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Abstract

3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds
based on natural language. While prior work has made strides using textual descrip-
tions, leveraging spoken language—known as Audio-based 3D Visual Ground-
ing—remains underexplored and challenging. Motivated by advances in automatic
speech recognition (ASR) and speech representation learning, we propose Audio-
3DVG, a simple yet effective framework that integrates audio and spatial informa-
tion for enhanced grounding. Rather than treating speech as a monolithic input,
we decompose the task into two complementary components. First, we introduce
Object Mention Detection, a multi-label classification task that explicitly identifies
which objects are referred to in the audio, enabling more structured audio-scene
reasoning. Second, we propose an Audio-Guided Attention module that captures
interactions between candidate objects and relational speech cues, improving target
discrimination in cluttered scenes. To support benchmarking, we synthesize audio
descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D.
Experimental results demonstrate that Audio-3DVG not only achieves new state-of-
the-art performance in audio-based grounding, but also competes with text-based
methods—highlighting the promise of integrating spoken language into 3D vision
tasks.

1 Introduction

Visual grounding (VG) of referring expressions—the task of identifying visual entities described in
natural language—has made significant progress in the 2D computer vision domain [54, 59, 46, 84].
With the rapid advancement of 3D sensing technologies and spatial data representations, this task has
naturally extended into the 3D domain, where spatial reasoning becomes increasingly crucial. Unlike
2D images composed of grid-aligned pixels, 3D data—typically represented as point clouds—encodes
richer geometric and spatial structures. This shift introduces both novel opportunities and unique
challenges for accurately grounding language in three-dimensional space.
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(a) Audio-based 3D Visual Grounding
enables object localization to support
robot navigation.

(b) The chair has its back to the windows.
the chair is next to the desk in the corner
of the room facing the brown armchair.

Figure 1: a) Application of Audio based 3DVG to robot navigation task. b) Example sentences
referring to objects in 3D scenes. Green boxes indicate objects of the same category as the target,
while blue boxes highlight relational objects mentioned in the speech.

In line with this evolution, recent studies have transitioned from grounding objects in 2D images [53,
11, 15, 70] to grounding in 3D scenes [10, 1], where the goal is to localize objects referenced by
natural language within a point cloud. While these advancements have yielded strong results, most
approaches remain reliant on textual input. This dependence poses a barrier to practical deployment,
as it requires users to manually input referring expressions using keyboards or touchscreens—a
process that is inefficient in hands-busy or eyes-busy situations and inaccessible for users with motor
impairments. To overcome the limitations of text-only inputs, recent research has begun exploring
audio-based 3D visual grounding. A pioneering example is AP-Refer [96], a multimodal framework
that replaces text with spoken language as the input modality. This framework aligns raw point
clouds with corresponding audio signals to localize objects mentioned in natural speech, enabling
audio-driven robot navigation, as illustrated in Figure 1a.

Despite its innovation, AP-Refer exhibits two critical limitations. First, it lacks an effective attention
mechanism for fusing audio and spatial features, resulting in limited cross-modal understanding.
Second, it ignores relational objects mentioned in speech, relying solely on audio and individual
object features for grounding. This approach is especially inadequate in densely populated scenes
where spatial context is vital.

In this paper, we present a novel framework that addresses both issues and significantly narrows
the performance gap between audio-based and text-based methods. Our contributions are threefold:
To address the first limitation, we build on the observation that target objects are often spatially
related to other instances of the same category and to additional objects explicitly mentioned in
the spoken input (as shown in Figure 1b). We introduce an auxiliary task called Object Mention
Detection, which aims to identify the presence of relational objects referenced in the utterance.
These relational objects serve as spatial anchors that guide the model in identifying the correct target
among candidates. To resolve the second limitation, we propose an Audio-Guided Attention Module,
which learns spatial and semantic relationships between candidate objects and relational entities, all
conditioned on the audio signal. This attention mechanism improves the model’s ability to focus on
relevant spatial dependencies, enhancing localization performance. In addition, we contribute new
benchmark datasets for the 3DVG-Audio task. These include high-quality synthetic speech datasets
based on existing 3DVG benchmarks, as well as a real-world spoken dataset to evaluate generalization.

As shown in our experiments, our model achieves substantial improvements over previous audio-
based methods, reaching 17.03% and 17.15% accuracy on Acc@25 and Acc@50, respectively, while
maintaining competitive performance with text-based systems.

In summary, the key contributions of this paper are as follows:

• We introduce a new framework for Audio 3D Visual Grounding that incorporates both target
proposals and relational objects, effectively reducing noise in cluttered point clouds.

• We design a novel Audio-Guided Attention module that captures semantic and spatial
relationships conditioned on spoken input.
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• We create standardized benchmark datasets for the 3DVG-Audio task, including both syn-
thetic and real-world audio, to facilitate robust evaluation and comparison.

• Our model establishes new state-of-the-art results among audio-based methods and achieves
performance comparable to leading text-based approaches, highlighting its strong general-
ization ability and computational efficiency.

2 Related Work

2.1 Multi-modal research based on audio

Audio, a ubiquitous and easily accessible modality, has been extensively studied since the early days
of Artificial Intelligence [78], particularly in tasks such as audio classification [23, 24, 51]. With the
rapid advancement of deep learning in recent years, there has been growing interest in integrating
audio with other modalities to address real-world challenges. Notable areas of multi-modal research
involving audio include audio-text fusion [55, 89, 87]. These audio-based multi-modal approaches
commonly rely on pre-trained audio feature extraction modules to effectively capture meaningful
audio representations.

2.2 3D Visual Grounding

3D grounding aims to identify the object in a 3D scene that is referred to by a natural language
expression. Datasets [1, 10] and methods [10, 12, 101, 86, 99] have been proposed to address this
challenging task. Existing approaches can generally be categorized into two groups: one-stage and
two-stage frameworks. One-stage methods directly fuse text features with visual representations at
the patch or point level to regress the target bounding box [56, 44], enabling flexible detection of
various objects from the input sentence. In contrast, two-stage methods follow a detect-then-match
paradigm [92, 12, 99, 86], where the first stage generates object proposals and the second stage selects
the best match based on the input description. This decoupling of object perception and cross-modal
matching makes two-stage methods more interpretable and easier to analyze.

Following the pioneering works of ScanRefer [10] and ReferIt3D [1], research in 3D visual grounding
(3DVG) has gained significant momentum, with numerous subsequent contributions substantially
advancing the field and expanding its potential across a wide range of applications. Zhu et al.
[101] introduced 3D-VisTA, a pre-trained Transformer optimized for aligning 3D visual and textual
information, which can be effectively adapted to various downstream tasks. Guo et al. [29] proposed
ViewRefer, a 3DVG framework that explores the integration of perspective knowledge from both
language and 3D modalities, and further introduced a learnable multi-view model. Wang et al. [86]
presented G3 − LQ, a method specifically designed for 3D visual grounding, incorporating two
specialized modules to explicitly model geometrically aware visual representations and generate fine-
grained, language-guided object queries. Shi et al. [77] investigated the role of viewpoint information
in 3DVG and proposed VPP-Net, a model that explicitly predicts the speaker’s viewpoint based on
referring expressions and scene context. Additionally, several other influential works, including
CORE-3DVG [90], Multi3DRefer [99], and D-LISA [97], have further contributed to the progress
and richness of the 3DVG landscape.

2.3 Audio 3D Visual Grounding

While text-based 3D visual grounding has been extensively studied, audio-based multimodal ap-
proaches grounded in point clouds remain relatively underexplored and face notable limitations.
Zhang et al. [96] introduced a novel multimodal task, termed AP-Refer, which integrates audio signals
with 3D point cloud data. This work represents the first attempt to explore audio–point cloud fusion
for multimodal understanding. By leveraging spatial cues from point clouds and semantic information
from audio input, AP-Refer facilitates accurate localization of audio-referred objects within a 3D
scene. Despite its promising potential, the performance of AP-Refer still lags behind that of text-based
methods, underscoring the need for further research in this emerging area.
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Figure 2: Illustration of the overall pipeline. Our network processes the 3D point cloud using an
object detector and encodes the audio input with a Wav2Vec model. The extracted audio and different
group object features are then fused via Audio-Guided Attention, which consists of Audio-Guided
Self Attention and Audio-Guided Cross Attention modules, followed by a grounding head responsible
for target object identification.

3 Method

Audio-3DVG is a novel framework for audio-based 3D visual grounding that performs target-relation
referring to identify the most relevant instance-level object. As illustrated in Figure 2, the framework
leverages point cloud instance segmentation to first extract individual object instances and then
construct rich representations for each object within the entire scene. In the upper branch, we utilize
the Wav2Vec model [6] to extract contextual audio representations. These features are then processed
by audio classification and Object Mention Detection heads to identify the audio class—used to
filter target proposals—and to detect the presence of relational entities within the context. Finally,
an Audio-Guided Attention Module is introduced to fuse the multi-modal input representations and
guide the selection of the optimal candidate.

3.1 Instances Generation

Unlike ScanRefer [10], which treats all object proposals as potential candidates, our approach follows
a recent detection-then-matching framework. We first extract all foreground instances from the input
point cloud and leverage audio classification to identify a set of likely object candidates. The 3D
visual grounding task is then reformulated as an instance-level matching problem. Specifically,
given a scence S with point cloud data Pscene ∈ RK×6, we use PointGroup [43] to detect the object
instances present in the scene, producing a set of objects (o1, ..., oM ), each object oi is represented
by a subset of points Pi ∈ RK×6 , where each point contains xyz coordinates and rgb color values.
In our experiments, we sample K = 1024 points per object. Each proposal is also associated with a
3D bounding box BT ∈ R6 , encoding the center coordinates and the dimensions of the box.

3.2 Audio Encoding with Scene Embedding

Following Zhang et al. [96], Audio-3DVG employs an ASR pre-trained Wav2Vec model [6] for audio
feature extraction (see Appendix Section D). Wav2Vec is an unsupervised speech representation
learning framework that has shown strong performance across a wide range of speech-related down-
stream tasks (see Appendix Section A for a detailed discussion of our rationale). Given an input
audio signal AT , Wav2Vec produces a feature representation FAudio ∈ RC×La , where La is the
sequence length and C is the feature dimensionality of the high-dimensional latent space. To further
encode temporal dependencies and contextual information, FAudio is passed through bidirectional
GRU layers, resulting in a fixed-length 768-dimensional vector (a) used for downstream optimization.

To incorporate scene-level geometric context, we also embedd the raw scene point cloud using a
sparse convolutional neural network. Specifically, we employ the Minkowski Engine[17], a highly
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efficient library for processing sparse tensor data, to extract spatial features from the 3D scene. The
point cloud is voxelized and passed through a series of sparse convolutional layers to produce a global
scene representation. This results in a compact 512-dimensional feature vector, which is concatenated
with the audio features to capture the overall structural layout of the environment.

3.3 Audio Classification

Given the contextualized audio representation, we design a classifier to identify the target object
referred to in the spoken utterance. The classifier is implemented as a simple multilayer perceptron
(MLP), followed by a softmax layer to produce class probabilities. Let Ncls denote the total number
of unique object classes defined in the dataset, the probability of the target class is computed as:

CNcls
i = Softmax(MLP (featureNcls

i=0 )) (1)

3.4 Object Mention Detection

Most prior works [10, 1, 92] focus solely on analyzing candidate object proposals, often neglecting
the presence of relational objects referenced in the input. This limitation can lead to ambiguity when
identifying the correct target in scenes with dense object instances. To address this issue, we propose
a novel auxiliary task called Object Mention Detection, which aims to identify relational objects
mentioned in the audio. Concretely, we employ a lightweight multilayer perceptron (MLP) with Ncls

binary classification heads, corresponding to maximum Ncls object classes may appear in the scene,
Each head predicts the probability that its corresponding object class is mentioned in the spoken
utterance. During inference, objects with predicted probabilities exceeding a predefined threshold are
classified as relational objects.

3.5 Object Grouping

Before passing instances to subsequent modules, Audio-3DVG leverages the predicted instance set
from earlier stages to filter candidate objects and identify relevant relational references. For example,
as illustrated in Figure 2, given an audio description such as ‘The chair is between two tables and has
a chair to its left, the chairs has clue backrest and a gray seat’, we begin with all object instances
extracted from the original point cloud (o1, ..., oM ). . From this set, we retain only those instances
classified as the target category, ‘chair’, along with the related category, ‘table’. These filtered sets
correspond to the target candidates point set ( PN

i=0 ⊂ PTarget, where each Pi ∈ R1024×6), and the
relational objects point set ( PN

j=0 ⊂ PRelational, where each Pj ∈ R1024×6) in our pipeline.

3.6 Object Feature Acquisition

In contrast to Chen et al. [12], who separate semantic and spatial information in object instance
representations, we argue that these features are inherently correlated. Neural networks can effectively
learn to disentangle them using the positional encoding associated with each feature type. Motivated
by this, we represent each object instance using a unified embedding formed by concatenating multiple
feature modalities, including:

Object Embedding: For each object oi in the set of target candidates and relational objects is
represented as Pi ∈ RK×(3+F ), where K denotes the number of points, 3 corresponds to the spatial
coordinates (x, y, z) associated with each point, and F includes additional point-wise attributes such
as RGB color values in our case. we first normalize the coordinates of its point cloud into a unit ball.
We then use PointNet++ [69]-a widely adopted framework for 3D semantic segmentation and object
detection to extract object-level features, resulting in oobji ∈ R1×1024

Label Embedding: To enhance the target classifier’s awareness of candidate categories, ReferIt3D [1]
incorporates an auxiliary classification task within a joint optimization framework. Although this
approach improves category understanding, it also adds to the overall learning complexity. In our
network, we incorporate object labels as part of the object representation by embedding them using
word embedding model. Specifically, for each instance in the set of target candidates and relational
objects, we encode its class label using a pre-trained GloVe [67], resulting olabeli ∈ R1×300.

Spatial Information: To represent the absolute position of each instance Oi with corresponding
representation Pi, we compute the object center ocenteri = [cx, cy, cz] ∈ R3 and the object size
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(a) Audio-Guided Attention overview.

(b) Given two objects, this figure illustrates the mech-
anism for computing the key, query, and value vectors
used to estimate the attention score between them.

Figure 3: An overview of the proposed Audio-Guided Attention Module, comprising the Audio-
Guided self-Attention and Audio-Guided cross-Attention submodules designed to model contextual
and relational cues from speech.

osizei = [zx, zy, zz] ∈ R3 These are derived from the object points Pi where the center is calculated
as the mean of Pi, and the size corresponds to the spatial extent of Pi.

All of these features are concatenated into a single representation:

orepi = [oobji , olabeli , ocenteri , osizei ] (2)

3.7 Audio-Guided Attention Module

In both text and audio descriptions, the target object is often identified through references to relational
objects (e.g., “the chair is in front of the door, opposite to the coffee table”) or through spatial
comparisons with objects of the same category (e.g., “of the two brown wooden doors, choose
the door on the left when facing them”). Building on this observation, after obtaining feature
representations for each target candidates and relational objects, We design an attention module
comprising two components: Audio-Guided Self-Attention, which helps distinguish the target object
from other instances within the same category, and Audio-Guided Cross-Attention, which captures
spatial relationships between target candidates and relational objects referenced in the audio, as
illustrated in Figure 3a

Specifically, as shown the the Figure 3b, given audio feature a ∈ Rda , and a pair object oi ∈ R1×d

and oj ∈ R1×d, each attention module first compute the embedding by projecting object, each
modulated by audio feature in to query, key, and value spaces:

qi = Wqoi +W (a)
q a, kj = Wkoj +W

(a)
k a, vi = Wvoj +W (a)

v a (3)

Then the standard scaled dot-product attention value is calculated as:

attentionij =
q⊤
i kj√
d

⇒ αij = softmaxj(attentionij) (4)

Then

o′
i =

N∑
j=1

αijvj (5)

Each output o′
i is audio-modulated feature representing the object with the context from other object.

In the implementation, we use stack multi-head attention and concatenate the outputs:

MultiHead(O, a) = Concat(head1, . . . , headh)Wo (6)

The audio-guided attention scores are computed between object pairs in the Audio-Guided Self-
Attention module, resulting in O′ = o′

1, . . . ,o
′
N . In contrast, the Audio-Guided Cross-Attention

module computes attention scores between each target candidate and all relational objects mentioned
in the audio, producing O′′ = o′′

1 , . . . ,o
′′
N . Finally, the aggregated feature representation for each

target candidate is obtained by summarizing the features from O, O′, and O′′.
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3.8 Grounding Head

Finally, we employ a classifier to identify the target object referenced in the speech. This classifier
consists of a multilayer perceptron (MLP) followed by a softmax layer, which predicts the most likely
target among the N candidate objects.

3.9 Loss functions

We employ multiple loss functions to train Audio-3DVG across its various tasks, including an audio
classification loss Lcls

audio, a multi-label classification loss for the Object Mention Detection task
LOMD

audio , and an object classification loss for the grounding task Lcls
object. Therefore, the overall

training objective is as follows:

L = λaL
cls
audio + λbL

OMD
audio + λcL

cls
object (7)

Where λa, λb, and λc are three hyper-parameters to balance the losses.

4 Datasets

ScanRefer [10]: The dataset contains 51,583 human-written sentences annotated for 800 scenes in
ScanNet dataset [18]. Following the official split, we use 36,665 samples for training and 9,508 for
validation. Based on whether the target object belongs to a unique category within the scene, the
dataset is further divided into two subsets: "unique", where the target class appears only once, and
"multiple", where it appears more than once.

Nr3D [1]: The dataset comprises 37,842 human-written sentences that refer to annotated objects in
3D indoor scenes from the ScanNet dataset [18]. It includes 641 scenes, with 511 used for training
and 130 for validation, covering a total of 76 target object classes. Each sentence is crafted to refer to
an object surrounded by multiple same-class distractors. For evaluation, the sentences are divided
into "easy" and "hard" subsets: in the easy subset, the target object has only one same-class distractor,
whereas in the hard subset, multiple distractors are present. Additionally, the dataset is categorized
into "view-dependent" and "view-independent" subsets, based on whether grounding the referred
object requires a specific viewpoint.

Sr3D [1]: This dataset is constructed using sentence templates to automatically generate referring
expressions. These sentences rely solely on spatial relationships to distinguish between objects of the
same class. It contains 1,018 training scenes and 255 validation scenes from ScanNet dataset [18],
with a total of 83,570 sentences. For evaluation, it can be partitioned in the same manner as the Nr3D
dataset.

To address the data scarcity issue in the Audio-3D visual grounding task, we efficiently convert
ScanRefer’s natural language descriptions into audio using Spark-TTS [85]—an advanced and flexible
text-to-speech system that leverages large language models (LLMs) to generate highly accurate and
natural-sounding speech. The detailed analysis and configuration of the generated data are presented
in the appendix.

5 Experiments

5.1 Experimental Setup

Evaluation Metrics: We evaluate models under two evaluation settings. One uses ground-truth
object proposals, which is the default setting in the Nr3D and Sr3D datasets. The metric is the
accuracy of selecting the target bounding box among the proposals. The other setting does not provide
ground-truth object proposals and requires the model to regress a 3D bounding box, which is the
default setting for the ScanRefer dataset. The evaluation metrics are acc@0.25 and acc@0.5, which is
the percentage of correctly predicted bounding boxes whose IoU is larger than 0.25 or 0.5 with the
ground-truth.

Implementation details. We adopt the official pre-trained PointGroup [43]as the backbone for
instance segmentation. For audio encoding, we utilize a BiGRU to extract word-level features with a
channel dimension of 768. All employed MLPs use hidden layers configured as [521,64], followed
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by Batch Normalization and ReLU activation. We use 8 attention heads, each producing features with
a dimensionality of 128. The network is trained for 30 epochs using the Adam optimizer with a batch
size of 32. The learning rate is initialized at 0.0005 and decayed by a factor of 0.9 every 5 epochs.
All experiments are implemented in PyTorch and run on a single NVIDIA RTX 3090 GPU.

5.2 Experimental Results

We first present the performance results for the Audio Classification and Object Mention Detection
tasks, averaged across all three datasets. The Audio Classification task achieves a high accuracy of
96%. For Object Mention Detection, we report the average precision, recall, and F1-score for each
object class, as shown in Figure 1.
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precision 0.97 0.89 1.00 0.85 1.00 0.98 0.95 0.38 0.53 0.71 0.97 0.61 0.00 0.24 0.74 0.85 0.27 0.98 0.72
recall 0.96 0.87 1.00 0.84 1.00 0.97 0.95 0.38 0.51 0.70 0.97 0.61 0.00 0.24 0.73 0.85 0.27 0.97 0.71
F1 0.96 0.88 1.00 0.84 1.00 0.98 0.95 0.37 0.52 0.70 0.97 0.61 0.00 0.24 0.74 0.85 0.27 0.98 0.71

Table 1: Performance of Object Mention Detection task by each class and average.

Method Venue Input Unique Multiple Overall
acc@0.25 acc@0.5 acc@0.25 acc@0.5 acc@0.25 acc@0.5

ScanRefer [10] ECCV 20 Text 65.00 43.31 30.63 19.75 37.30 24.32
TGNN [36] AAAI 21 Text 68.61 56.80 29.84 23.18 37.37 29.70
Non-SAT [91] ICCV 21 Text 68.48 47.38 31.81 21.34 38.92 26.40
SAT [91] ICCV 21 Text 73.21 50.83 37.64 25.16 44.54 30.14
3DVG-Trans [100] ICCV 21 Text 77.16 58.47 38.38 28.70 45.90 34.47
InstanceRefer [92] ICCV 21 Text 78.37 66.88 27.90 21.83 37.69 30.57
3D-SPS [56] CVPR 22 Text 81.63 64.77 39.48 29.61 47.65 36.42
Multi-view [37] CVPR 22 Text 77.67 66.45 31.92 25.26 40.80 33.26
ViL3DRel [12] NeurIPS 22 Text 81.58 68.62 40.30 30.71 47.94 37.73
3D-VLP [12] CVPR 23 Text 84.23 64.61 43.51 33.41 51.41 39.46
3D-VisTA [101] ICCV 23 Text 77.40 70.90 38.70 34.80 45.90 41.50
G3 − LQ [86] CVPR 24 Text 88.09 72.73 51.48 40.80 56.90 45.58

3DVG-Trans [100] ICCV 21 Audio2Text 74.92 56.67 35.43 26.92 43.23 33.87
InstanceRefer [92] ICCV 21 Audio2Text 73.28 64.20 29.12 22.98 38.46 30.90

AP-Refer [96] Neurocomputing 24 Audio 48.62 29.59 16.94 9.96 23.09 13.77
Ours Audio 75.06 64.08 30.54 24.06 40.12 30.92

Table 2: Comparison of grounding accuracy across different methods under different inputs.

For the 3D visual grounding performance, we present the comparative results on the ScanRefer dataset
using detected objects from PointGroup [43]. Given the same audio input, our model demonstrates a
substantial performance improvement over AP-Refer, highlighting the effectiveness of our approach.
Furthermore, our method achieves competitive results compared to text-based methods. However, it
is important to note that this comparison is not entirely fair, as text inputs provide richer and error-
free linguistic information, whereas our audio-based approach is subject to potential inaccuracies
introduced during text-to-speech conversion. To enable a fairer comparison, we convert the audio
inputs back to text by Whisper [73] and evaluate the performance of recent state-of-the-art methods,
as reported in Table 2.

Table 3 presents a comparison between our Audio-3DVG model and state-of-the-art methods on the
Nr3D and Sr3D datasets, where all baseline methods and our approach utilize ground-truth object
proposals. It is important to note that this comparison is not entirely fair, as all prior works rely on
text-based input, while our method is the first to leverage audio input in these datasets.
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Method Input Nr3D Sr3D

Overall Easy Hard
View
dep

View
Indep Overall Easy Hard

View
Indep

View
Indep

ReferIt3D [1] Text 35.6 43.6 27.9 32.5 37.1 40.8 44.7 31.5 39.2 40.8
ScanRefer [10] Text 34.2 41.0 23.5 29.9 35.4 - - - - -
InstanceRefer [92] Text 38.8 46.0 31.8 34.5 41.9 48.0 51.1 40.5 45.4 48.1
3DVG-Trans [100] Text 40.8 48.5 34.8 34.8 43.7 51.4 54.2 44.9 44.6 51.7
SAT [91] Text 49.2 56.3 42.4 46.9 50.4 57.9 61.2 50.0 49.2 58.3
3D-SPS [56] Text 51.5 58.1 45.1 48.0 53.2 62.6 56.2 65.4 49.2 63.2
Multi-view [37] Text 55.1 61.3 49.1 54.3 55.4 64.5 66.9 58.8 58.4 64.7
ViL3DRel [12] Text 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2

Ours Audio 37.4 45.2 30.9 34.1 40.7 48.3 51.3 40.9 45.1 48.6

Table 3: Comparison of grounding accuracy (%) on the Nr3D and Sr3D benchmarks. To the best of
our knowledge, this is the first study to utilize audio input on these datasets.

6 Ablation Study

6.1 Result with different audio generation methods

We further evaluate the performance of Audio-3DVG on the ScanRefer dataset using different text-to-
speech (TTS) methods. Following the AP-Refer setup, we replace Spark-TTS with Matcha-TTS [60]
to generate audio inputs for this experiment. The results, shown in Table 4, indicate that although
training the model with Matcha-TTS leads to slightly lower performance compared to Spark-TTS, it
still surpasses the performance of AP-Refer [96] as reported in Table 2.

TTS method Unique Multiple Overall
acc@0.25 acc@0.5 acc@0.25 acc@0.5 acc@0.25 acc@0.5

Matcha-TTS [60] 72.86 60.05 30.80 22.98 38.72 28.98
Spark-TTS [85] 75.06 64.08 30.54 24.06 40.12 30.92

Table 4: Performance of Audio-3DVG on ScanRefer dataset with different TTS methods

6.2 Impact of Audio-Guided Attention

We conduct an experiment on the ScanRefer dataset to evaluate the effectiveness of the proposed
Audio-Guided Attention module, which is not used in AP-Refer. Specifically, we replace the Audio-
Guided Attention module with a standard MLP-based classifier that treats all detected objects as
potential candidates, where the audio feature is simply concatenated with each object’s feature. The
comparison results in Table 5 demonstrate the superiority of our Audio-Guided Attention design.

Method Unique Multiple Overall
acc@0.25 acc@0.5 acc@0.25 acc@0.5 acc@0.25 acc@0.5

MLP 70.12 58.41 27.08 21.20 36.54 26.14
Audio-Guided Attention 75.06 64.08 30.54 24.06 40.12 30.92

Table 5: Ablation study on the ScanRefer dataset demonstrating the effectiveness of the proposed
Audio-Guided Attention module.

7 Conclusion

In summary, this work introduces a novel approach that leverages audio for the 3D visual grounding
task. Our contributions include a method for detecting target candidates and relational objects, an
effective feature formulation strategy, and a robust attention module for identifying targets within
dense object scenes. Additionally, we provide a synthetic audio dataset to support future research in
this area. Our results demonstrate the effectiveness of using audio for 3D vision tasks and highlight
its potential as a promising direction for future exploration.
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8 Limitations

Despite its demonstrated effectiveness, leveraging audio for the 3D visual grounding task still faces
several limitations that future research should address. First, due to class imbalance in the dataset, the
Object Mention Detection task struggles to accurately detect the presence of rare object classes, as
shown in Table 1. To mitigate this issue, more balanced and diverse datasets are needed to improve
the model’s ability to generalize across all categories. Next, similar to previous work, our approach
relies heavily on the performance of the 3D object segmentation method. Therefore, integrating more
robust and accurate 3D segmentation solutions could significantly enhance the overall effectiveness
and reliability of the model.
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A Self-Supervised Speech Representation Learning

This section aims to provide a comprehensive overview of self-supervised learning (SSL) behaviors for
speech representation, which is the rationale to motivate our usage of wav2vec 2.0 in our multimodal
fusion architecture.

A.1 wav2vec 2.0 Architecture

wav2vec 2.0, introduced by Baevski et al. [6] (see Figure 4), is a SSL framework designed to learn
speech representations directly from raw waveforms. The model enables data-efficient training of
ASR systems by separating the pre-training and fine-tuning phases. The architecture consists of three
key components: a feature encoder, a context network, and a quantization module.

Figure 4: wav2vec 2.0 architecture

A.1.1 Self-Supervised Pre-training

Wave normalization: The raw audio waveform AT ∈ RT is first normalized to the range between 0
and 1 by the wave normalization function WaveNorm before being pushed into the feature extractor,
as shown in Equation 8.

AT := AWaveNorm
T = WaveNorm(AT )

= LayerNorm(AT ) ∈ RT
(8)

WaveNorm could be either layer normalization LayerNorm [3] or batch normalization BatchNorm
[39].

Feature Encoder: The feature encoder is a multi-layer convolutional neural network (CNN) that
processes raw audio input AT ∈ RT to produce a sequence of latent audio representations za ∈
RT ′

a×da , where T ′
a < T due to down-sampling and da is the feature dimension. Typically, the

encoder consists of 7 convolutional layers with GELU activations [31] and layer normalization [3].

za = FeatureEncoder(AT ) (9)

To be specific:

za = FeatureEncoder(AT )

= FFW ◦ CNNs ◦WaveNorm(AT )
(10)
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Context Network: The context network comprises a stack of Transformer encoder layers that
model temporal dependencies in the latent feature sequence. These layers generate context-aware
representations ca ∈ RT ′

a×da by applying self-attention and feedforward (FFW) operations.

ca := Transformer(za) (11)

Each Transformer block includes multi-head self-attention (MHSA), FFW sublayers, residual connec-
tions, and layer normalization. These allow the model to capture long-range dependencies in speech
signals.

In an arbitrary l-th transformer layer, the output cal is briefly defined as:

cal = Transformer(cal−1)

= FFW ◦MHSA(cal−1)
(12)

where MHSA is multi-head attention which is a function defined by self-attention functions SA:

MHSA(cal−1) = SA(cal−1) + cal−1 (13)

Then, we have a full equation for an arbitary l-th Transformer layer:

cal = FFW(MHSA(cal−1)) + MHSA(cal−1)

= FFW(SA(cal−1) + cal−1) + [SA(cal−1) + cal−1]
(14)

For layer-wise formulation, the 0-th Transformer layer (the first layer) is connected to the feature
encoder, which is defined as:

ca0 = Transformer(za) (15)

Given an L-Transformer-layer wav2vec 2.0 architecture, the L − 1-th Transformer layer (the final
layer) is defined as a chain function as:

caL−1 = Transformer(caL−2)

= Transformer ◦ Transformer ◦ ... ◦ Transformer(xτ
0)

= Transformer ◦ Transformer ◦ ... ◦ Transformer ◦ Transformer(za)
(16)

where L is the total number of Transformer layers in the encoder, layer indices start from 0 to L− 1.

Quantization Module: To formulate a contrastive learning task, the model discretizes the latent
features za into quantized targets qta ∈ Rd

a using a quantization module. This module employs
Gumbel-softmax-based vector quantization with multiple codebooks.

Let Ga be the number of codebooks and Va the number of entries per codebook. Each quantized
representation is obtained as:

qta = Concat(eg1a , eg2a , . . . , egGa
) (17)

where each egia ∈ Rda/Ga is a learned embedding vector selected from the i-th codebook.

Pre-training Objective: During pre-training, the model masks a subset of the latent features and uses
the context representations to identify the corresponding quantized targets from a pool of negatives.
The primary learning signal is a contrastive loss defined as:

Lcontrastive = − log
exp(sim(cta , qta)/κa)∑

q′a∈Qta

exp(sim(cta , q
′
a)/κa)

(18)

where sim(·, ·) is cosine similarity, κa is a temperature hyperparameter, and Qta contains one true
quantized vector and multiple negatives.

To encourage diversity across codebook entries, a diversity loss is added:
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Ldiversity =
Ga

Va

Ga∑
ga=1

Va∑
va=1

pga,va log pga,va (19)

where pg,v is the average selection probability of the v-th entry in the g-th codebook. The total
pre-training loss is:

La = Lcontrastive + αa ·Ldiversity (20)

with αa being a tunable weight.

A.1.2 Supervised Fine-tuning

Once pre-trained, the context representations ca are used for supervised ASR by appending a randomly
initialized linear projection layer and training the model with a Connectionist Temporal Classification
(CTC) loss [27, 25]. The entire model is fine-tuned end-to-end using a small amount of labeled data,
enabling high accuracy even with limited supervision.

See Section D for details of supervised fine-tuning ASR.

A.2 Rationale

The rapid advancement of deep learning has revolutionized the field of speech processing, enabling
significant improvements in tasks such as ASR, speaker identification, emotion recognition, and
speech synthesis. Traditionally, these tasks have relied heavily on supervised learning [80, 57, 93, 94],
which requires large volumes of labeled data. However, obtaining high-quality labeled speech data is
both expensive and time-consuming, especially when considering the wide variability in languages,
accents, recording conditions, and speaker characteristics. This has led to a growing interest in SSL,
an approach that leverages vast amounts of unlabeled data to learn meaningful representations without
explicit annotations [4, 20, 62, 82].

Self-supervised speech representation learning aims to extract high-level, informative features from
raw audio signals by solving pretext tasks derived from the inherent structure of the data. These
pretext tasks are designed such that solving them requires understanding relevant patterns in the
speech signal, such as phonetic content, prosody, or speaker identity [76, 88, 5]. Once trained, the
resulting representations can be fine-tuned or directly applied to downstream tasks with minimal
supervision, significantly reducing the dependence on labeled data [21, 52, 49].

Recent breakthroughs in SSL, particularly inspired by advances in natural language processing (e.g.,
BERT [19], GPT [65, 9, 72]) and computer vision (e.g., SimCLR [14], MoCo [30]), have led to the
development of powerful speech models such as wav2vec [76], HuBERT [34], and WavLM [13].
These models have demonstrated state-of-the-art performance across a wide range of speech-related
benchmarks, often outperforming fully supervised counterparts when only limited labeled data is
available [6, 76]. Moreover, SSL has opened new avenues for learning more generalizable, robust,
and multilingual representations [7, 22, 75].

The wav2vec 2.0 transformer exhibits an autoencoder-like behavior [81, 16]: the representations start
deviating from the input speech features followed by a reverse trend where even deeper layers become
more similar to the input, as if reconstructing the input.

1. The layer-wise progression of representations exhibits an acoustic-to-linguistic hierarchy:
lower layers encode acoustic features, followed sequentially by phonetic, word identity, and
semantic information, before reversing this trend in the upper layers, as shown in Figure 5.

2. ASR fine-tuning disrupts this autoencoder-like behavior in the upper layers, enhancing their
capacity to encode lexical information.

3. The initial transformer and final CNN layers show high correlation with mel spectrograms,
indicating convergence toward human-engineered features.

4. The SSL model encodes some semantic content.

5. The final two layers often deviate from preceding patterns
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Figure 5: Visualization of properties encoded at different wav2vec 2.0 layers.

A.3 Analysis Methods

A.3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [33] is a classical statistical technique designed to quantify
the linear relationships between two multivariate random variables. Given two sets of continuous-
valued random vectors, CCA identifies pairs of canonical directions—one for each set—such that the
correlation between the projections of the vectors onto these directions is maximized. This results in
a sequence of canonical correlation coefficients that capture the degree of linear alignment between
the two representational spaces.

In the context of SSL models such as wav2vec 2.0, CCA has proven to be a valuable tool for analyzing
the internal structure of learned representations. wav2vec 2.0 encodes raw audio waveforms into
hierarchical feature representations through a series of convolutional and Transformer layers. By
applying CCA, we can quantify the representational similarity across layers of the model, offering
insight into how acoustic and linguistic information is progressively abstracted.

Pasad et al. [66] employ CCA in two complementary ways. First, they compute pairwise CCA scores
between different layers of the wav2vec 2.0 Transformer encoder to investigate the evolution and
redundancy of learned features. This helps assess whether certain layers exhibit similar information
encoding patterns, or whether deeper layers introduce significant representational shifts.

Second, Pasad et al. [66] apply CCA to measure the similarity between the internal layer representa-
tions of wav2vec 2.0 and external reference vectors. These reference vectors include pre-trained word
embeddings (e.g., Word2Vec [61] or GloVe [68]) and low-level acoustic features (e.g., Mel-frequency
cepstral coefficients or log-Mel spectrograms). This cross-modal comparison enables us to determine
the extent to which specific Transformer layers align with either phonetic-level acoustic information
or semantically-rich linguistic abstractions. Through this analysis, we gain deeper interpretability into
how wav2vec 2.0 encodes and transitions between speech and language representations [63, 48, 74].

A.3.2 Mutual Information Estimation

While CCA is a natural choice for quantifying relationships between pairs of continuous-valued
vector representations, it is limited to capturing linear correlations and does not generalize well to the
dependence between learned representations and categorical linguistic units such as phones or words.
Instead, Pasad et al. [66] adopt mutual information (MI) as a more general measure of statistical
dependence between the latent representations yphn or ywrd—which are extracted from intermediate
layers of the wav2vec 2.0 model—and their corresponding ground-truth phoneme or word labels.
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Since the model outputs continuous-valued representations, Pasad et al. [66] follow prior work
[6, 2] and discretize them using clustering (e.g., k-means), thereby enabling estimation of mutual
information via co-occurrence statistics.

The resulting MI metrics, denoted as MI-phone and MI-word, quantify the amount of phonetic or
lexical information preserved in the internal feature representations. Higher MI indicates a stronger
correlation between learned representations and linguistic targets, providing insight into the degree of
linguistic abstraction encoded by the model during SSL.

A.4 Findings of Self-Supervised Representation Learning

A.4.1 Reconstruction Behavior

Figure 6: CCA similarity with local features

Figure 6 presents a comparison of transformer layer representations with the local features extracted
by the CNN module (layer 0), using CCA similarity. The pre-trained model (solid black curve)
exhibits an autoencoder-like pattern: representations initially diverge from the input features with
increasing depth, but subsequently reconverge in deeper layers, indicating a reconstruction-like
behavior. This trend is disrupted in the final two layers (see Section below). Given that the training
objective involves distinguishing a masked input segment from distractors, it is expected that the final
layers encode representations similar to the input. A comparable pattern—termed context encoding
and reconstruction—has been previously observed in BERT for masked language modeling objectives
[83].

A.4.2 Encoded Acoustic-Linguistic Information

Pasad et al. [66] analyzed how specific properties are encoded across different model layers. It is
important to note that all experiments are conducted using features extracted from short temporal
spans, corresponding to frame-, phone-, or word-level segments. Any observed increase in the
amount of encoded "information" across layers for these local representations can be attributed
to the contextualization enabled by the self-attention mechanism, which allows each frame-level
output to incorporate information from the entire utterance. Conversely, a reduction in localized
"information" across layers may result from de-localization, wherein the representation becomes
increasingly distributed and less confined to the original temporal segment.

Frame-level acoustic information: Figure 7 presents the layer-wise CCA similarity between fil-
terbank (fbank) features and the representations from the wav2vec 2.0 Base model. In the initial
layers, the correlation increases progressively with depth. A similar trend is observed for the Large
models, which exhibit high CCA values (> 0.75) between layers C4 and T2. These results suggest
that the model implicitly learns representations analogous to fbank features, indicating the potential
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for simplifying wav2Vec 2.0 by directly using fbank inputs. However, to our best knowledge, the
potential suggested by Pasad et al. [66] has not been empirically proven yet.

Figure 7: CCA similarity between layer representations and fbank; Ci: CNN layer i, Tj: transformer
layer j.

Phonetic information: Pasad et al. [66] quantify the phonetic information encoded in the pre–trained
model using two metrics: mutual information with phone labels (MI-phone) and canonical correlation
analysis with AGWEs (CCA-agwe), as visualized in Figure 8. Given that AGWEs are designed to
represent phonetic content, the similarity in trends between the MI-phone and AGWE curves supports
this expectation. In the wav2vec 2.0 Base model, phonetic information peaks around layers 6–7.
We, to the best of our knowledge, found this behavior consistent with prior findings [35] which
analyzed the behavior of HuBERT [34]. In contrast, the Large-60k model exhibits prominent phonetic
encoding at layers 11 and 18/19, with a notable decline in intermediate layers.

Figure 8: MI with phone labels (max: 3.6) and CCA similarity with AGWE.

Word identity: Figure 9 presents the MI between layer representations and word labels. For the
wav2vec 2.0 Base model, the observed trends resemble those of MI with phone labels (Figure 8). In
the Large-60k model (Figure 9), word identity is consistently encoded across layers 12 to 18, without
the decline observed in the MI-phone curve. This behavior shows that, to the best understanding of
Pasad et al. [66]’s work, MI-word and word discrimination are always highly correlated.

A.4.3 Word Meaning Representation

Although certain linguistic features appear critical for the model to solve the SSL objective, it remains
unclear whether semantic content—specifically word meaning—is among them. To investigate
this, Pasad et al. [66] assess the encoding of word meaning in wav2Vec 2.0 by computing the CCA
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Figure 9: MI with word labels (max: 6.2).

similarity between word segment representations and GloVe embeddings [68], as illustrated in Figure
10. The results indicate that the middle layers—layers 7–8 in the Base model and 14–16 in the
Large-60k model—encode the richest contextual information. Notably, the narrower plateau of peak
performance in these curves compared to the MI curves in Figure 9 suggests that central layers
are more specialized in capturing semantic content, whereas peripheral layers primarily encode
lower-level linguistic features without semantic abstraction.

Figure 10: CCA similarity with GloVe embeddings [68].

A.4.4 Fine-tuning Effect

As shown in Figure 6 (CCA-intra), fine-tuning disrupts the autoencoder-like behavior of the model.
Post fine-tuning for ASR, the deeper layers, which previously aimed to reconstruct the input, increas-
ingly diverge from it, indicating a shift toward learning task-specific representations. Additionally,
Figure 11 reveals that the upper layers undergo the most significant changes during fine-tuning, im-
plying that the pre-trained model may provide suboptimal initialization for these layers in ASR tasks.
This observation, to the best of our knowledge, aligns with findings in BERT language modelling
[98], where re-initialization of top layers prior to fine-tuning improves performance.

The results also suggest that fine-tuning with character-level CTC loss [27] is more strongly associated
with encoding word identity than phone identity, as anticipated.

We observed that the final layers of wav2Vec 2.0 undergo the most substantial modifications during
fine-tuning (Figure 11) and exhibit reduced encoding of linguistic information relevant to ASR. These
findings suggest that certain upper layers may offer suboptimal initialization for downstream ASR
tasks.
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Figure 11: CCA similarity between each layer of a pre-trained model and the same layer of fine-tuned
models.
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B Weakly Supervised Speech Representation Learning

B.1 Attention Encoder Decoder (AED)

As for AED models, Whisper architecture is shown in Figure 12, and Deepgram architecture is shown
in Figure 13.

B.1.1 Whisper Architecture

B.1.2 Deepgram Nova-2 Architecture

Figure 12: OpenAI’s Whisper architecture. Whisper is a Transformer-based AED architecture,
using MFCC features as input.

An ASR model is used to transcribe speech into text by mapping an audio signal xT
1 := x1, x2, ..., xT

of length T to the most likely word sequence wN
1 of length N . The word sequence probability is

described as:

p(wN
1 |xT

1 ) =

N∏
n=1

p(wn|wn−1
1 , xT

1 ). (21)

In the ASR encoder-decoder architecture, given D as the feature dimension size, the input audio
signal matrix could be described as xT

1 ∈ RT×Dinput . When simplified, downsampling before or
inside the encoder - conducted by a fixed factor, such as striding in a Convolutional Neural Network
(CNN) - is removed. Thus, the encoder output sequence is as follows:

hT
1 = Encoder(xT

1 ) ∈ RT×Dencoder . (22)

Using a stack of Transformer (τ ) blocks [? ], the encoder output sequence is described as function
composition:

hT
1 = τ 0 ◦ ... ◦ τNEncLayers

(xT
1 ). (23)
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Figure 13: Deepgram’s Nova-2 architecture. To our best understanding of Deepgram’s documen-
tation, Deepgram’s Nova-2 is a Transformer-based AED architecture, using raw waveform as input
instead of MFCC like Whisper. Feature extraction from raw waveform is probably conducted by a
learnable feature encoder, e.g. a block of CNNs like wav2vec 2.0. Between encoder-decoder space,
(unknown) acoustic embeddings are probably added as cross-attention.

In the decoder, the probability for each single word is defined as:

p(wn|wn−1
1 , xT

1 ) = p(wn|wn−1
1 , hT

1 (x
T
1 ))

= p(wn|wn−1
1 , hT

1 ).
(24)

Based on Equation 21, the word sequence probability given the output of encoder is described as:

p(wN
1 |xT

1 ) =

N∏
n=1

p(wn|wn−1
1 , hT

1 ). (25)

Then, decoder hidden state is formulated as:

gn = F(gn−1, wn−1, cn) ∈ RDg , (26)

where F is neural network; Dg is hidden state dimension; and cn is context vector, e.g. weighted
sum of encoder outputs via attention mechanism.

The attention mechanism in the decoder is described via 3 components: context vector cn, attention
weights αn,t, and attention energy en,t:

cn =

T∑
t=1

αn,tht ∈ RDencoder ,

αn,t =
exp(en,t)∑T

t′=1 exp(en,t′)

= SoftmaxT (exp(en,t)) ∈ R,
en,t = Align(gn−1, ht) ∈ R

= W2 · tanh(W1 · [gn−1, ht]),

(27)

where n is decoder step; t is encoder frame; α ∈ RT×N is attention weight matrix; αn ∈ RT is
normalized probability distribution over t; SoftmaxT is Softmax function over spatial dimension T ,
not feature dimension; W1 ∈ R(Dg+Dencoder)×Dkey ; W2 ∈ RDkey .

In the decoding, the output probability distribution over vocabulary is defined as:

p(wn = ∗|wn−1
1 , hT

1 )

= Softmax(MLP (wn−1, gn, cn)) ∈ RN ,
(28)
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where MLP is Multi-layer Perceptron.

To train an AED model, sequence-level frame-wise cross-entropy loss is employed:

LAED = −
∑

(xT
1 ,wN

1 )

log p(wN
1 |xT

1 )

= −
∑

(xT
1 ,wN

1 )

N∑
n=1

log p(wn|wn−1
1 , xT

1 ).

(29)

During beam search, the auxilary quantity for each unknown partial string (tree of partial hypotheses)
wn

1 is defined as:

Q(n;wn
1 ) : =

n∏
n′=1

p(wn′ |wn′−1
0 , xT

1 )

= p(wn|wn−1
0 , xT

1 ) ·Q(n− 1, wn−1
1 ).

(30)

After discarding the less likely hypotheses in the beam search, the word sequence probability is
calculated by the best hypothesis:

p(wN
1 |xT

1 ) = Q(N ;wN
1 ). (31)

B.2 Rationale
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Figure 14: MFCC visualization. The computation of MFCCs begins by dividing the original
waveform into overlapping 20ms frames.

C Raw waveform vs MFCC

C.1 Mel-Frequency Cepstral Coefficients (MFCCs)

MFCC serves as a compact representation of the audio signal’s spectral properties. The computation
of MFCCs begins by dividing the input signal xT

1 := x1, x2, ..., xT into overlapping frames, as
visualized in Figure 141.

Pre-emphasis: The audio signal, sampled at 16 kHz with a step size of 10 ms, is processed by
extracting 160 consecutive samples from the Pulse Code Modulation (PCM) waveform for each
frame. These 10 ms frames are non-overlapping, ensuring that stacking adjacent vectors avoids
discontinuities. The 16-bit quantized samples, which span the integer range from −215 to +215,
must be normalized to a numerically stable range. This normalization is achieved by applying mean
and variance normalization, either globally across the entire training dataset or on a per-utterance
basis. A commonly employed processing technique, known as high-frequency pre-emphasis, can be
implemented by computing the differences between adjacent samples, as illustrated below:

x′
t = xt − xt−1 ∈ R (32)

A sequence of 16 kHz× 10ms = 160 pre-emphasized waveform samples can then be considered a
feature vector:

x̂t = x′t
t−160+1 ∈ R160 (33)

Amplitude spectrum - FFT: The short-time Fourier transform (STFT) is applied to overlapping
windows with a duration of 25ms. Given a sampling rate of 16 kHz, this window length corresponds
to 25ms× 16 kHz = 400 samples. To facilitate computation using the fast Fourier transform (FFT),
the sample count is zero-padded to the next power of two, resulting in 29 = 512.

zt ∈ R512

=

[
xt′

t−400+1 xt′

t−400+2 . . . xt′ 0 . . . 0︸ ︷︷ ︸
zero-padding

]
(34)

1? ]’s Dissertation at RWTH Aachen University described MFCC more comprehensively.
MFCC visualization image is retrieved from Pytorch library.
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The extended sample vector is weighted using a Hann window, which exhibits smaller side lobes in
the amplitude spectrum compared to a rectangular window:

w(n) = 0.5− 0.5 cos

(
2π(n− 1)

512− 1

)
,

1 ≤ n ≤ 512

(35)

s
(n)
t = z

(n)
t · w(n) (36)

While the discrete STFT could be done directly by evaluating the sum

S
(F)
t =

512−1∑
n=0

s
(n)
t · exp

(
−j 2π

512
Fn
)
,

1 ≤ F ≤ 512

(37)

the complexity can be reduced from O(N2) to O(N logN) by applying the fast Fourier transform.

The 512-FFT results in a 257-dimensional vector because of the symmetry of the amplitude spectrum
of a real-valued signal. The phase spectrum is removed.

x̂t =
[
|S(0)

t | |S
(1)
t | . . . |S(512/2)

t |
]

∈ R512/2+1
(38)

MFCC: The MFCC feature extraction is based on the STFT of the pre-emphasized speech signal [?
]. It considers the nonlinear sensitivity of human auditory perception to variations in frequency. This
is evidenced that the filter bank used to integrate the magnitude spectrum |S(F)

t | consists of I filters
equidistantly spaced on the mel scale. The mel scale is a logarithmically scaled frequency axis. The
k-th frequency bin of the FFT centered around Fk Hz is then mapped to F̃k on the mel scale:

Fk =
k

512
· Fs (39)

F̃k = 2595 · log10
(
1 +

Fk

700 Hz

)
(40)

The filter center F̃(i)
c of the i-th triangular filter is then placed at i · F̃b, where the bandwidth F̃b

corresponds to F̃512/I. With these parameters, the coefficients of the i-th triangular filter can be
calculated explicitly as a piecewise linear function and stored in a weight vector vi ∈ RN/2+1.

By applying discrete cosine transform (DCT), the MFCC features are extracted from the logarithm
filter outputs:

X
(i)
t = log10

(
512∑
F=0

|S(F)
t |v

(F)
i

)
(41)

cm,i = cos

(
πm(i+ 0.5)

I

)
(42)

C
(m)
t =

I−1∑
i=0

cm,iX
(i)
t (43)

x̂t =
[
C

(0)
t C

(1)
t . . .C

(I−1)
t

]
∈ RI (44)
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C.2 SpecAugment

SpecAugment [? ] is a data augmentation technique for ASR that manipulates spectrograms to
improve model robustness by randomly applying masking in consecutive frames in the time axis as
well as consecutive dimensions in the feature axis. It performs three main transformations2: time
warping, frequency masking, and time masking.

Figure 15 shows examples of the individual augmentations applied to a single input.

Time Masking: Given an audio signal xT
1 := x1, x2, ..., xT of length T . Time masking is masking

of A successive time steps [t, t+ τ), where we set:

(xt, . . . , xt+A) := 0 (45)

where A is the masking window selected from a uniform distribution from 0 to the maximum time
mask parameter TM. The time position t is picked from another uniform distribution over [0, T ) such
that the maximum sequence length T is not exceeded (i.e. if t+ A > T , we set it to T ).

Frequency Masking: Frequency masking is applied such that ϕ consecutive frequency channels
[f, f + ϕ) are masked, where ϕ is selected from a uniform distribution from 0 to the frequency mask
parameter FM, and f is chosen from [0, ν), where ν is the input feature dimension, e.g. the number
of MFCC channels. For raw waveform as input, ν = 1. Similar to time masking, if f + ϕ > ν, we
set it to f = ν.

Figure 15: SpecAugment visualization. From top to bottom, the figures show the spectrogram of the
input audio with no data augmentation, time masking, frequency masking and both masking applied.

2? ] analyzed deeply in end-to-end ST. ? ] stated that time warping is the most expensive and the least
influential, we do not include it here

33



D Automatic Speech Recognition

D.1 Overview

ASR is traditionally formulated within a statistical framework. Formally, let xT
1 denote a sequence of

acoustic feature vectors, where xt ∈ RD for 1 ≤ t ≤ T , extracted from the raw speech waveform
via a feature extraction process (e.g. MFCC). Let V represent the vocabulary set. Typically, each
vector xt encodes information corresponding to a fixed-duration frame of the speech signal, such as
10 milliseconds.

By Bayes’ decision rule [8], given the observed acoustic feature sequence xT
1 , an ASR system aims to

determine the most probable word sequence ŵN̂
1 ∈ V ∗ such that:

ŵN̂
1 = arg max

N,wN
1

p(wN
1 | xT

1 ) (46)

= arg max
N,wN

1

[
p(xT

1 | wN
1 ) · p(wN

1 )

p(xT
1 )

]
(47)

= arg max
N,wN

1

[
p(xT

1 | wN
1 ) · p(wN

1 )

const(wN
1 )

]
(48)

= arg max
N,wN

1

[
p(xT

1 | wN
1 ) · p(wN

1 )
]

(49)

where p(wN
1 | xT

1 ) denotes the posterior probability of the word sequence wN
1 of N length conditioned

on the acoustic features xT
1 .

The effectiveness of an ASR system is typically quantified using the Word Error Rate (WER), defined
for a reference word sequence w̃Ñ

1 and a hypothesis wN
1 produced by the system as:

WER =
Sw +Dw + Iw

Ñw

, (50)

where Sw, Dw, and Iw represent the minimal number of substitution, deletion, and insertion opera-
tions, respectively, required to transform the reference sequence into the hypothesis. The quantity
Sw + Dw + Iw corresponds to the Levenshtein distance [50] between the two sequences. For an
evaluation corpus containing multiple references, the numerator and denominator are computed by
summing over all hypotheses and references, respectively. WER is typically reported as a percentage.

Conventional ASR architectures, as discussed in [64], employ the decision rule in Eq. 49, wherein
the acoustic likelihood p(xT

1 | wN
1 ) (the acoustic model) and the prior p(wN

1 ) (the language model)
are modeled independently. In this context, the acoustic model is instantiated by wav2vec 2.0, while
the language model is often implemented using count-based methods [47].

D.2 Language Modeling

We consider the task of language modeling due to its close relationship with ASR. A language
model (LM) defines a probability distribution over a label sequence wN

1 , denoted as pLM (wN
1 ). This

probability is typically factorized in an autoregressive fashion, although alternative non-autoregressive
modeling approaches have also been proposed [40, 19]:

pLM (wN
1 ) =

N∏
n=1

pLM (wn|wn−1
0 ), (51)

where the LM estimates the conditional probability pLM (wn|wn−1
1 ). Traditional LMs rely on count-

based methods under the k-th order Markov assumption, i.e., pLM (wn|wn−1
1 ) ≈ pLM (wn|wn−1

n−k).
In contrast, contemporary neural LMs are designed to leverage the full left context to directly
model pLM (wn|wn−1

1 ). To ensure that the normalization condition
∑

wN
1
pLM (wN

1 ) = 1 holds, all
sequences are required to terminate with a special end-of-sequence (EOS) symbol.
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The performance of an LM is commonly assessed via its perplexity (PPL) [42], which for a sequence
wN

1 is defined as:

PPL =

[
N∏

n=1

pLM (wn|wn−1
1 )

]− 1
N

= exp

(
− 1

N

N∑
n=1

log pLM (wn|wn−1
1 )

)
. (52)

This formulation generalizes to a corpus-level evaluation by averaging the negative log probabilities
of all tokens (along with their left contexts) across the corpus. Perplexity can be interpreted as
the average effective number of choices the LM considers when predicting the next token. Lower
perplexity indicates a better-performing model.

In Hidden Markov Model (HMM)-based ASR systems, the LM is an integral component. Although
sequence-to-sequence (seq2seq) models do not incorporate an LM explicitly, empirical results have
demonstrated that incorporating an external LM during decoding can significantly reduce the WER
[38, 32, 45], assuming no domain mismatch. Consequently, it is now standard practice to integrate an
external LM into the decoding process of seq2seq ASR models, which is also the approach adopted
in this thesis. In wav2vec 2.0 experiments, researchers usually consider three types of LMs: a count-
based Kneser-Ney smoothed n-gram model [47], an LSTM-based LM [79], and a Transformer-based
LM [41].
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E Connectionist Temporal Classification (CTC)

wav2vec 2.0 uses CTC to model, thus we provide an overview of CTC in this section.

E.1 Topology

A CTC model [25] consists of an encoder network followed by a linear projection and a softmax
activation layer. The encoder takes as input a sequence of acoustic feature vectors xT

1 and produces a
corresponding sequence of hidden representations hT ′

1 :

hT ′

1 = Encoder(xT
1 ) (53)

where each encoding vector ht ∈ RDenc for 1 ≤ t ≤ T ′, and Denc denotes the dimensionality of the
encoder output. The length T ′ of the output sequence is typically less than or equal to T , due to
potential downsampling mechanisms, i.e., T ′ ≤ T , and generally T ′ < T .

Let V denote the vocabulary of permissible labels, and let ε represent a special label not included in
V . Define the extended label set as V ′ = V ∪ {ε}, where ε is referred to as the blank label, typically
interpreted as representing either silence or the absence of a label. The output of the encoder network
is processed through a linear transformation followed by a softmax activation, yielding:

oT
′

1 = Softmax(Linear(hT ′

1 )) (54)

where ot ∈ [0, 1]|V
′| for 1 ≤ t ≤ T ′. The k-th component of the output vector ot, denoted ot,k,

corresponds to the probability of emitting the k-th label from V ′ at time step t:

ot,k = pt(vk | hT ′

1 ), (55)

with vk ∈ V ′ and 1 ≤ k ≤ |V ′|. This formulation characterizes the output distribution of a CTC
model, specifying a per-frame categorical distribution over the extended label set V ′, including the
blank label.

Given this frame-level distribution, the CTC model defines a probability distribution over all possible
output label sequences wN

1 conditioned on the input xT
1 , formally expressed as pCTC(w

N
1 | xT

1 ) :=

pCTC(w
N
1 | hT ′

1 ). To construct this distribution, define a path as a label sequence yT
′

1 of length T ′

such that each yt ∈ V ′ corresponds to a label emitted at time step t.

Under the CTC framework, a key assumption is that of conditional independence across time steps,
implying that the joint probability of a path yT

′

1 conditioned on the encoder outputs factorizes as
follows:

p(yT
′

1 | hT ′

1 ) =

T ′∏
t=1

pt(yt | hT ′

1 ). (56)

A path yT
′

1 can be formally regarded as an alignment corresponding to an output label sequence.
Specifically, let B : (V ′)∗ → V ∗ denote the collapse function, which operates by first merging
consecutive repeated labels and subsequently removing all blank symbols. For instance, consider the
examples:

B(εεccεaεaaaεttttε) = B(cccεaεaaatt) = caat.

Under this definition, any path yT
′

1 satisfying B(yT
′

1 ) = wN
1 serves as a valid alignment for the label

sequence wN
1 . The probability assigned to a label sequence wN

1 is obtained by marginalizing over all
its possible alignments:
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pCTC(w
N
1 | hT ′

1 ) =
∑

yT ′
1 :B(yT ′

1 )=wN
1

p(yT
′

1 | hT ′

1 )

=
∑

yT ′
1 :B(yT ′

1 )=wN
1

T ′∏
t=1

pt(yt | hT ′

1 )

(57)

CTC loss for the input-target pair (xT
1 , w

N
1 ) is defined as the negative log-likelihood of the target

sequence under the CTC model, i.e., the cross-entropy loss: − log pCTC(w
N
1 | xT

1 ).

An illustrative example of the CTC topology is depicted in Figure 16. As shown, the corresponding
lattice structure admits two valid initial nodes and two valid final nodes. This arises from the fact that
a valid alignment path may begin or end with either a true label or the special blank label, reflecting
the inherent flexibility of CTC in handling variable-length alignments.

Figure 16: An illustrative CTC lattice, adapted from [27], depicts all valid alignment paths corre-
sponding to the label sequence CATS along the l-axis, distributed over 11 time frames on the t-axis.
Each node (t, l) denotes the emission of label l at time step t. Black nodes correspond to the emission
of true (non-blank) labels, whereas white nodes indicate the emission of the blank symbol. The
highlighted red path exemplifies a possible alignment: CCCAεεTTεSε. On the left, a finite state
machine is shown, which constrains valid transitions through the lattice, subject to appropriate initial
and terminal states.

We highlight two properties of CTC that ensure its consistency with the ASR task:

• The CTC alignment yT
′

1 , as previously defined, is strictly monotonic.

• The conditional probability pCTC(w
N
1 | hT ′

1 ) defines a distribution over all label sequences
with N ≤ T ′, aligning with typical ASR scenarios where N < T ′.
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Additionally, CTC exhibits an empirically observed “peaky” behavior [27], wherein it predominantly
emits the blank symbol with high probability, interspersed with sharp peaks corresponding to
predicted labels. This behavior diverges from the intuitive expectation that a label should be strongly
emitted throughout its spoken duration. A formal analysis of this phenomenon is provided in [95].

E.2 CTC Forward-Backward Algorithm

The training objective of a CTC model is to minimize the negative log-likelihood − log pCTC(w
N
1 |

hT ′

1 ), which necessitates the computation of pCTC(w
N
1 | hT ′

1 ). A direct evaluation using the definition
in Equation 57 is computationally intensive due to the exponential number of possible alignments yT

′

1
corresponding to the target sequence wN

1 . To address this, Graves et al. [27] proposed an efficient
dynamic programming (DP) algorithm, analogous to the forward-backward procedure employed in
HMMs [71], to compute this quantity.

For a given label sequence wN
1 , we define the forward variables Qε(t, n) and Ql(t, n) for all 1 ≤ t ≤

T ′ and 0 ≤ n ≤ N as the total probability of all valid alignments of the partial sequence wn
1 from

frame 1 to frame t, where the alignment ends at frame t with either a blank symbol (ε) or a non-blank
label (l), respectively. Formally:

Qε(t, n) =
∑

yt
1,B(yt

1)=wn
1

yt=ε

t∏
t′=1

pt′(yt′ |hT ′

1 ) (58)

Ql(t, n) =
∑

yt
1,B(yt

1)=wn
1

yt ̸=ε

t∏
t′=1

pt′(yt′ |hT ′

1 ) (59)

here, w0
1 denotes the empty sequence. The DP procedure is initialized using the following base cases:

Qε(t, 0) =

t∏
t′=1

pt′(ε|hT ′

1 ) ∀1 ≤ t ≤ T ′ (60)

Ql(t, 0) = 0 ∀1 ≤ t ≤ T ′ (61)
Qε(1, n) = 0 ∀1 ≤ n ≤ N (62)

Ql(1, n) =

{
p1(w1|hT ′

1 ), if n = 1

0, if 2 ≤ n ≤ N
(63)

For all t ≥ 2 and n ≥ 1, the values Qε(t, n) and Ql(t, n) can be computed using the following DP
recursion:

Qε(t, n) = pt(ε|hT ′

1 ) · [Qε(t− 1, n) +Ql(t− 1, n)] (64)

Ql(t, n) = pt(wn|hT ′

1 ) ·
[
Ql(t− 1, n) +Qε(t− 1, n− 1) +Ql(t− 1, n− 1)

]
, (65)

where Ql(t− 1, n− 1) is defined as:

Ql(t− 1, n− 1) =

{
Ql(t− 1, n− 1), if wn ̸= wn−1

0, otherwise
(66)

By the definition of the forward variables, pCTC(w
N
1 |hT ′

1 ) could be calculated as follows:

pCTC(w
N
1 |hT ′

1 ) = Qε(T
′, N) +Ql(T

′, N) (67)

Similarly, the backward variables Rε(t, n) and Rl(t, n), defined for all 1 ≤ t ≤ T ′, 1 ≤ n ≤ N + 1,
represent the total alignment probabilities corresponding to the decoding of the label sequence wN

n
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from frame t to frame T ′, conditioned on the assumption that the label emitted at frame t is either a
blank symbol (ε) or a true label (l), respectively.

Rε(t, n) =
∑

yt
1,B(yt

1)=wN
n

yt=ε

T ′∏
t′=t

pt′(yt′ |hT ′

1 ) (68)

Rl(t, n) =
∑

yt
1,B(yt

1)=wN
n

yt ̸=ε

T ′∏
t′=t

pt′(yt′ |hT ′

1 ) (69)

where wN
N+1 is seen as the empty sequence. The following initializations are needed for the DP:

Rε(t,N + 1) =

T ′∏
t′=t

pt′(ε|hT ′

1 ) ∀1 ≤ t ≤ T ′ (70)

Rl(t,N + 1) = 0 ∀1 ≤ t ≤ T ′ (71)

Rε(T
′, n) = 0 ∀1 ≤ n ≤ N (72)

Rl(T
′, n) =

{
pT ′(wN |hT ′

1 ), if n = N

0, if 1 ≤ n ≤ N − 1
(73)

For t ≤ T ′ − 1, n ≤ N , Rε(t, n) and Rl(t, n) could be later computed by the DP recursion as
follows:

Rε(t, n) = pt(ε|hT ′

1 ) · [Rε(t+ 1, n) +Rl(t+ 1, n)] (74)

Rl(t, n) = pt(wn|hT ′

1 ) ·
[
Rl(t+ 1, n) +Rε(t+ 1, n+ 1) +Rl(t+ 1, n+ 1)

]
, (75)

where Rl(t+ 1, n+ 1) is defined as:

Rl(t+ 1, n+ 1) =

{
Rl(t+ 1, n+ 1), if wn ̸= wn+1

0, otherwise
(76)

By the definition of the backward variables, pCTC(w
N
1 |hT ′

1 ) could be calculated as:

pCTC(w
N
1 |hT ′

1 ) = Rε(1, 1) +Rl(1, 1) (77)

Besides calculating pCTC(w
N
1 |hT ′

1 ), Graves et al. [27] shows that these forward and backward variables
could be employed to compute the error signal of the model during training analytically.

E.3 CTC Decoding

Decoding (also referred to as search, recognition, or inference) denotes the process of identifying the
word sequence ŵN̂

1 that satisfies the decision rule defined in Equation 46, given a sequence of acoustic
feature vectors xT

1 . In this section, we first present general forms of decision rules applicable to
seq2seq models. Subsequently, we detail specific decision rules and corresponding search algorithms
tailored to the CTC framework.

E.3.1 Decision Rules

Because seq2seq models directly calculate p(wN
1 |xT

1 ), the decision rule for the search is defined as
belows:

ŵN̂
1 = arg max

N,wN
1

p(wN
1 |xT

1 ) = arg max
N,wN

1

[
log p(wN

1 |xT
1 )
]
. (78)

As for CTC, decision rule 78 could be rewritten as:

ŵN̂
1 = arg max

N,wN
1

 ∑
yT ′
1 :B(yT ′

1 )=wN
1

T ′∏
t=1

pt(yt|hT ′

1 )

 . (79)
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Because of the peaky behavior [95], CTC models usually generate blanks more and true labels less.
In order to minimize blanks and increase true label emission, an alternative prior correction could be
employed [58]. The prior of a label y, which could then be either a true label or the blank label, is
calculated as:

pprior(y) =
1∑

h̃T̃ ′
1

T̃ ′

∑
h̃T̃ ′
1

T̃ ′∑
t=1

pt(y|h̃T̃ ′

1 ), (80)

where the encoded vectors h̃T̃
1 are retrieved based on the empirical distribution. The label posteriors

in decision rule 79 of the search are then divided by their priors as belows:

ŵN̂
1 = arg max

N,wN
1

 ∑
yT ′
1 :B(yT ′

1 )=wN
1

T ′∏
t=1

pt(yt|hT ′

1 )

p
λprior
prior (yt)

 , (81)

where λprior is the prior scale, which is also a constant. In previous empirical studies, prior correction
has been used in order to boost CTC performance.

As detailed in Section D above, combining an external LM pLM with a seq2seq model generally leads
to enhanced results. The most simple and commonly employed method is shallow fusion [28], which
simply linearly combines decision rule in Equation 78 with the LM score as shown below:

ŵN̂
1 = arg max

N,wN
1

[
log p(wN

1 |xT
1 ) + λLM log pLM(wN

1 )
]
, (82)

where λLM is the LM scale. It is important to be aware that there should be no domain mismatch
between the LM and the inference domain, and the external LM should preserve the linguistic
distribution in the inference domain well. For CTC, shallow fusion could be simply combined with
prior correction.

E.3.2 Greedy Search

Greedy search is a simplified decoding strategy for CTC, in which the summation over all alignment
paths in the decision rule in Equation 79 is approximated by the most probable path alone. That is, it
selects the single highest-probability alignment path predicted by the CTC model:

ŵN̂
1 ≈ arg max

N,wN
1

 max
yT ′
1 :B(yT ′

1 )=wN
1

T ′∏
t=1

pt(yt|hT ′

1 )


= B

argmax
yT ′
1

 T ′∏
t=1

pt(yt|hT ′

1 )

 .

(83)

This can be computed in a straightforward manner by selecting the maximum label emission at
each time frame, followed by the application of the collapse function to the resulting alignment.
Greedy search offers the advantage of high computational efficiency, particularly when employed with
Transformer-based architectures, as the encoder computations can be parallelized across time frames.
Nevertheless, greedy search typically yields lower accuracy compared to beam search methods [27],
and it lacks the capability to incorporate an external LM.

E.3.3 Time-synchronous Search

CTC is inherently a time-synchronous model, making it natural to adopt a time-synchronous decoding
strategy. As proposed in [26], a time-synchronous beam search variant for CTC is introduced, which
estimates the sum of some path probabilities corresponding to each hypothesis by maintaining two
auxiliary partial probabilities during DP. Most studies adopt a variant of beam search in which
the score assigned to each hypothesis corresponds to the probability of its most likely alignment
path, augmented with an external LM score. This approach bears resemblance to Viterbi decoding
employed in HMM-based systems [71]. Incorporating prior correction, the resulting decision rule for
this decoding procedure can be expressed as:
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ŵN̂
1 = arg max

N,wN
1

log
 max

yT ′
1 :B(yT ′

1 )=wN
1

T ′∏
t=1

pt(yt|hT ′

1 )

p
λprior
prior (yt)

+ λLM log pLM(wN
1 )

 . (84)

Details of the search procedure are provided in Algorithm 1. The initial hypothesis consists of the
empty sequence augmented with a virtual begin-of-sequence (BOS) label. It is important to note that,
in this context, the set of partial hypotheses corresponds not to partial label sequences, but to partial
CTC alignments.

At each iteration over the input frames, the scores of all possible hypothesis expansions are computed.
Subsequently, if multiple expansions yield the same label sequence, only the one with the highest
score is retained. This operation constitutes a form of maximum recombination over all expansions
that correspond to the same label sequence. Following this recombination, a subset of the expansions
is selected based on the beam size constraint, thereby pruning the search space.

In the absence of an external LM and prior correction, this procedure reduces to the standard greedy
search.

Algorithm 1 CTC time-synchronous beam search.

1: Input: beam size H , CTC posterior pt(v|hT ′

1 )∀v ∈ V ′, 1 ≤ t ≤ T ′, language model pLM, LM
scale λLM, label prior pprior(v)∀v ∈ V ′, prior scale λprior

2: Initialize:
3: hyps← {<BOS>} ▷ set of partial hypotheses
4: scores← {} ▷ hash-map storing scores of partial hypotheses
5: scores[<BOS>]← 0
6: for t = 1 . . . T ′ do
7: /* Consider all possible hypothesis expansions */
8: expansions← {g · v|g ∈ hyps, v ∈ V ′}
9: for g ∈ hyps do

10: for v ∈ V ′ do
11: scores[g · v]← scores[g] + log pt(v|hT ′

1 )− λprior log pprior(v)
12: if v ̸= ε and v ̸= last label of g then
13: scores[g · v]← scores[g · v] + λLM log pLM(v|B(g))
14: end if
15: end for
16: end for
17: /* Recombination step */
18: for g1, g2 ∈ expansions× expansions do
19: if g1 ̸= g2 and B(g2) = B(g1) then
20: if scores[g2] > scores[g1] then
21: scores[g1]← −∞
22: else
23: scores[g2]← −∞
24: end if
25: end if
26: end for
27: /* Pruning step */
28: hyps← the H partial hypotheses in expansions with highest scores
29: end for
30: Return: B

(
argmaxyT ′

1 ∈hyps scores[y
T ′

1 ]
)

E.3.4 Label-synchronous Search

Label-synchronous search was originally introduced alongside the CTC topology in [27]. This
approach directly applies the decision rule given in Equation 78, wherein beam search operates at the
level of label sequences. To facilitate this procedure, the CTC prefix probability is required, denoted
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by
pCTC(w

n
1 , ∗ | xT

1 ) := pCTC(w
n
1 , ∗ | hT ′

1 ) (85)
which quantifies the probability that the CTC model emits a sequence beginning with the prefix wn

1 ,
followed by an arbitrary suffix (including the empty suffix).

pCTC(w
n
1 , ∗|hT ′

1 ) =
∑

ν∈(V ′)∗

pCTC(w
n
1 · ν|hT ′

1 ), (86)

where (V ′)∗ denotes the set of all label sequences over V ′, including the empty sequence. The
score assigned to a partial hypothesis wn

1 is defined as log pCTC(w
n
1 , ∗|hT ′

1 ). If the hypothesis wn
1 is

complete, its final score becomes log pCTC(w
n
1 |hT ′

1 ). The label-synchronous beam search procedure,
along with the DP formulation for computing the CTC prefix probability during decoding, is detailed
in [25].

The label-synchronous search procedure operates at the output label level, facilitating straightforward
integration of an external LM. The partial score of a hypothesis wn

1 is given by:

log pCTC(w
n
1 , ∗|hT ′

1 ) + λLM log pLM(wn
1 ). (87)

This approach sums over all path probabilities corresponding to a partial label sequence, but incurs
a time complexity of O(T ′) per hypothesis extension. Consequently, the total complexity becomes
O(NmaxT

′), where Nmax denotes the length of the longest hypothesis. This is substantially less
efficient than the O(T ′) complexity of time-synchronous search. Moreover, CTC is inherently
time-synchronous.
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