tailored for Euclidean data (e.g.,

images, text, RGB-D videos). There are two main types of

GCNs commonly used: 1) Spectral GCNs, which operate

in the spectral domain. Bruna et al. [8] introduced spectral

networks, generalizing CNNs to graphs by leveraging the

graph Laplacian spectrum. 2) Spatial GCNs, which operate

directly on the graph domain (nodes and edges). For instance,

Hamilton et al. [9] introduced fixed aggregation functions

to summarize neighborhood features, while Veličković et al.

[10] proposed Graph Attention Networks (GATs), extending

GCNs by incorporating attention mechanisms. In the context

of skeleton-based action recognition, including our work, the

latter approach is predominantly adopted.

Yan et al. [2] introduced Spatial-Temporal Graph Con-

volutional Networks (ST-GCN) for skeleton-based action

recognition by leveraging spatio-temporal graphs. Shi et

al. [11] extended this with Two-Stream Adaptive Graph

Convolutional Networks (2s-AGCN), which adaptively learn

joint and bone features. More recently, Myung et al. [12] in-

troduced Deformable Graph Convolutional Networks, which

dynamically learn the most informative joint features in both

spatial and temporal domains.

B. Action Segmentation

Temporal action segmentation (TAS) divides an

untrimmed video into segments, each assigned an

action label, akin to semantic segmentation but in the

temporal domain. It enables automatic action recognition

by identifying action onset, progression, and conclusion.

Approaches in TAS generally follow three architectural

designs: (i) Encoder-decoder architectures, such as the

Temporal Convolutional Network (TCN) by Lea et al. [13],

which leverages temporal convolutions to model long-range

dependencies efficiently. (ii) Multistage architectures,

exemplified by the Multi-Stage Temporal Convolutional

Network (MS-TCN) by Farha et al. [14], which refines

predictions iteratively through stacked single-stage TCNs.

Filtjens et al. [15] extended this with MS-GCN, integrating

spatial-temporal graph convolutions for skeleton-based

inputs. (iii) Transformer-based architectures, such as

ASFormer by Yi et al. [16], which employs self-attention

in the encoder and cross-attention in the decoder to capture

complex temporal dependencies. This work follows the

encoder-decoder architecture for our model design.

C. Human-object interaction (HOI) recognition

Video-based human-object interaction (HOI) recognition

analyzes the temporal structure of untrimmed videos to

identify sub-activities and object affordances. Traditional

methods, such as Conditional Random Fields (CRFs), have

been largely replaced by deep learning approaches, including

CNNs, RNNs, and 3D CNNs, due to their superior ability to

model complex relationships. More recently, Graph Convo-

lutional Networks (GCNs) have gained traction for capturing

spatial and temporal dependencies in HOI tasks. Morais et al.

[17] introduced the Asynchronous-Sparse Interaction Graph

Network (ASSIGN), which models HOI as a spatio-temporal

graph, enabling asynchronous entity updates for improved

segmentation but suffering from RNN-related short-term

memory limitations. Qian et al. [18] proposed the Two-level

Geometric feature informed Graph Convolutional Network

(2G-GCN), which fuses geometric skeleton-based represen-

tations with RGB video features to mitigate occlusion issues.

Their fusion-level network integrates an attention mechanism

to enhance interaction modeling, leveraging ASSIGN as the

backbone for HOI recognition.
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Fig. 2: Architecture of the Efficient Pyramid Graph Convolutional Network (EPGCN) with the Temporal Efficient Upsampling

(TEU) Module. The TEU decoder processes multi-scale encoder graph features (G4, G7, G10) through dual pathways: (1)

the Downsampling Path (Id → A,B → C); (2) the Upsampling Path (Iu → D → D̃). The fused output is processed by a

Temporal Pyramid Pooling (TPP) [1] module (C, D̃,D,→ E → F → I). The produced feature maps F and I are collected

for intra/inter-clustering loss optimization and OOD classification, respectively.

D. Generalized Out-Of-Distribution(OOD) Framework

Out-of-Distribution (OOD) research is critical in deep

learning, as models frequently encounter unseen test data

that differ from their training distribution, a phenomenon

known as distributional shift. This shift is categorized into

covariate shift, where ID and OOD samples originate from

different domains, and semantic shift, where both share the

same domain but belong to different semantic classes. To

address these challenges, the generalized OOD framework

includes several sub-tasks. (i) OOD detection determines

whether a sample belongs to an unknown distribution, with

methods such as thresholding softmax probabilities [19],

while Liang et al. [20] improved performance by calibrating

softmax outputs and applying temperature scaling. (ii) Open-

set recognition (OSR) extends OOD detection by also classi-

fying known samples. For instance, Bao et al. [21] proposed

Deep Evidential Action Recognition (DEAR), leveraging an

Evidential Neural Network (ENN) to predict a Dirichlet

distribution over class probabilities. (iii) Generalized zero-

shot learning (GZSL) aims to recognize both seen and unseen

classes, with approaches such as conditional Wasserstein

GANs (WGAN) [22] for feature synthesis, although these

require prior knowledge of unknown features. (iv) Open-

world recognition (OWR), introduced by Bendale et al. [3],

requires models to detect and incrementally learn new classes

using human annotation by employing the Nearest Non-

Outlier (NNO) algorithm.

Our work follows the OWR paradigm but eliminates the

incremental learning stage that relies on human-labeled novel

data, which is particularly infeasible for segmentation tasks

requiring fine-grained frame-wise labeling. Moreover, we

adopt the thresholding approach of Hendrycks et al. [19],

using output logits to distinguish OOD from ID samples.

III. METHODOLOGIES

A. Open-World Action Segmentation

Problem definition and notation: formally, let the set of

labeled action classes observed during training be denoted as

Cknown, meaning that all training samples belong to one of

these known classes, expressed as x ∈ Cknown. In a conven-

tional Closed-World Action Segmentation (CWAS) setting, the

test set consists only of label-known actions, meaning that the

set of all test samples remains within the same distribution

as the training set, i.e., Call = Cknown. However, in the Open-

World Action Segmentation (OWAS) setting, an additional set

of novel action classes, Cnovel, exists at inference time. These

novel classes are completely disjoint from the known training

classes, satisfying Cnovel ∩Cknown = ∅. As a result, the set of

all test samples in OWAS consists of both known and novel

action classes, i.e., Call = Cknown ∪Cnovel.

Definition: the workflow of the Open-World Action Segmen-

tation problem [F, x, φ, ν, κ] is given by:

1) Feature extraction and recognition: let φ denote a

feature extractor that maps an input action sequence

x ∈ R
3×T×V to a latent representation φ(x), where

3, T, V denote spatial, temporal size and joints. The

recognition function F classifies features into known

classes:

F (x) = arg max
c∈Cknown

fc(φ(x)). (1)

2) Novelty detection: a detector ν identifies unknown

actions features using a threshold α:

ν(φ(x)) =

{

1 (Known) ifmax fc(φ(x)) > α

0 (Novel) otherwise.
(2)

3) Clustering and label assignment: For novel samples

{x|ν(φ(x)) = 0}, a clustering function κ groups them

into M distinct pseudo-classes. These are mapped

to incrementally indexed new classes Cnovel =
{Cknown + 1, Cknown + 2, . . . } via Hungarian algo-

rithm.

B. Enhanced Pyramid Graph Convolutional Network

We introduce an Enhanced Pyramid Graph Convolutional

Network (EPGCN) for motion feature extraction and open-

world action recognition. As illustrated in Fig 2, EPGCN ex-

tends the Pyramid Graph Convolutional Network (PGCN) [1]

baseline by integrating a Temporal Efficient Upsampling



(TEU) decoder, designed to preserve discriminative spa-

tiotemporal features critical for open-world generalization.

The encoder extracts hierarchical motion representations at

three resolutions (G4, G7, G10), corresponding to temporal

scales of T , T/2, T/4 for an input sequence of length T . The

TEU decoder processes these multi-scale features through

two parallel pathways: downsampling path and umsampling

path. The downsampling path aggregates global context by

progressively reducing temporal resolution, enhancing inter-

class discriminability for robust novelty detection. The um-

sampling path recovers fine-grained motion details through

learned temporal interpolation, preserving intra-class struc-

tural consistency for precise segmentation.

Downsampling Path: The low-level (G4) and mid-level

(G7) features are temporally downsampled via nearest-

neighbor interpolation to match the temporal dimension

of the high-level feature map (G10). These are concate-

nated along the channel dimension: Id = [G↓
4
, G↓

7
, G10] ∈

R
N×C×T/4×V , where N denotes batch size. Id is refined

by two 1 × 1 convolutional layers, generating feature maps

A and B. The feature map A is normalized using a softmax

operation along the temporal dimension for stability:

Ãt =
exp (At)

∑T/4
i=0

exp(Ai)
, (3)

where i represents frame indices and t is a specific frame.

The resulting attention map Ã are applied to B to compute

the refined output C:

C = Ã⊗B, (4)

with ⊗ denoting element-wise multiplication. This em-

phasizes discriminative temporal regions while suppressing

noise.

Umsampling Path: The high-level (G10) and mid-level

(G7) features are temporally upsampled to align with the

low-level feature map (G4). These are concatenated as: Iu =
[G4, G

↑
7
, G↑

10
] ∈ R

N×C×T×V . A 1×1 convolution is applied

to Iu to produce feature map D. The feature map B from

the downsampling path undergoes temporal average pooling,

is replicated across the temporal axis, and fused with D via

element-wise addition:

D̃ = D ⊕ P(B), (5)

where P(·) denotes pooling and replication. A subsequent

1 × 1 convolution enriches D̃ with high-level semantics,

enhancing motion granularity.

Multi-Scale Feature Fusion: The high-resolution feature

D̃ and low-resolution context map C (from the down-

sampling path) are fused via cross-attention, the attention

feature map is then channel-wise concatenated with D (the

upsampling path’s intermediate representation):

E = Concat(CT D̃,D). (6)

This design combines structurally rich low-level features

with semantically rich high-level features, enhancing tem-

poral segmentation accuracy.

The output from TEU is forwarded to a Temporal Pyra-

mid Pooling (TPP) [1] module to capture global context

efficiently. It applies temporal average pooling over hierar-

chically divided time segments, reducing complexity while

preserving key temporal patterns. The final feature maps are

collected by the K-means algorithm for OOD classification.

C. Temporal Clustering Loss

To enforce temporally consistent and discriminative fea-

ture clusters for open-world generalization, we propose the

Temporal Clustering Loss, a distribution-aware contrastive

objective inspired by supervised contrastive learning [23].

Unlike conventional contrastive losses that operate on in-

dividual samples, our formulation explicitly models class-

wise distributions in the spatio-temporal feature space. This

is critical for action segmentation, where intra-class temporal

variability and inter-class similarity are key challenges.

Let Fi = {ft}Tt=1 denote the temporal sequence of

embeddings for class i ∈ N , where ft ∈ R
d is there frame-

level feature at time t.
Intra-Class Compactness: compute the dynamic class

mean µ̄i as an exponentially weighted average of historical

and current batch statistics to stabilize training:

µ̄k
i = γµ̄k−1

i + (1 − γ)
1

T

T∑

t=1

ft, (7)

where k is the batch index, γ controls the momentum. The

intra-class loss minimizes the deviation of embeddings from

their class mean:

Lintra =
1

N

∑

i∈N

1

T

∑

ft∈Fi

‖ft − µ̄i‖
2. (8)

Inter-Class Separability: to maximize separation between

class distributions, we penalize proximity of pairwise class

means:

Linter =
1

N

∑

i∈N

∑

i6=j

(‖µ̄i − µ̄j‖
2+δ)−1, (9)

where δ enforces a minimum margin between clusters.

The overall training objective combines classification ac-

curacy with feature clustering constraints:

L = LCE(x, y)
︸ ︷︷ ︸

Classification

+β (Lintra + Linter)
︸ ︷︷ ︸

Feature Clustering

, (10)

where LCE is the cross-entropy loss, ensuring classification

accuracy, β balances the contributions. By jointly optimiz-

ing discriminative classification and geometrically structured

embeddings, the model learns temporally stable features that

generalize to unseen actions while avoiding overconfidence

on outliers.

D. Mixup

We adopt the Mixup [24] data augmentation technique

to enhance model robustness and generalization to Out-

of-Distribution (OOD) samples by enforcing linear feature

transitions between classes. Unlike traditional empirical risk



minimization (ERM), which learns only from observed train-

ing samples, Mixup trains the model on convex interpolations

of input-label pairs, explicitly regularizing the feature space

geometry. For spatio-temporal skeleton sequences, this is

critical as OOD actions often manifest as semantic inter-

polations between known classes (e.g., a mix of running and

jumping).

Given two randomly sampled skeleton sequences (xi, yi)
and (xj , yj), Mixup generates synthetic training instances:

{

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1 − λ)yj ,
(11)

where λ ∼ Beta(α, α) and α = 0.2 controls the interpo-

lation strength. Lower α skews λ towards extremes (0 or 1),

preserving semantic coherence in skeleton sequences while

still expanding vicinal distributions. By leveraging Vicinal

Risk Minimization (VRM), Mixup expands the learned fea-

ture space, mitigating overfitting and improving generaliza-

tion compared to traditional Empirical Risk Minimization

(ERM).

IV. EXPERIMENTS AND RESULTS

A. Dataset

The Bimanual Actions (Bimacs) [6] dataset comprises

540 RGB-D recordings (2 hours and 18 minutes) at 15 FPS,

capturing bimanual tasks like pouring milk while stirring

cereal in a kitchen and workshop. It includes 26 nodes (12

for human joints and 14 for object centers), and framewise

annotations for 12 objects and 6 subjects, covering 14 action

categories.

The 2 Hands and Object (H2O) [7] dataset contains

571,645 frames from 4 participants performing 37 actions

in environments like a hall, office, and kitchen. It includes

42 hand pose nodes and 8 object joints, capturing actions

like grabbing, placing, and pouring. The dataset is recorded

at 30 FPS with synchronized RGB and depth images using

multiple cameras mounted on a headset.

To validate our framework’s open-world capabilities, we

evaluate across three scenarios mirroring real-world deploy-

ment: 1. Closed-set recognition (easy): testing exclusively

on known in-distribution (ID) actions, measuring basic clas-

sification capability. 2. Open-set recognition (medium):

testing on mixed ID and OOD actions, with OOD treated as a

unified “unknown” class. 3. OOD classification (difficult):

testing exclusively on unknown actions. We use an 80:20

ID:OOD split in both the Bimacs and H2O datasets, where

80% of the data consists of known action classes (ID) for

training, and the remaining 20% consists of unseen action

classes (OOD) for testing. In Bimacs, classes 11–13 are

designated as OOD, whereas in H2O, classes 30–37 represent

OOD actions.

The openness O of the task is calculated using the

formula: O = 1 −
√
2 ·Ntrain/(Ntest +Ntarget), yielding a

value of approximately 6.3%. While lower than typical open-

set recognition (OSR) tasks, which focus on distinguishing

known from unknown samples, it is well-suited for our open-

world recognition (OWR) problem. OWR not only detects

unknown samples but also differentiates among them.

B. Experimental settings

Quantitative Analysis: We evaluate our model using a

range of metrics that assess both closed-set and open-set

performance. We use the Top 1 accuracy (ACCclose) for

closed-set tasks to measure classification performance on

known samples. In the open-set scenario, we extend this

to include unknown samples, computing open-set Top 1

accuracy (ACCopen), and the F1@K score for temporal

action segmentation.

Additionally, we assess Out-of-Distribution detection us-

ing Area Under the Receiver Operating Characteristic Curve

(AUROC) and quantify the model’s ability to distinguish be-

tween ID and OOD samples by measuring separability across

all classification thresholds. A higher AUROC indicates

better OOD detection. We evaluate classification accuracy

(ACCOOD) exclusively on samples identified as OOD using

their ground-truth labels, ensuring the metric directly reflects

the model’s ability to classify known OOD instances. While

AUROC and ACCOOD individually evaluate detection and

classification, neither captures the model’s combined ability

to first detect and then classify OOD samples. We thus

combine AUROC and OOD accuracy into the harmonic mean

score, computed as: hscore = 2/({AUROC
−1

+ACC−1

OOD),
penalizing imbalanced performance to ensure robust real-

world OOD handling.

Qualitative Analysis: To complement the quantitative

evaluation, we use t-SNE to visualize feature embeddings

from the Temporal Pyramid Pooling (TPP) layer, offering

insights into how well the model separates In-Distribution

and Out-of-Distribution samples. The ideal outcome is clear

clustering of ID samples and distinct OOD categories. This

helps assess the model’s generalization and ability to distin-

guish unknown actions.

Experiments are conducted using PyTorch on an NVIDIA

RTX 2070 GPU. We use stochastic gradient descent (SGD)

with Nesterov momentum (0.9) and the loss formulated in

equation (10). The batch size is 16, with a weight decay of

0.001. Training spans 60 epochs, and the model with the best

validation accuracy and lowest loss is selected. The initial

learning rate is 0.1 with exponential decay (rate 0.95). The

Temporal Clustering Loss anchor magnitude is set to 20,

applied to the Temporal Efficient Upsampling layer, and the

Mixup α is set to 0.2.

C. Ablation studies

We systematically evaluate the impact of design choices

on open-world performance using the Bimanual Actions

dataset [6]. Starting with the PGCN baseline [1], we incre-

mentally introduce components to isolate their contributions.

As shown in Table I, we investigate the impact of various

design choices on our proposed framework by starting with

the baseline PGCN model and progressively introducing

modifications. First, we examine the impact of Mixup and



TABLE I: Comparison of open-set and frame-wise performance (F1@K score) of our proposed frameworks against the

baseline PGCN and its variations1.

Configurations
Closed-Set Open-Set Out-of-Distribution
ACC1 ACC2 F1@10 F1@25 F1@50 AUROC ACCOOD hscore

PGCN [1] (Baseline) 79.61 70.39 83.70 81.88 73.10 50.00 85.86 63.21
PGCN + Mixup 79.09 71.19 90.94 89.80 83.74 52.73 67.97 63.28
PGCN + LTC 82.09 80.68 90.66 89.01 81.95 75.48 57.30 65.14
PGCN + Mixup + LTC(4th) 82.86 84.25 94.34 92.39 86.26 84.66 63.08 72.30
PGCN + Mixup + LTC 86.08 86.05 96.07 95.31 89.33 84.10 73.59 78.50

TEU2 76.80 68.13 92.13 90.33 80.81 50.00 73.33 60.57
TEU + Mixup 82.96 74.67 90.53 89.12 81.50 52.85 63.80 64.57
TEU + LTC 78.15 76.70 88.81 87.43 78.47 72.33 77.43 75.12
TEU + Mixup + LTC (EPGCN) 85.21 85.71 95.10 95.08 90.03 84.62 84.69 84.65

1All configurations are evaluated on the Bimacs [6] subject 1 testset. The best results across all modifications are highlighted in bold.
2The encoder is from PGCN, and TEU is the decoder.

TABLE II: Comparison of the frame-wise performance and open-set F1@K score of our method against other state-of-the-art

frameworks. Bimacs rows correspond to results on the Bimanual Actions dataset [6], while H2O rows correspond to the 2

Hands and Object dataset [7].

Dataset Methods
Closed-Set Open-Set Out-of-Distribution
ACCclose ACCopen F1@10 F1@25 F1@50 AUROC ACCOOD hscore

Bimacs [6]

PGCN [1] 79.61 70.39 83.70 81.88 73.10 50.00 85.86 63.21
ST-GCN+TPP [2] 74.16 65.77 88.62 86.73 77.35 50.00 35.26 41.36
AGCN+TPP [11] 73.93 65.62 85.63 83.21 72.06 51.40 36.65 42.79
CTR-GCN+TPP [25] 74.11 65.44 89.97 88.49 65.44 50.00 44.62 47.16
UQ-TFGCN [5] 83.38 74.98 90.25 88.28 78.83 51.79 69.77 59.25
UQ-TFGCN + mixup + LTC 84.44 81.94 93.72 92.76 87.10 69.78 69.78 69.78
EPGCN 85.21 85.71 95.10 95.08 90.03 84.62 84.69 84.65

H2O [7]

PGCN [1] 81.72 61.17 85.58 80.29 74.02 50.00 47.75 48.85
ST-GCN+TPP [2] 72.99 54.08 76.24 70.49 55.28 50.00 52.37 51.57
AGCN+TPP [11] 79.48 61.95 83.97 78.52 70.45 50.00 61.38 55.11
UQ-TFGCN [5] 88.09 65.51 88.56 82.69 72.83 50.00 66.10 56.93
EPGCN 81.95 74.94 86.50 80.00 73.06 72.97 84.28 78.22

a The best results of each dataset are in bold. For the Bimacs dataset, the models are evaluated on the subject 1 testset.

Temporal Clustering Loss (LTC ) both individually and in

combination with the PGCN and TEU-based models. While

adding LTC enhances AUROC and open-set F1@K per-

formance, it reduces Out-of-Distribution (OOD) accuracy

(ACCOOD) and the hscore. This decline occurs because LTC

encourages clustering of unknown samples, making them

less distinguishable by class. Consequently, this hinders the

effectiveness of the K-means algorithm in separating differ-

ent clusters. On the other hand, training with Mixup alone

leads to only marginal improvements over the base models.

However, the TEU-based model benefits more from Mixup

compared to PGCN due to its attention-based upsampling

mechanism which better preserve both discriminative fea-

tures and fine-grained motion. Notably, the combination of

Mixup and LTC produces the best results for both PGCN and

TEU-based models but TEU-based model performs slightly

better in the more difficult categories such as F1@50 and

hscore. This is because Mixup mitigates the issue faced by

adding LTC where unknown samples form tight clusters in

the feature space. By injecting uncertainty, Mixup disrupts

this clustering effect by acting as a regularizer that improves

generalization to unknown samples.

Next, we examine the impact of applying LTC at different

encoder layers. Specifically, we apply LTC at the 4th encoder

layer alongside Mixup to assess its effect on clustering

features at an earlier stage of the network. This is to

determine whether enforcing temporal clustering constraints

during intermediate feature extraction, rather than at the

feature fusion stage could enhance robustness. However, this

configuration does not yield significant improvements over

our final framework.

As shown in Table I, our EPGCN framework, which

integrates Mixup, LTC , and a TEU module for attention-

based upsampling, achieves superior performance compared

to the baseline PGCN on the BIMACS dataset. Specifically,

EPGCN consistently outperforms PGCN across all open-

set F1@K metrics, with a notable 16.9% improvement in

F1@50 and a 21.4% increase in the h-score. Alternative

modifications fail to yield substantial gains, reinforcing that

the combination of Mixup, LTC , and TEU-based upsampling

in EPGCN is optimal for both In-Distribution (ID) and Out-

of-Distribution (OOD) tasks.

D. Comparison with the state-of-the-art

The proposed EPGCN framework is compared with state-

of-the-art action segmentation framework on the Bimacs [6]

and H2O [7] datasets. Several popular graph convolutional

networks: ST-GCN [2], AGCN [11], CTR-GCN [25], and

UQ-TFGCN [5]. ST-GCN, AGCN and CTR-GCN are com-

bined with the temporal pyramid pooling (TPP) decoder

module since they are not originally designed for fine-grained

segmentation task.



(a) PGCN (b) EPGCN

Fig. 3: The top row presents t-SNE visualizations of TPP feature distributions, where Dimension 1 and 2 correspond to the 2

downsampled feature dimensions. The bottom row illustrates the feature map values distributions of all In-Distribution (ID)

samples against individual Out-of-Distribution (OOD) classes for both the PGCN baseline and the EPGCN framework on the

BIMACS dataset. The box represents the boundary of the embedding distribution for the respective OOD class, indicating

the region where its samples are located.

Table II presents the results on all three tasks: close-set

recognition, open-set segmentation, and Out-of-Distribution

classification, where the top and bottom halves correspond

to the performance on the Bimacs and H2O dataset, re-

spectively. Its seen that our EPGCN framework outperforms

all other frameworks on both datasets. UQ-TFGCN, which

incorporates spectral normalization in its residual layers to

preserve feature-space distances for OOD detection, ranks

second. Notably, EPGCN improves upon UQ-TFGCN in

F1@50 and hscore by 11.2% and 25.4%, respectively. This

significant improvement stems from UQ-TFGCN’s focus on

covariate shift, as it was evaluated on a noisy Bimacs dataset

and the IKEA Assembly dataset [26], which is semantically

dissimilar to Bimacs due to its 2D spatial representation

rather than 3D. However, when UQ-TFGCN is trained with

Mixup and our proposed Temporal Clustering Loss, F1@50

and hscore increase by 8.3% and 10.5% compared to training

with UQ-TFGCN alone. This confirms the effectiveness of

our proposed components in improving generalization in

open-world scenarios.

The effectiveness of EPGCN is further validated on the

H2O dataset, where it demonstrates superior performance

across all OOD classification metrics, particularly in hscore.

Our framework exhibits a slight decline in F1@25 and

F1@50 compared to the baseline PGCN model. Moreover,

UQ-TFGCN attains higher F1@10 and F1@25 scores due to

its higher closed-set accuracy by benefiting from a relatively

easier overlapping ratio. Nevertheless, the substantial gain in

hscore underscores the advantage of EPGCN. Since hscore is a

crucial metric for open-world action segmentation, as it eval-

uates a model’s ability to distinguish OOD frames between

different classes, these results highlight the contributions of

EPGCN’s three key components.

E. Qualitative results

Fig. 3 presents the t-SNE visualizations of the extracted

features from the TPP layer for the PGCN baseline and our

EPGCN framework on the BIMACS dataset. The purpose

of this analysis is to assess the effectiveness of our pro-

posed framework in open-world scenarios, particularly in

its ability to distinguish between In-Distribution (ID) and

Out-of-Distribution (OOD) samples and to separate different

OOD classes in the feature space. As previously discussed,

the success of our approach relies on ensuring that each

OOD class forms distinct, well-separated clusters from the

ID features.

In the t-SNE visualization of the PGCN baseline, OOD

features (non-blue points) exhibit significant overlap with

ID features (blue points). This indicates that the PGCN

model struggles to confidently distinguish OOD samples

from ID samples, leading to an output confidence distribution

where ID and OOD samples have similar confidence scores.

This is further confirmed by the confidence distribution

plot, where the distributions of OOD classes 1, 2, and 3

overlap considerably with that of the ID samples, which is

undesirable.



In contrast, our EPGCN framework demonstrates a clear

separation between ID and OOD features in the t-SNE plot.

This is primarily attributed to the Temporal Clustering Loss,

which encourages OOD features to be positioned farther

from ID features in the feature space. Additionally, the

confidence distribution plot reveals that ID samples exhibit

significantly higher output confidence compared to most

OOD samples. Furthermore, OOD features are more dis-

tinctly clustered among themselves due to the regularization

effect of Mixup, which prevents all OOD features from

collapsing into a single cluster.

The t-SNE and confidence distribution plots validate our

quantitative results, particularly improvements in AUROC,

ACCOOD , and hscore, confirming the effectiveness of our

framework in the OWAS problem setting.

V. CONCLUSIONS

In this work, we introduce the Open-World Action Seg-

mentation problem and propose a novel framework that

addresses key limitations in existing open-world recogni-

tion methods. Unlike prior approaches that rely on incre-

mental learning or external labeling, our method uses a

distance-based classifier (K-means), assuming that Out-of-

Distribution samples form distinct clusters without requiring

manual labeling. We enhance the closed-set PGCN model by

integrating a Temporal Efficient Upsampling (TEU) module,

which better fuses encoder features across temporal dimen-

sions, and apply Mixup to introduce uncertainty during train-

ing, helping the model generalize to various OOD scenarios.

Additionally, Temporal Clustering Loss enhances the model’s

ability to form more distinct clusters in the feature space.

Evaluations on the Bimacs and H2O datasets show that

our framework consistently outperforms existing methods

(PGCN and UQ-TFGCN), demonstrating the effectiveness of

these novel components for open-world action segmentation.

The OWAS problem aims to provide a streamlined ap-

proach for labeling unknown samples using only signals from

known samples, without relying on external information,

which can be challenging to obtain especially for dense pixel-

wise labeling on new videos. This capability is particularly

valuable in real-world robotics applications, where adapting

to unseen actions without manual annotations is crucial for

safe, reliable, and cost-effective operation.
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