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ABSTRACT

Catalog maintainance of space objects by limited number of ground-based sensors presents a
formidable challenging task to the space community. This article presents a methodology for
time-invariant tracking and surveillance of space objects in low Earth orbit (LEO) by optimally
directing ground sensors. Our methodology aims to maximise the expected number of space objects
from a set of ground stations by utilizing concepts from stochastic geometry, particularly the Poisson
point process. We have provided a systematic framework to understand visibility patterns and en-
hance the efficiency of tracking multiple objects simultaneously. Our approach contributes to more
informed decision-making in space operations, ultimately supporting efforts to maintain safety and
sustainability in LEO.

1 Introduction

There are currently 10,765 active satellites, most of which are operational in the LEO[2]. In recent years, the rapid
increase in satellites and other space objects has heightened the importance of effective tracking systems for space
situational awareness. These systems are crucial for ensuring the safety and sustainability of space operations, as
collisions between objects can create space debris, posing significant risks to both current and future missions. The
challenge lies in the ability to track multiple objects simultaneously with high accuracy using a limited number of
ground-based sensors.

Sensor Network management in the context of SSA involves assigning and pointing a set of ground-based sensors for
the surveillance and tracking of space objects. Optimal Sensor allocation facilitates maintaining an accurate catalogue
and tracking of space objects in LEO [16]. Optimal sensor tasking for catalogue maintenance can be performed by
optimizing various objective functions, primarily focusing on state control and information gain [16]. In state control
for catalogue maintenance, the Posterior Effective Number of Targets (PENT) can be an objective function to be
optimized by the sensor tasking algorithm, which works with the recursive estimation frameworks. This objective
function calculates the posterior adequate number of space objects by integrating the prior information and sensor
observations [7].

https://arxiv.org/abs/2507.00076v1
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Information gain as an objective function to obtain optimal sensor tasking is another widely used methodology. A
method in [1] has been proposed to optimize sensor network parameters by maximizing information gain. The
approach utilizes the Fisher Information Matrix (FIM) and Mutual Information (MI) as metrics for information gain.
By maximizing an objective function based on these metrics, the method optimizes the pointing direction of sensors
for UAVs and satellites. However, these discussed methods are data-intensive and computationally complex. These
time-dependent techniques require observations at every epoch and incorporate data fusion to reduce the uncertainty of
the solutions to the sensor tasking problem.

Traditional tracking methodologies often struggle with the computational complexity of monitoring the vast number of
space objects, especially in dynamic environments where objects frequently change orbits. Our research addresses this
issue by introducing a novel methodology for time-invariant tracking of space objects in LEO. By optimally pointing
ground sensors, we utilize concepts from stochastic geometry, particularly the Poisson point process, to model the
number of space objects visible from a ground station. This model considers factors such as latitude, the inclination of
orbits, and the pointing directions of ground sensors.

Modelling of sensor networks using stochastic geometry has been used in various applications, such as the estimation
of coverage of satellites for the downlink of wireless communication [6], coverage analysis [8]. Stochastic geometry
analyzes the spatially averaged performance of any network. Sensor networks are modelled using a novel stochastic
geometry framework by developing an Isotropic Satellite Cox Point Process [3]. In recent works, Satellite network is
analyzed using a Poisson Point Process(PPP) based model [3][4][5], homogeneous binomial point process (BPP) on
spherical surfaces[12][13] [9]. In this work, we have extended this concept to spherical shell encapsulating all LEO
objects.

We have designed an optimization problem to maximize the expected number of space objects observed within the
overlapping volume of multiple Ground Sensors. This approach enhances the efficiency of tracking systems and
significantly reduces the computational complexity, making it a promising solution for future SSA initiatives.

2 Problem Formulation

Consider a ground-based sensor network comprising of M number of sensors that are tracking the space objects in
the LEO region. Each sensor i of the network has certain Field Of Regard (FOR) and Field Of View (FOV). FOR
is the total area that a movable sensor can capture. Similarly, FOV is the angular section, a sensor sees at any given
time. The area in the FOV of a sensor i depends upon its FOV angle αi. Figure 1 illustrates the FOV and FOR of the
ground-based sensor. Our objective is to maximise the effective number of satellites

∑M
i=1 E[Ni] that can be tracked by

the sensor network by optimally pointing the sensors towards the space objects. We are considering (ϕi, λi) be the

FO
V

Field of Regard

Figure 1: Field of Regard and Field of View
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latitude and longitude, and (Ei, Ai) be the pointing directions of each sensor i respectively. Let Rmin be the minimum
altitude of space objects in LEO and Rmax is the maximum altitude of space objects in LEO. We define the LEO region
as the region between two spherical shells of radii Rmin and Rmax. We calculate the effective latitude (ϕe) of the
observed space objects by the pointing direction of each sensor defined by elevation angle Ei and azimuth angle Ai as:

ϕe = sin−1

(
r · cosEi · cosAi · cosϕi − r · sinEi · sinϕi +Re · sinϕi

Re + a

)
(1)

Where, r = −Re · sinEi +
√
R2

max −R2
e · cos2 Ei , Re is the radius of Earth.

Figure 2 represents the illustration for the effective latitude of the observed space objects at height Rmax.

Local Horizon

Figure 2: Effective latitude measurement for the observed space objects

For a given number of sensors, the FOV angle of each sensor may vary. In this scenario, we have n sensors with FOV
angles denoted αi, where α1 > α2 > α3 > . . . > αn. This angle αi covers certain volume v(αi) of the defined
spherical shell, in which visible space objects can be tracked. The effective latitude ϕe, the number of visible space
objects Ni which are at an inclination ii, and pointing directions (Ei, Ai) are used to compute the satellite density
δ(ϕe) in a given volume v(αi). We consider the distribution of visible space objects within the defined spherical shell
as a poisson point process. Therefore, the expected number of visible space objects E[Ni] is the product of volume
covered by each sensor v(αi) and the space objects density δ(ϕe).

The objective function for optimizing the pointing direction by maximizing the expected number of space objects is:

ONi
=

M∑
i=1

E[Ni] (2)

The solution for optimized azimuth and elevation angles can be obtained by finding A1:M and E1:M which maximizes
the objective function as in equation (3)

3
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A∗
1:M , E∗

1:M = arg
A1:M ,E1:M

maxONi

= arg
A1:M ,E1:M

max

M∑
i=1

v(αi)δ(ϕi, Ai, Ei) (3)

Where,

δ(ϕi, Ai, Ei) = δ(ϕe) =
3√

2π2(R3
max −R3

min)

k∑
i=0

Ni√
cos(2ϕe)− cos(2ιi)

(4)

Ni is the total number of space objects observed in orbit with inclination ιi, and k is the total number of orbit inclinations
and

v(αi) =

∫ 2π

0

∫ (Ei−α
2 )

(Ei+
α
2 )

∫ (Rmax−Re)

(Rmin−Re)

ρ2sin(Ei) dρ d(Ei) dϕ

= 2π

[
(Rmax −Re)

3 − (Rmin −Re)
3

3

]
sin

(α
2

)
sin(E) (5)

Now, the Fisher information gain for the jth space objects measured using ith sensor at kth epoch is

Jj = E[(∇xj ln Λj(k)) · (∇xj ln Λj(k))
′] (6)

Where ∇xj ln Λj(k) =
∑n

i=1∇xj ln Λij(k), as we consider the observation from each sensor is independent of each
other. The likelihood function for observations is given by Λij = p(zij(k)|xj) where zij(k) is the observations for jth

space objects on ith sensor at kth epoch. Consequently, by optimising the objective function O in equation (2), we also
ensure the increase in Fisher information gain.

3 Solution Approach

Let us first focus on the overlapping volume of the FOVs of multiple sensors within the LEO. Then, within that area,
we maximize the expected number of space objects.

The FOVs of sensors can overlap only if their respective FORs are overlapping; even if the FORs merely touch each
other, we will exclude those sensors from our consideration. We ensure the overlapping of FORs of two sensors in
the first step and then ensure the overlapping of FOVs of two sensors with latitude and logitude (ϕ1, λ1) and (ϕ2, λ2),
respectively.

Figure 3 represents the scenario of overlapping FOVs of sensors S1 and S2. Assuming a sensor can cover 360◦ on its
Azimuth and 90◦, its FOR is a half-hemisphere. Two half hemispheres can overlap if and only if 2ρ > d, where ρ is the
maximum range of the sensors, which we consider it as the radius of the hemisphere and d is the eucledian disance. In
ECEF reference frame S1 and S2 will be:

S1 =

[
Re cos(ϕ1) cos(λ1)
Re cos(ϕ1) sin(λ1)

Re sin(ϕ1)

]
=

[
X1

Y1

Z1

]
S2 =

[
Re cos(ϕ2) cos(λ2)
Re cos(ϕ2) sin(λ2)

Re sin(ϕ2)

]
=

[
X2

Y2

Z2

]

The Euclidean distance d between S1 and S2 is given by:

d =
√
(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 (7)

When considering the overlapping FORs, we must focus on the overlapping area, which should fall within the LEO
range, specifically between the minimum height Rmin and maximum height Rmax from the centre of the Earth. To

4
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ensure this, we set the intersecting point of sensors agree to the condition, such that H > (Rmax −Re +∆h). H and
∆h is shown in Figure 3 only under these conditions can we assert that the maximum point of the overlapping section
may lie within the LEO range.

H and ∆h are expressed as,

H =

√
ρ2 − d2

4

∆h = Re −
√
R2

e −
d2

4

trimtrim

H

Figure 3: H and ∆h measurements

When considering the lower limit of the LEO as a reference line, ensuring that the imaginary cones formed by the FOV
of any two sensors intersect the lower boundary of the LEO at a single point is essential. Therefore, it is necessary to
calculate the lower and upper bounds of the elevation angle for each sensor to ensure that they do not exceed the LEO
boundary. Therefore, for each sensor, the lower limit of the elevation angle becomes:

Emin = sin−1

[
R2

min −R2
e − ρ2

2.Re.ρ

]
+

αi

2
(8)

Similarly,

Emax = sin−1

[
R2

max −R2
e − ρ2

2.Re.ρ

]
− αi

2
(9)

Where ρ is the range of the sensors.

The objective function for calculating the expected number of objects, given the initial elevation and azimuth angles
for entire sensor network, is described in algorithm in the appendix 1. we consider a cluster of sensors that will be
overlapping and form a common intersection of volume v(αi), where αi represents the smallest FOV angle among the
sensors in the overlapping sensor cluster. We have consider Emin and Emax as the elevation bounds, for maximizing
the objective function.

5
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4 Sensor Network Data Simulation

Figure 4: Ground-based sensors visualisation

We have considered 100 ground-based sensors for simulation. The latitudes and longitudes are evenly spaced, within
the ranges of -85 to 85 degrees and -180 to 180 degrees, respectively. Figure 4 shows the placement of sensors on
Earth from the identified locations. We have identified 26701 space objects for simulation, and accessed their positions
using Two Line Element (TLE) data from www.space-track.org. We have recorded the range, azimuth, elevation, and
visibility metrics of all space objects from each ground sensor for 360 minutes with 1 min interval in our simulations1.
We have performed these simulations in the server having AMD EPYC 7282 16-Core Processor, 260 GB RAM. We
have used Python 3.8 with the Poliastro [11] and Astropy[10] libraries. The run-time for simulation was approximately
30 hours.

Result and Analysis

In this section, we present a detailed examination of the satellite visibility and sensor network performance based on
our simulations and optimization techniques. The analysis begins by comparing the distribution of visible satellites to
a Poisson probability distribution to assess its suitability in modeling satellite visibility across different geographic
regions. Subsequently, we evaluate the sensor network’s ability to maximize the expected number of observed objects
by employing advanced optimization techniques, focusing on azimuth and elevation angles for ground sensors. These
results provide critical insights into the effectiveness of our modeling approach and optimization strategies in achieving
comprehensive coverage of the satellite population.

Figure 5 and Figure 6 illustrates the probability density of the effective number of satellites visible from simulated
ground sensor locations across various latitudes and longitudes. Specifically, Figure 5a depicts the probability density for
ground sensors at latitudes between−28.3° and 28.3° at longitude−180°, while Figure 5b shows the same for longitude
−20°. Similarly, Figure 6a represents latitudes from −9.4° to −66° at longitude 180°, and Figure 6b corresponds to
latitudes from −66° to −9.4° at longitude 140°. These figures illustrate a comparison between the Poisson probability
distribution and the normalized histogram derived from the satellite visibility data, which we simulated from the
simulation data. 2. While they do not conclusively prove our hypothesis, they demonstrate that the Poisson probability
distribution function closely approximates the normalized distribution of visible satellites when effective latitude is
used as a distribution parameter.

By evaluating the sensor network to find the overlapping volumes, using the expressions H and δh, it resulted in 10
unique overlapping volumes. These volumes are covered using 30 sensors for 8 volumes and 20 sensors for 2 volumes,
respectively. To maximise the expected number of objects in the objective function, we have applied “trust-constr” (A
trust-region algorithm designed for constrained optimisation problems) optimisation method from SciPy library [15]
and “Particle Swarm Optimisation” method using pyswarm library [14] for finding the optimal azimuth and elevation
angles for each sensor. We have set the bounds for elevation Emin as 0° and Emax as 90° and for azimuth, we have set
the bounds Amin as 0° and Amax as 360°. We initialised both Azimuth and Elevation angles for each sensor as 10°.

1More information on simulation data is in https://github.com/HarshaSSL/JSTOR_AAS
2More information on simulation data is in https://github.com/HarshaSSL/JSTOR_AAS
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Figure 5: Comparitive analysis of poisson pdf with normalised histogram from visibility data for latitude−28.3° to28.3°
ang for longitude −180° and 20°

0 100 200 300 400 500 600 700 800 900
0.00

0.02

0.04

0.06

0.08

0.10

PD

Latittude: -66.1
Longitude: 180.0

Possion Distribution - mean visibility
Normalised data

0 200 400 600 800 1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Latittude: -47.2
Longitude: 180.0

0 200 400 600 800 10001200140016001800
Number of satellites visible

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

PD

Latittude: -28.3
Longitude: 180.0

0 500 10001500200025003000350040004500
Number of satellites visible

0.000

0.001

0.002

0.003

0.004

0.005

Latittude: -9.4
Longitude: 180.0

(a) Plot 3

0 200 400 600 800 1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

PD

Latittude: -66.1
Longitude: 140.0

Possion Distribution - mean visibility
Normalised data

0 200 400 600 800 1000 1200 1400
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Latittude: -47.2
Longitude: 140.0

0 500 1000 1500 2000
Number of satellites visible

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

PD

Latittude: -28.3
Longitude: 140.0

0 1000 2000 3000 4000
Number of satellites visible

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Latittude: -9.4
Longitude: 140.0

(b) Plot 4

Figure 6: Comparitive analysis of poisson pdf with normalised histogram from visibility data latitude −66.1° to−9.4°
and for longitude 180° and 140°

The optimised azimuth and elevation angles and an expected number of space objects visible are plotted against
each ground station in Figure 7. The “trust-constr” optimisation method produced 89.2769, and the “Particle Swarm
Optimisation” method produced 86.4633 as the maximum number of expected space objects. These results are very
close to 91.0333 and 89.6222, the number of space objects we measured while verifying the optimised azimuth and
elevations deduced from both the methods with real-time dataset respectively. However, in Figure 7, it is visible that the
distribution of optimised azimuth and elevation are different in both methods. This is possible because two different
methods may take different maxima values. Further methodological investigations are needed to explore this issue.
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(a) Results of Trust-constraint Optimisation
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(b) Results of Particle Swarm Optimisation

Figure 7: Results of optimisation methods

5 Conclusion

In this article, we have designed a method for time-invariant tracking of space objects in LEO by optimally pointing
ground sensors. Our approach leverages concepts from stochastic geometry, particularly the Poisson point process, to
effectively model the number of space objects visible from a ground station.

To enhance the effectiveness of our tracking system, we have formulated an optimization problem that may be convex
in nature, depending upon certain restrictions. Our main goal was to maximize the total expected number of space
objects observed in a particular region where the FOV multiple sensors overlap.

Our methodology streamlines the process of tracking space objects and significantly reduces computational complexity,
making it more feasible to implement in real-world applications. We believe our approach can pave the way for more
efficient space situational awareness systems by minimizing the resources needed for computation while maintaining
high observation quality.

Moreover, this methodology opens avenues for future research, including the potential integration of machine learning
techniques to refine the prediction models further and enhance observation optimization. It also raises interesting
questions about the operational parameters necessary for different types of ground sensors and how they can be
coordinated to achieve maximum coverage.

As the population of satellites and debris in LEO continues to grow, the ability to track space objects effectively is
critical for preventing potential collisions and ensuring a stable space environment. By offering a robust framework for
monitoring space traffic with reduced computational demands, this work contributes to developing advanced space
situational awareness systems.
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Appendices
A Appendix 1: Algorithm

Require: Positions of sensors [αi, λi], range [ρ], Earth radius [Re], LEO bounds [Rmax] and [Rmin], sensor angles [α]
Ensure: Number of sensors n ≥ 2

1: Initialize V = 0
2: for each sensor pair i and j where i ̸= j do
3: Compute distance d← Euclidean Distance(Sensor Positions[i], Sensor Positions[j])
4: if 2ρ > d and H > (Rmax −Re +∆h) then
5: Make cluster of sensors for a i which k sensors are overlapping.
6: If both satisfy, compute lower elevation angle of each sensor j in the cluster:

Eminj = sin−1

(
R2

min −R2
e − ρ2

2Reρ

)
+

αj

2

7: Compute upper elevation angle of each sensor j in the cluster:

Emaxj = sin−1

(
R2

max −R2
e − ρ2

2Reρ

)
− αj

2

8: Compute overlapping volume:

v(αi) = 2π

[
(Rmax −Re)

3 − (Rmin −Re)
3

3

]
sin

(αi

2

)
sin(Ei)

9: Compute

δ(ϕi, Ai, Ei) = δ(ϕe) =
3√

2π2(R3
max −R3

min)

k∑
i=0

Ni√
cos(2ϕe)− cos(2ιi)

10: end if
11: Calculate minimum of v(αi)
12: Apply Emini

& Emaxi
as bounds for solving optimisation problem

13: end for
14: A∗

1:M , E∗
1:M = arg

A1:M ,E1:M

max ONi
= arg

A1:M ,E1:M

max
∑M

i=1 v(αi)δ(ϕi, Ai, Ei)

return ONi
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