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Multi-Modal Graph Convolutional Network with Sinusoidal Encoding

for Robust Human Action Segmentation

Hao Xing1, Kai Zhe Boey1, Yuankai Wu2, Darius Burschka3, Gordon Cheng1

Abstract— Accurate temporal segmentation of human actions
is critical for intelligent robots in collaborative settings, where a
precise understanding of sub-activity labels and their temporal
structure is essential. However, the inherent noise in both
human pose estimation and object detection often leads to
over-segmentation errors, disrupting the coherence of action
sequences. To address this, we propose a Multi-Modal Graph
Convolutional Network (MMGCN) that integrates low-frame-
rate (e.g., 1 fps) visual data with high-frame-rate (e.g., 30
fps) motion data (skeleton and object detections) to mitigate
fragmentation. Our framework introduces three key contri-
butions. First, a sinusoidal encoding strategy that maps 3D
skeleton coordinates into a continuous sin-cos space to enhance
spatial representation robustness. Second, a temporal graph
fusion module that aligns multi-modal inputs with differing
resolutions via hierarchical feature aggregation, Third, inspired
by the smooth transitions inherent to human actions, we design
SmoothLabelMix, a data augmentation technique that mixes in-
put sequences and labels to generate synthetic training examples
with gradual action transitions, enhancing temporal consistency
in predictions and reducing over-segmentation artifacts.

Extensive experiments on the Bimanual Actions Dataset, a
public benchmark for human-object interaction understanding,
demonstrate that our approach outperforms state-of-the-art
methods, especially in action segmentation accuracy, achieving
F1@10: 94.5% and F1@25: 92.8%.

I. INTRODUCTION

Human action segmentation, the task of temporally decom-

posing continuous activities into coherent sub-action units,

is a cornerstone of intelligent robotic systems operating

in collaborative environments. Beyond recognizing discrete

actions, the systems must understand their temporal structure.

Our preliminary studies [1] on human-robot collaboration

reveal that encoder-decoder graph convolutional networks

excel at parsing spatiotemporal information by representing

human skeleton and object center points as graph nodes.

Through attention mechanisms, these networks dynamically

update the relationships between nodes, capturing the evolv-

ing interactions between human and objects. However, joint

misdetections and tracking errors in skeleton data often lead

to over-segmentation, fragmenting continuous actions into

disjointed segments and disrupting the temporal coherence

of action sequences. This limitation becomes particularly

critical in human-object interaction scenarios, where both

human pose estimation (skeleton) and object detections

(bounding boxes) introduce noise. Object misdetections, such
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as missing and inaccurately localized bounding boxes, lead

to inconsistencies in action segmentation.

Recent advances in multi-modal networks [2], [3] have

demonstrated promise in addressing noise-induced over-

segmentation by integrating structured 3D motion data (e.g.,

skeletal trajectories and object centroids) with pixel-based vi-

sual streams. However, integrating pixel-based RGB features

with 3D position information presents significant challenges.

The two modalities exhibit divergent characteristics: 3D

position data are spatially sparse and structured, while image

features are spatially dense and unstructured. Directly con-

catenating or aligning these representations leads to feature

incompatibility. To bridge this gap, we introduce a sinusoidal

joint encoding strategy that projects 3D coordinates into a

continuous sin-cos space. This transformation downscales

noisy joint trajectories while preserving spatial relationships,

enabling seamless fusion with visual features.

A second challenge arises from computational efficiency:

processing full-frame video data at high temporal resolu-

tions is prohibitively expensive for real-time systems, while

naively fusing features across different temporal resolutions

degrades performance. A common approach is to upsam-

ple low-frequency image features to match the motion se-

quence’s time scale and merge them using a late fusion

strategy [3]. However, this final fusion step often results in

feature loss due to the mismatch in the fineness of features,

and it overlooks fine-grained temporal dependencies and

misaligns crucial visual and motion cues. To address this,

we propose a Multi-Modal Graph Convolutional Network

(MMGCN) that processes high-frequency motion data via

a hierarchical graph convolutional network and strategically

integrates high-frequency motion features into low-frequency

(1 fps) visual cues at a middle stage, ensuring a more

coherent fusion with processed motion information later in

the pipeline. By processing the two modalities in different

temporal resolutions, our method effectively preserves fine-

grained temporal dependencies and aligns visual motion cues

efficiently.

Finally, inspired by the observation that human actions

transition smoothly over time, we develop SmoothLabelMix,

a novel data augmentation technique that enforces temporal

consistency by smoothing action labels along the temporal

dimension and mixing input action sequences and labels in

the spatial space.

Overall, the technical contributions of the paper are:

• Sinusoidal encoding: A spatial encoding method that

maps 3D skeleton coordinates into a continuous sin-cos

space, enabling effective fusion with visual features.

https://arxiv.org/abs/2507.00752v1


• Multi-Modal Graph Convolutional Network: A hybrid

graph-based architecture that processes 30 fps motion

sequence through a graph convolutional backbone and

integrates 1 fps visual data into skeleton sequences

through a parallel branch, balancing computational ef-

ficiency and segmentation accuracy.

• SmoothLabelMix Augmentation: A data augmentation

strategy combining label smoothing and weighted mix-

ing to align inputs and labels bidirectionally. This

reduces over-segmentation artifacts, improves general-

ization to ambiguous motion boundaries, and enhances

robustness to noise.

The remainder of this paper is organized as follows:

Section II reviews related work, Section III details the

Multi-Modal Graph Convolutional Network architecture,

Section IV introduces the SmoothLabelMix data augmenta-

tion technique, Section V presents experimental results, and

Section VI concludes with future directions.

II. RELATED WORK

In this section, we briefly review three key areas related

to our work: Human Action Segmentation, Multi-Modal

Models, and Data Augmentation.

A. Human Action Segmentation

Human Action Segmentation, which aims to temporally lo-

calize and classify sub-actions within continuous sequences,

has evolved from early template-based methods [4], [5] to

modern image-based learning architectures [6], [7]. Temporal

Convolutional Networks (TCNs) [6] pioneered frame-wise

prediction using dilated convolutions, while MS-TCN [7]

extended this with multi-stage refinement. Recent works

like Action Segment Refinement Framework [8] combine

boundary detection and classification to improve temporal

localization. Despite progress, these methods suffer from

high computational costs, sensitivity to background clutter,

and the inclusion of redundant visual information, making

them inefficient for real-time applications.

To address these challenges, graph-based networks are

considered as a more efficient alternative by modeling

human motion as structured spatial and temporal graphs,

significantly reducing background noise and computational

overhead. Early works, such as Spatial-Temporal Graph

Convolutional Network (ST-GCN) [9], introduced graph

convolutional networks to sequentially capture joint-level

motion patterns across both spatial and temporal dimen-

sions. Subsequent improvements, like Two-Stream Adaptive

Graph Convolutional Network (2s-AGCN) [10] and Multi-

Scale Graph Network (MS-G3D) [11], incorporated attention

mechanisms and multi-scale feature extraction to enhance

action recognition. More recently, methods such as Pyramid

Graph Convolutional Network (PGCN) [12] and Temporal

Fusion Graph Convolutional Network (TFGCN) [1] have

explored temporal modeling techniques to further improve

segmentation accuracy.

However, despite these advancements, graph-based meth-

ods remain highly susceptible to noise from skeleton misde-

tections, leading to over-segmentation and fragmented action

sequences. When combined with noisy object detections in

human-object interaction scenarios, these errors further de-

grade segmentation quality, highlighting the need for robust

multi-modal solutions.

B. Multi-Modal Models

Multi-modal learning is a promising method for action

recognition, leveraging complementary strengths of visual

(RGB/depth) and skeletal modalities to overcome individual

limitations. Early works, like [13], [14] fuse images/depths

and skeletons per frame to improve the recognition results.

Recent advancements focus on intermediate fusion strategies

to better align cross-modal features. Kim et al. [15] proposed

a cross-modal transformer that attends to spatial correspon-

dences between skeleton joints and image regions, improving

recognition consistency by dynamically weighting discrimi-

native features. Similarly, Wang et al. [16] integrates skeleton

joints with RGB patches using a late fusion technique,

but its reliance on dense pixel processing limits scalability.

To address efficiency, PoseC3D [2] encodes skeletons as

pseudo-3D heatmaps and fuses them with RGB features

via 3D convolutions, achieving a balance between accuracy

and speed. More recently, Tani Hiroaki [3] introduced a

temporal attention mechanism that selects one representative

image for the entire motion sequence capturing the minimal

appearance features necessary for action recognition. While

this approach is effective for short-term action recognition, it

becomes computationally intensive for long-duration actions.

Building on advancements in multi-modal action recog-

nition, our work extends these principles to human action

segmentation, a task requiring precise temporal localization

of sub-activities. While existing multi-modal models excel

at classification, they often neglect the computational and

temporal alignment challenges inherent to segmentation.

C. Data Augmentation

Data augmentation plays a pivotal role in improving the

generalization and robustness of temporal models, particu-

larly for action recognition and segmentation tasks. Tradi-

tional techniques, such as spatial augmentations (e.g., crop-

ping, flipping) [17] and temporal perturbations (e.g., frame

skipping, time warping) [18], focus on enhancing spatial

invariance or simulating temporal variations. While effective

for classification, these methods often disrupt the temporal

coherence required for precise segmentation, where smooth

transitions between sub-actions are critical.

Recent approaches adapt image-domain augmentation

strategies to temporal tasks. Mixup [19] and CutMix [20],

which linearly interpolate inputs and labels, have been

extended to videos by blending random clips (e.g.,

VideoMix [21]). However, these methods prioritize spatial

or short-term temporal invariance, inadvertently introducing

abrupt label transitions that exacerbate over-segmentation

artifacts. For instance, TemporalMix [22] downsamples two
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Fig. 1: The framework of Multi-Modal Graph Convolutional Network with motion and image sequences in different temporal

resolutions.

segments by half, interpolates the larger segment to match

the smaller one to preserve the natural smoothness of human

actions, and then combines them into a new sequence. How-

ever, its downsampling process disrupts the natural tempo of

human actions, leading to inconsistent predictions in speed-

sensitive tasks.

To address these limitations, our work introduces Smooth-

LabelMix, a novel augmentation strategy tailored for action

segmentation. Inspired by the observation that human actions

transition gradually, SmoothLabelMix smooths the labels

along the temporal dimension and blends action segments

and their labels along the spatial dimension. This enforces

a smooth label distribution that mirrors real-world action

dynamics, while simultaneously training the model to handle

noisy inputs caused by sensor errors or occlusions.

III. MULTI-MODAL GRAPH CONVOLUTIONAL NETWORK

The idea of the Multi-Modal Graph Convolutional Net-

work is jointly optimizing dense spatial features from vi-

sual data and dense temporal dynamics from the motion

sequences (skeleton and object). Motion inputs (e.g., 30 fps)

provide fine-grained motion patterns but suffer from joint

tracking noise, while sparse RGB frames (1 fps) offer stable

spatial context but lack temporal granularity. Our model

bridges these modalities through two core mechanisms: a

sinusoidal encoder and temporal feature refinement.

A. Sinusoidal Encoder

To mitigate spatial jitter and enhance compatibility with

visual features, we transform the joint position information in

the camera coordinate into a continuous sin-cons representa-

tion. Given a 3D joint Pi = (Xi, Yi, Zi), where Pi ∈ R
1x3,

the encoder maps each coordinate into a high-dimensional

space using sinusoidal and cosine functions. The encoder first

scales these coordinates by a frequency factor determined by

the parameters α and β. It then computes sinusoidal sin e
and cosine con e embeddings for each dimension, resulting

in a high-dimensional vector that captures both the position

and its spatial context. Mathematically, for each coordinate

c ∈ {Xi, Yi, Zi}, the encoder computes:

sin e(c) = sin(
β · c

αk/d
), (1)

cos e(c) = cos(
β · c

αk/d
), (2)

where k is the index of the embedding dimension, and d is

the total number of dimensions. These sinusoidal and cosine

embeddings are concatenated to form the final encoded

representation Pe:

Pe,i = concat(sin e(Pi), cos e(Pi)). (3)

B. Temporal Feature Refinement

While position information is encoded using the sinu-

soidal encoder described earlier, the image information is

processed into high-dimensional features through a modified

I3D model [23], in which the stride along the time axis is

removed because of the limited frames. By concatenating the

motion and image features together, a multi-modal feature

is formed. The Temporal Feature Refinement module is de-

signed to integrate these multi-modal features into a unified

representation and upsample them to the time scale of the

graph motion sequence.

As demonstrated in Fig. 1, the module begins by averaging

the encoded position features to match the temporal-spatial

resolution of the image features. Then the concatenated

features are refined by three consecutive bottleneck layers,

where the features are compressed in half at the bottleneck

place and then remapped back to the high dimensions.

The refined features are further upsampled to the motion

time scale through a temporal pyramid pooling layer [12]

with four parallel temporal pooling blocks. The final refined

features are obtained by introducing the interpolated original

features into the pooled features.

C. Multi-Modal Graph Convolutional Network

In addition to the motion and image feature refinement

stream, the original motion sequence is processed in a

graph encoder-decoder network [1]. This network models the

structural dependencies between motion elements (skeleton

and objects) by representing them as spatial and temporal

graphs. The graph nodes are skeleton keypoints and object



Fig. 2: Comparison of Original, Linear, and Gaussian

Smoothed label sequences, all sequences have a label tran-

sition at the same frame index.

center points, and the graph edges represent the dynamic

relations between nodes. Through multiple layers of graph

convolutions and pooling operations, the network learns

high-dimensional motion features that preserve both local

and global motion contexts. The output of the graph encoder-

decoder has the same dimensionality as the motion feature

refinement stream, allowing for seamless fusion.

The extracted graph-based motion features and the refined

motion-image features are concatenated and passed through

a multi-layer classifier. This classification head leverages

two cascaded 2D convolutional kernels to complement the

strengths of both streams to improve recognition perfor-

mance. As shown in Figure 1, the complete MMGCN

framework integrates the following modules: Sinusoidal En-

coder, Image Encoder, Temporal Feature Refinement, Graph

Convolutional Network, and a Classifier.

IV. SMOOTH LABEL MIX

Human motion smoothly transitions from one action to

the next, whereas action labels change in binary form

from 0 to 1 or vice versa. To bridge this discrepancy,

we propose SmoothLabelMix, a two-stage framework for

training sequence models with smoothed labels and intra-

batch mixing. The method consists of two key components:

(1) Label Smoothing using linear or Gaussian filters, and

(2) Weighted Mixing of input sequences and their corre-

sponding smoothed labels.

The Label Smoothing technique aligns the label transitions

with the smooth nature of human motion. Specifically, we

implement two types of filters (linear and Gaussian) to

process the binary label sequences, as illustrated in Figure 2.

These filters create gradual transitions in the labels, better

reflecting the continuous nature of human motion. The linear

filter applies a uniform averaging over a fixed window, result-

ing in piecewise-linear transitions, while the Gaussian filter

uses a weighted average based on the Gaussian distribution,

producing smoother, more natural S-curve transitions. By

incorporating these smoothed labels, we aim to improve the

alignment between the model’s predictions and the inherent

continuity of human actions.

The Weighted Mixing technique further enhances model

robustness by combining pairs of input sequences and their

corresponding smoothed labels within a training batch. Given

two input sequences x1 and x2, the mixed sequence xmix is

computed as:

xmix = w · x1 + (1− w) · x2 (4)

where w is a weighting factor with w ∼ Beta(α =
0.2), balances the contribution of each input. Similarly, the

corresponding labels are mixed using the same weighting

scheme to maintain consistency between the inputs and

annotations. This method enhances the model’s ability to

generalize across gradual action transitions, reducing abrupt

segmentation errors and improving temporal coherence.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed modules,

we conduct the experiments on a public human-objects

interaction dataset: Bimanual Actions [24]. On this dataset,

we also perform systematic ablation studies to validate four

critical design choices:

1) Sinusoidal encoding: ablation with/without temporal

positional embeddings.

2) Fusion strategies: early fusion (input-level concatena-

tion), middle fusion (feature-level attention), and late

fusion (output-level averaging).

3) Label filters: linear vs. Gaussian filtered label transi-

tions.

4) Weighted mixing: ablation with/without mixing data.

A. Datasets

Bimanual Actions dataset [24] captures fine-grained

human-object interactions for kitchen tasks comprising 540

recordings (2 hours 18 minutes total) of bimanual manipu-

lation tasks such as cutting and stirring. The dataset authors

propose a leave-one-subject-out cross-validation protocol,

where models are evaluated on held-out participants to test

generalization to unseen users. For our experiments, we

compare against state-of-the-art methods on this benchmark

while conducting ablation studies on Subject 1’s testset to

isolate the impact of our proposed components (e.g., label

smoothing, fusion strategies).

For our multi-modal fusion experiments, each input sam-

ple integrates a 120-frame motion sequence (comprising 3D

body skeletons and object bounding box center points) with

4 RGB images (480×640) uniformly sampled from the video

clip. This configuration creates a 30:1 time resolution ratio

between the high-frequency motion data (120 frames) and

the sparsely sampled visual data (4 frames)

B. Experimental Settings

We evaluate our method using standard metrics to ensure

a comprehensive assessment of its performance. For evalua-

tion, we employ metrics such as recognition accuracy, micro-

F1, and segmentation accuracy (F1@k). The model is opti-

mized using the SGD optimizer with an initial learning rate

of 10−4, which is decayed following a multi-step schedule.

Training is conducted on two NVIDIA RTX 2080ti GPUs,

leveraging mixed precision to enhance efficiency and reduce

memory overhead. We use a batch size of 32 and train for



TABLE I: Ablation studies: the accuracy of framewise prediction and F1@k score of action segmentation using models with

different modifications in each unita

Smoothingb Mixing Refinement Sinusoidal Fusion Strategies c Evaluation Metrics (%) d

O L G w w/o w w/o w w/o Early Mid Late Top 1 F1 macro F1@10 F1@25 F1@50

× × × × 82.91 81.93 91.14 88.39 78.26
× × × × 83.83 82.82 92.03 89.14 77.30

× × × × 84.05 83.77 90.63 88.44 77.85
× × × × 84.70 84.68 91.33 89.15 80.61

× × × × 89.09 89.31 93.41 91.59 80.65
× × × × 88.92 88.89 94.14 92.52 84.07

× × × × × 88.48 88.65 92.88 90.95 81.49
× × × × × 89.71 89.89 93.80 91.77 83.49
× × × × × 89.74 89.95 94.81 92.71 83.64
× × × × × 88.42 88.53 92.31 89.82 80.48
× × × × × × 90.19 90.39 95.26 93.05 83.87

a ”Smoothing” means Label Smoothing, ”Mixing” represents Weighted Mixing, ”Sinusoidal” is the Sinusoidal Encoder, and ”Refinement” is the Temporal Feature Refinement

block.
b ”O” is the original label, ”L” means the linear filtered label, and ”G” means the Gaussian filtered label. ”w” is with and ”w/o” means without.
c Empty entries indicate models trained solely on motion sequences without visual input.
d The best results comparing all modifications are in bold; The best results among different configurations of label smoothing and weighted mixing are underlined.

60 epochs, applying the SmoothLabelMix data augmentation

techniques to improve generalization. The evaluation exper-

iments are conducted on a single GPU.

C. Ablation Study

Our ablation study systematically evaluates the contribu-

tions of three core innovations in the framework: SmoothLa-

belMix data augmentation, the Temporal Refinement module,

and the Sinusoidal Encoder within the multi-modal graph

convolutional network. The introduction of the image nat-

urally raises the challenge of fusion strategies. Therefore,

while analyzing the Sinusoidal Encoder, we also explored

the impact of different fusion approaches: early, middle, late,

and middle+late. Note that we categorize the implementation

of the Sinusoidal Encoder and Temporal Refinement as a

middle fusion method, because the Sinusoidal Encoder pro-

cesses the motion features before fusion within the Temporal

Refinement.

The first 6 rows of the ablation study on Table I reveal

critical insights into the interplay between label smoothing

and data mixing for action recognition and segmentation.

Considering the Top1 and micro F1 performance in ac-

tion recognition, combining label smoothing with data mix-

ing consistently outperforms non-mixed counterparts, with

the largest gains observed for linear smoothing + mixing

(89.09/89.31 vs 83.83/82.82 without) and Gaussian smooth-

ing + mixing (88.92/88.89 vs 84.05/83.77 without). This

demonstrates that mixing enhances model robustness by

enforcing consistency between smoothed labels and motion

inputs. Considering the F1@k performance, the benefits

of Gaussian smoothing + mixing are most pronounced at

strict temporal thresholds (F1@50: 84.07 vs. 77.85 without

mixing), indicating better handling of action boundaries.

Notably, segmentation at loose thresholds (F1@10/25) im-

proves across all configurations, suggesting label smoothing

alone helps with coarse temporal alignment, while mixing re-

fines fine-grained transitions. The synergy between Gaussian

smoothing and data mixing achieves the best segmentation

performance across the configurations of smoothing and

mixing techniques, reducing over-segmentation by 5.81%
(F1@50) compared to the baseline (the first row). Given

its balanced improvement across recognition accuracy and

segmentation precision, particularly at challenging temporal

thresholds, we adopt the Gaussian label smoothing and data

mixing combination for all subsequent experiments.

Beginning at the 7-th row, we introduce the image stream

alongside the motion sequence as multi-modal inputs. Rows

7-8 of the ablation study (Table I) evaluate the impact of

the proposed Temporal Refinement module, which enhances

the integration of visual and motion modalities. Integrat-

ing the Temporal Refinement module improves the frame

recognition accuracy by 1.23%, while also mitigating over-

segmentation, particularly beneficial for F1@50 (+2.00%).

The results demonstrate the module’s effectiveness in en-

hancing temporal coherence and segmentation precision.

However, the inclusion of image streams still brings distur-

bance to the model, especially for action segmentation. This

observation motivates us to further analyze the configuration

of the fusion strategy and the Sinusoidal Encoder.

Rows 8-11 of the ablation study (Table I) reveal critical

insights into the efficacy of the fusion strategies and the

Sinusoidal Encoder. Early fusion alone performs poorly

(Accuracy: 88.42, F1@50: 80.48), as raw skeleton and

image features suffer from noise amplification and temporal

misalignment. Integrating the Sinusoidal Encoder into a late

fusion significantly mitigates these issues, which projects 3D

skeleton coordinates into a continuous sin-cos space. The

combination of Sinusoidal (middle) and late fusion strategy

achieves the best performance (Accuracy: 90.19%, F1@10:

95.26%), demonstrating that sinusoidal encoding stabilizes

pose features by smoothing joint trajectories, and late fusion

refines boundaries using contextual visual cues. These results

underscore the necessity of the Sinusoidal Encoder for the

superiority of decoupling early noise suppression from late

contextual refinement in multi-modal frameworks.

For the efficiency analysis, our model archives an optimal

balance between computational efficiency and performance,

operating at 131.0 GFLOPs, significantly lower than using



TABLE II: Comparison of cross-validation results with state-of-the-art methods on the Bimanual Actions dataset [24]a

Model Accuracy (%) F1 macro (%) F1@10 (%) F1@25 (%) F1@50 (%)

Dreher et al. [24] 63.0 64.0 40.6± 7.2 34.8 ± 7.1 22.2± 5.7

H2O+RGCN [25] 68.0 66.0 − − −

Independent BiRNN [26] 74.8 76.7 74.8± 7.0 72.0 ± 7.0 61.8± 7.3

Relational BiRNN [26] 77.5 80.3 77.7± 3.9 75.0 ± 4.2 64.8± 5.3

ASSIGN [26] 82.6 79.8 84.0± 2.0 81.2 ± 2.0 68.5± 3.3

2G-GCN [27] − − 85.0± 2.2 82.0 ± 2.6 69.2± 3.1

PGCN [12] 86.8 83.9 88.5± 1.1 85.5 ± 2.0 77.0± 3.4

TFGCN [1] 88.4 88.6 93.7± 1.2 91.9 ± 1.6 85.4± 2.9

MMGCN (ours) 89.3 89.3 94.5± 1.6 92.8± 1.9 86.1± 3.1

a The models are cross validated on the leave-one-subject-out benchmark, the best results of each class are in bold. The Accuracy and F1 micro results are averaged, and

F1@k are listed with mean and standard deviation. A smaller standard deviation value indicates greater robustness in the model.

Ground Truth

MMGCN

TFGCN

PGCN

ASSIGN

idle approach hold retreat lift place

Fig. 3: Qualitative comparison of action segmentation results: Visualized segmentation outputs of different models for the

breakfast cereal preparation scenario [24], illustrating the temporal alignment and accuracy of predicted action boundaries.

(a) (b)

Fig. 4: Comparison of the robustness of three models under

increasing noise intensities. The figures illustrate how (a)

action recognition accuracy and (b) segmentation F1@50

vary as noise levels rise.

higher visual temporal resolution. For instance: processing

motion and visual modalities at a resolution ratio of 30 : 2
increases FLOPs to 220.0 G, while uniform high-resolution

processing (30 : 30) escalates costs to 2687.3 GFLOPs, a

20.5× increase. This exponential scaling highlights the inef-

ficiency of naively aligning modalities at high frequencies.

While our framework introduces moderate computational

overhead compared to models using pure motion sequences,

it retains real-time performance (81.0 FPS on a single GPU)

by strategically decoupling temporal resolutions.

D. Comparison with states-of-the-art

The proposed MMGCN is compared with state-of-the-

art methods in the field of human action segmentation on

the Bimanual Actions dataset [24]. The compared meth-

ods include the method proposed by Dreher et al. [24],

H2O+RGCN [25], BiRNN [26], 2G-GCN [27], PGCN [12]

and TFGCN [1].

The cross-validation results are listed in Table II. Our

proposed MMGCN achieves state-of-the-art performance

across all evaluation metrics, as validated on the leave-

one-subject-out benchmark. Compared to TFGCN [1], the

previous best method, MMGCN improves accuracy from

88.4% to 89.2% and F1 macro from 88.6% to 89.1%,

with significant gains in boundary-sensitive metrics: F1@10

increases from 93.7 to 94.3, F1@25 from 91.9 to 92.7, and

F1@50 from 85.4 to 85.9. Compared to PGCN [12], which

achieved 88.5%, 85.5%, and 77.0% action segmentation

performance, MMGCN demonstrates substantial improve-

ments, particularly at higher overlap thresholds, indicating

better temporal localization of action boundaries. These

improvements highlight MMGCN’s robustness to temporal

misalignment and the efficacy of the multi-modal fusion

strategy. Despite achieving superior performance, MMGCN

exhibits a slightly higher standard deviation compared to

TFGCN [1], particularly at the F1@10 and F1@25. This in-

creased variability might be attributed to differences in model

architecture and sensitivity to variations in motion and image

inputs. This observation motivates further experiments under

noise-induced conditions to evaluate the model’s robustness,

ensuring consistent performance across diverse scenarios.

To evaluate the robustness of MMGCN under noisy con-

ditions, we selected the most common noise - misdetection.

Specifically, on the testset of subject one of the Bimanual

Actions dataset [24], the motion nodes are randomly re-

moved per frame. The removal rate (noise intensity) increases

from 0% to 25%. The results of robustness are illustrated

in Fig. 4. As noise intensity increases, the gap in action

(a) recognition and (b) segmentation accuracy between the

MMGCN and the other two models progressively widens.

Notably, the MMGCN consistently maintains the highest

performance across all noise levels and, in the segmentation

case, overtakes competing models to secure the top position.

This trend highlights the superior resilience of our approach

to partially missing inputs.

Figure 3 presents the qualitative comparison of action

segmentation results for the breakfast cereal preparation

scenario from the Bimanual Actions dataset [24]. Among



the compared models, our proposed MMGCN produces

predictions that most closely align with the ground truth.

It successfully mitigates the over-segmentation issues, which

are commonly observed in other methods. This demonstrates

the model’s effectiveness in maintaining coherent action

segments. However, MMGCN overlooks actions with short

durations or extends their intervals, leading to temporal shifts

in action boundaries.

VI. CONCLUSIONS

In this study, we propose the Multi-Modal Graph Convo-

lutional Network (MMGCN), a novel framework for robust

human action segmentation that harmonizes high-frequency

motion data (e.g., 30 fps) with low-frequency visual cues

(e.g., 1 fps) via a Sinusoidal Encoder and a mid-stage

fusion strategy. The Sinusoidal Encoder projects 3D joint

coordinates into a continuous spatial-temporal embedding,

while our hybrid fusion architecture integrates motion and

visual features at divergent temporal resolutions, preserv-

ing fine-grained dependencies and computation efficiency.

Complemented by SmoothLabelMix, a data augmentation

technique that synthesizes realistic motion-noise transitions,

MMGCN achieves state-of-the-art performance across the

action recognition and segmentation benchmark.

The model’s sensitivity to variations in input data moti-

vates further research into enhancing its robustness. Future

work will focus on investigating the model’s performance

under noisy and incomplete input conditions by incorporating

noise injection techniques during training. Additionally, we

plan to explore alternative fusion mechanisms, advanced at-

tention models, and extended benchmarks on diverse datasets

to validate the model’s generalizability and practical appli-

cability across different action recognition tasks.
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