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Abstract

In [5], Fontaine and Wintenberger developed the theory of norm fields to study
certain p-adic representations of local fields with perfect residue fields. In [3],
Scholl has extended the theory to more general local fields of characteristic
zero with imperfect residue fields; however, differing from Fontaine and Win-
tenberger, no appeal is made to higher ramification theory. In this paper, we use
the ramification filtration of Abbès and Saito to initiate a study of Scholl’s the-
ory from Fontaine and Wintenberger’s viewpoint of “arithmetically profinite”
extensions.

Contents

• In Section 1, we give a brief overview of Abbès and Saito’s ramification
theory for local fields with imperfect residue fields, and of Scholl’s con-
struction of the field of norms for strictly deeply ramified towers. With
the exception of Example 2.1, this section contains no original material.

• In Section 2, which is entirely original, we determine the ramification prop-
erties of strictly deeply ramified extensions, and study how these translate
via the field of norms functor. Applications, which are expected to lead
towards a generalization of a result of Wintenberger, are given.
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1 Introduction

In [5], Fontaine and Wintenberger developed the theory of norm fields to study
certain p-adic representations of local fields with perfect residue fields. In [3],
Scholl has extended the theory to more general local fields of characteristic
zero with imperfect residue fields; however, differing from Fontaine and Win-
tenberger, no appeal is made to higher ramification theory. In this paper, we
use the ramification theory of Abbès and Saito to initiate a study of Scholl’s the-
ory from Fontaine and Wintenberger’s viewpoint of “arithmetically profinite”
(APF) extensions, characterized in terms of ramification groups.

In the first part, we give an overview of Abbès and Saito’s definition of an
upper numbering ramification filtration of the absolute Galois group of a local
field with imperfect residue field. We illustrate the construction by computing
the ramification groups of a natural non-abelian generalization of cyclotomic
extensions (“Kummer towers”). We proceed to define the field of norms of so-
called “strictly deeply ramified” extensions of a local field of mixed characteristic
(0, p), under some mild assumptions on the residue field (namely, that it has
a finite p-basis). If L/K is such an extension, the field of norms X of L/K is
a complete, discretely valued field of characteristic p, and the study of finite
separable extensions of X amounts to the study of finite extensions of L.

In the second part, we determine the ramification properties of strictly deeply
ramified extensions, and study how these translate to norm fields. The motiva-
tion behind this is to show the following: M/L is an infinite extension, union

of finite extensions of L, then M/K is strictly deeply ramified if an only if the

corresponding extension of norm fields Y/X is strictly deeply ramified, in which

case the field of norms of M/K is isomorphic to the field of norms of Y/X.

This result is already known in the classical case ([5], Proposition 3.4.1). The
starting observation here is that strictly deeply ramified extensions are APF, for
the Abbès-Saito ramification filtration, and this allows us to translate the prob-
lem into a study of ramification properties of the extensions M/K and M/L.
We then define strictly deeply ramified extensions of norm fields (in lack of a
satisfactory definition in positive characteristic), and show how the ramification
filtrations of the corresponding Galois groups behave via the field of norms func-
tor. This allows us to conclude with a partial generalization of Wintenberger’s
result.

Notation

If K is a complete, discretely valued field, we denote by vK its normalized
discrete valuation, by OK its ring of integers, by πK a uniformizer, and by
kK its residue field. We fix a separable closure Ks of K, and denote by O
the integral closure of OK in Ks. All separable extensions L/K will implicitly
be assumed to lie inside Ks, and any such gives rise to a unique valuation
extending vL, abusively denoted vL, and an absolute value |x|L = θvL(x), where
θ is a real number such that 0 < θ < 1, fixed throughout the paper. Let

a ∈ Q>0; we denote by Dn
K , resp. D

n,(a)
K , the closed n-dimensional polydisc
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of radius one, resp. a, over K. When there is no possibility for confusion, we
drop subscripts and write π = πK , v = vK , | · | = | · |K instead. Finally, for a
separable extension L/K, we denote by Ω(L/K) the module of relative Kähler
differentials of OL/OK .

2 The main constructions

2.1 The ramification filtration of Abbès and Saito

Let L/K be a finite separable extension of complete, discretely valued fields,
and let Z = (z1, . . . , zn) be a system of generators of the OK -algebra OL. The
kernel of the natural surjection OK [X1, . . . , Xn] � OL is finitely generated, say
by the polynomials f1, . . . , fm. For a rational number a > 0, the set

Xa
Z = {x ∈ Dn

K | |fi(x)|K ≤ |πK |
a
K (i = 1, . . . ,m)}

is an affinoid subdomain of Dn
K , and the set of connected components π0(X

a
Z)

of its geometric points, Xa
Z(Ks), with respect to the weak or strong G-topology,

is finite and independent of the choice of Z ([1], Lemma 3.1).
If L/K is Galois, with Galois groupG, then G acts on π0(X

a
Z) via the natural

surjection G � π0(X
a
Z) obtained by sending σ ∈ G to the connected component

of the point σ(Z) = (σ(z1), . . . , σ(zn)) ∈ Xa
Z(Ks). Let Ga be the subgroup

of elements of G acting trivially on π0(X
a
Z). Clearly this is well-defined, i.e.

independent of the choice of Z. If b is a rational number ≥ a, then the in-
clusion Xb

Z ⊆ Xa
Z induces an inclusion Gb ⊆ Ga, and the filtration (Ga)a>0,

extended by G0 = G, is called the ramification filtration of G. It satisfies the
“Herbrand property”: if H is a subgroup of G, then (G/H)a = GaH/H (loc.cit.,
Proposition 2.1). Hence, we can define the ramification filtration of infinite Ga-
lois extensions M/K by setting Gal(M/K)a = lim

←−
Gal(L/K)a, the limit being

taken over the finite Galois extensions L of K contained in M . For G finite and
infinite, the ramification filtration of G enjoys the following properties:

1. It is left continuous, with rational jumps: if we set Ga+ =
⋃
b∈Q>a

Gb,

and Ga− =
⋂
b∈Q<a

Gb, then Ga− = Ga if a is rational, and Ga− = Ga+

otherwise (loc.cit Theorem 3.8).

2. For 0 < a ≤ 1, Ga is the inertia subgroup of G, and G1+ is the wild inertia
subgroup of G (loc.cit, Proposition 3.7).

3. It is exhaustive:
⋃
a≥0G

a = {0} (loc.cit., Theorem 3.3).

4. It coincides, in the case whereK has perfect residue field, with the classical
upper numbering ramification filtration ([4], Chapter 4), shifted by one
([1], Proposition 3.7).

Example 2.1. Let K be a local field of mixed characteristic (0, p), whose
residue field kK has a p-basis of cardinality d ≥ 1 (cf. Section 2.2); for instance,
we could take K = Frac(Zp[x1, . . . , xd]

∧
(p)). Let {t1, . . . , td} ⊂ O

×
K be a lift of

such a basis. Let (εn)n≥0 be a compatible system of primitive pn’th roots of
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unity, and, for each α = 1, . . . , d, let (tα,n)n≥0, be a compatible system of pn’th
roots of tα. Assume for simplicity that ε1 /∈ K. Let Zn = (εn, t1,n, . . . , td,n) ∈
On, and set Kn = K(Zn), and K∞ =

⋃
Kn. We have Gn = Gal(Kn/K) =

(Z/pnZ)× n (Z/pnZ)d and G = Gal(K∞/K) = Z×
p n Zdp. A presentation

for OKn is given by OKn = OK [X,Y1, . . . , Yd]/(fn(X), gn,1(Y1), . . . , gn,d(Yd)),
where fn(X) denotes the pn’th cyclotomic polynomial, and where gn,α(Yα) =
Y pα − tn,α. Thus, for a ∈ Q>0, the affinoid variety Xa

Zn
decomposes as a product

Uan × V
a
1,n × . . .× V

a
d,n, where

Uan(Ks) = {x ∈ O | |fn(x)| ≤ |π|
a}

V aα,n(K
s) = {x ∈ O | |gn,α(x)| ≤ |π|a}, (1 ≤ α ≤ d).

An easy computation shows that two primitive pn’th roots of unity, u1 and u2,

belong to the same connected component of Uan(Ks) if and only if up
n−m+1

1 =

up
n−m+1

2 , where m is the smallest integer ≥ a. Similarly, for α = 1, . . . , d, two
pn’th roots of tα,n, v1 and v2, belong to the same connected component of

V aα,n(K
s) if and only if vp

n−m+1

1 = vp
n−m+1

2 , where m is the integer such that
m+1/(p−1) < a ≤ m+p/(p−1). Hence, if we let Gn(i, j) = Gal(Kn/K(εi))n

Gal(Kn/K({tα,j})), and G(i, j) = lim
←−n

Gn(i, j) ' (1 + piZp) n (pjZp), we have

Gan = Gn and Ga = G, for 0 ≤ a ≤ 1; Gan = Gn(m,m−1) and Ga = G(m,m−1)
for m < a ≤ m+1/(p− 1) and m = 1, . . . , n, resp. m ≥ 1; Gan = Gn(m,m) and
Ga = G(m,m) for m+ 1/(p− 1) < a ≤ m+ 1 and m = 1, . . . , n, resp. m ≥ 1;
and Gan = {1} for a ≥ n+ 1.

2.2 The field of norms functor of Scholl

Fix a prime p and an integer d ≥ 0. Let K be a d-big local field of mixed
characteristic (0, p). Recall that this means that K is complete with respect to
a discrete valuation, and that the residue field kK has a p-basis of cardinality
d. Let K• = (K ⊆ K1 ⊆ . . . ⊂ K∞ =

⋃
Kn) be a tower of finite extensions

of d-big local fields satisfying the following condition: there exists an integer
n0 ≥ 0 and an ideal ξ ⊂ OKn0

containing p such that

For all n ≥ n0, [Kn+1 : Kn] = pd+1, and there exists a
surjection Ω(Kn+1/Kn) � (OKn+1

/ξ)d+1.
(∗)

Such a tower is said to be strictly deeply ramified. [In order to specify an integer
n0 and an ideal ξ satisfying (∗), we refer to the triple (K•, n0, ξ) as being strictly
deeply ramified.] For n ≥ n0, we have e(Kn+1/Kn) = p, kpKn+1

= kKn , and

the Frobenius endomorphism of OKn+1
/ξ induces a surjection f : OKn+1

/ξ →
OKn/ξ ([3], Proposition 1.2.1). The inverse limit

X+
K•

= lim
←−
n≥n0

(OKn/ξ, f),

is a complete discrete valuation ring of characteristic p, with residue field k′ =
lim
←−n≥n0

(kKn , f) and uniformizer Π = (πKn mod ξ)n≥n0
, for a suitable choice of
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uniformizers πKn of the fields Kn (loc.cit., Theorem 1.3.2). It does not depend
on the choice of pair (ξ, n0) satisfying (∗), and if K ′

• is a tower equivalent to K•

(i.e. if there exists r ∈ Z such that Kn = K ′
n+r for all n sufficiently large), then

K ′
• is also strictly deeply ramified, and X+

K•

' X+
K′

•

. Thus, denoting by K the

equivalence class of K•, we put X+
K = lim

−→
X+
K•

, the limit being taken over all
equivalent towers K• ∈ K, and all pairs (ξ, n0) satisfying (∗), and the transition
maps being isomorphisms X+

K•

' X+
K′

•

, K•,K
′
• ∈ K (for an explicit description

of these, see the proof of loc.cit.). The fraction field

XK = Frac X+
K

is the field of norms of K. In case d = 0, i.e. when K has perfect residue field,
this coincides with the field of norms of the extension K∞/K, as defined by
Fontaine and Wintenberger ([5], Remark 2.2.3.3).

If L∞ is a finite extension of K∞, let L0 be a finite extension of K such
that L∞ = K∞L0. Let Ln = KnL0, and let L denote the equivalence class of
the tower L• (this class depends only on L∞). If K is strictly deeply ramified,
then so is L ([3], Theorem 1.3.3), and XL is a finite separable extension of XK

(loc.cit., Theorem 1.3.4). In this case, if L′
∞ is another finite extension of K∞,

and if L′ denotes the corresponding equivalence class of towers, then a K∞-
homomorphism τ : L∞ → L′

∞ induces an injection X+
L ↪→ X+

L′ , and XL′/XL

is a separable extension of degree [L′
∞ : τL∞] (loc.cit., Theorem 1.3.4). The

corresponding functor
L∞ 7→ XL,

denoted XK(−), in fact defines an equivalence between the category of finite
extensions of K∞ and the category of finite separable extensions of XK (loc.cit.,
Theorem 1.3.5). In particular, if L∞/K∞ is Galois, then so is XL/XK, and we
have an isomorphism Gal(L∞/K∞) ' Gal(XL/XK).

3 Ramification theory for higher norm fields

3.1 Strictly deeply ramified extensions

Let K be a complete, discretely valued field. Following Fontaine and Winten-
berger [5], we say that a separable extension L/K is arithmetically profinite, for
short APF, if, for any rational a ≥ 0, the group GaKGL is open in GK , where
(GaK)a≥0 denotes the ramification filtration of GK defined in Section 2.1. If K is
a d-big local field of characteristic zero, for some integer d ≥ 0, then a separable
extension L/K is said to be strictly deeply ramified if it has a refinement by
a tower K ⊆ K1 ⊆ . . . ⊂ K∞ =

⋃
Kn which is strictly deeply ramified (cf.

Section 2.2).
For a separable extension L of K, let c(L/K) denote the conductor of L/K,

i.e. the rational c ≥ 0 such that GcKGL/GL 6= Gc+K GL/GL = {1}.

Lemma 3.1. Suppose that K is a d-big local field of characteristic zero, for

some integer d ≥ 0. If L/K is strictly deeply ramified, then it is APF.
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Proof. In view of the Herbrand property for (Ga)a≥0, and since L =
⋃
Kn,

it suffices to show that, for any a ≥ 0, there exists an integer N ≥ 0 such
that GaKGKN /GKN is non-trivial. Thus it must be shown that the conduc-
tor c(Kn/K) becomes arbitrarily large as n → ∞. Possibly after replac-
ing K by one of the finite extensions Kn0

, we may assume that the tower
K• satisfies (∗) for n0 = 0. By hypothesis, and by the sequence below, the
OKn-module Ω(Kn/K), n ≥ 1, is then generated by d + 1 elements; write

Ω(Kn/K) =
⊕d

i=0OKn/π
αn,i

Kn
OKn . By [1], Proposition 7.3, we have c(Kn/K) >

αn,i/e(Kn/K) = αn,i/p
n for all i, and by induction on n using the conormal

sequence for differentials

OKn+1
⊗OKn

Ω(Kn/K)→ Ω(Kn+1/K)→ Ω(Kn+1/Kn)→ 0,

we get αn,i ≥ np
n, and hence c(Kn/K) > n.

A separable extension M/N is said to be elementary if G
c(M/N)
N GM/GN =

GN , i.e. if (GaNGM/GN)a≥0 has a single jump. In the theory of Fontaine-
Wintenberger (perfect residue field), such extensions arise as the fixed fields
of two successive ramification groups: if L/K is APF, if (bn)n≥0 denotes the

ordered set of jumps of (GaKGL/GL)a≥0 (i.e. Gbn−
K GL/GL = Gbn

KGL/GL 6=

Gbn+
K GL/GL = G

bn+1

K GL/GL), and if κn denotes the fixed field of Gbn

KGL/GL,
then κn+1/κn is elementary, for all n ≥ 0. This follows directly from the
fact that κn/K is finite, and that, for a fixed n, the ramification filtration
(Gaκn

GL/GL)a≥0 is induced by the ramification filtration (GaKGL/GL)a≥0 (al-
though after renumbering). In the general case, the Abbès-Saito ramification
filtration does not behave well with respect to subgroups, and the latter fact
cannot be expected to be true; for a counterexample, see [2], Example p. 24.
However, if L/K is strictly deeply ramified, we have the following:

Proposition 3.2. Let K be as in Lemma 3.1, and let K• be a strictly deeply

ramified tower satisfying condition (∗) for n0 = 0. Suppose furthermore that

K∞ is Galois over K, and let G = Gal(K∞/K). Let H be an open subgroup of

G, and let L = KH
∞; then for each a ∈ Q≥0, G

a ∩ H = Hae, where e denotes

the ramification index of L/K.

Proof. Since H is open in G, there exists an integer m ≥ 0 such that Km ⊇
L; we may assume that Km/K is Galois, with Galois group Gm; let Hm =
Gal(Km/L). By the Herbrand property, L is the fixed field of Gam. Since
kpKn+1

= kKn , we fix a compatible system of lifts ({tα,n}1≤α≤d)n of p-bases of

the fields kKn , i.e. satisfying tα,n+1 ≡ tα,n (mod πKn), for α = 1, . . . , d. We have
OKm = OK [πKm , {tα,m}1≤α≤d], for some uniformizer πKm of Km ([3], (1.2.3));
furthermore, OL = OK [πKi , {tα,j}α∈I,j∈J ], with 0 ≤ i ≤ m, I ⊆ {1, . . . , d}, J ⊂
{0, . . . ,m}. For each α = 1, . . . , d, tα,m satisfies a fake Eisenstein polynomial

over OK , i.e. a polynomial of the form tp
m

+
∑pm−1

i=1 ait
i+ tα,0, with πK |ai. If L

contains the element tα,j, for some j = 0, . . . ,m, and no element tα,j′ , for j′ > j,

then tα,m satisfies the fake Eisenstein polynomial tp
m

+
∑pm−1

i=1 ait
i+tα,0 overOL.
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Note that K(tα,j)/K is a totally fiercely ramified extension ([3], Section 1.1), so
in particular the ramification index is one. Using a similar argument for πKm

(which satisfies an Eisenstein polynomial over OK and over OL), we deduce
that, if Zm, resp. ZL, is a system of generators of OKm over OK , resp. OL,
then π0(X

a
Zm

) = π0(X
ae
ZL

). Hence Gam ∩ Hm = Hae
m . The claim follows by

passing to the limit.

Corollary 3.3. Let K be as in Lemma 3.1, and let K• be a strictly deeply

ramified tower. Set K∞ =
⋃
Kn, and denote by (bn)n≥0 the ordered set of

jumps of the ramification filtration (GaKGK∞
/GK∞

)a≥0, and, for each n, let κn
be the fixed field of Gbn

KGK∞
/GK∞

. Then, for n sufficiently large, κn+1/κn is

elementary.

Proof. Since we are only concerned with the asymptotic behaviour of κn, and
since κn/K is finite by Lemma 3.1, we may assume, possibly after truncatingK•,
that K• satisfies (∗) for n0 = 0. The claim now follows from Proposition 3.2.

Remark 3.4. If K• is strictly deeply ramified, it is convenient to define a
function ψK∞/K : Q≥0 → Q≥0 by

ψK∞/K(a) = e(La/K)a,

where La denotes the fixed field of GaKGK∞
/GK∞

in K∞; it is well-defined by
Lemma 3.1. In view of Proposition 3.2, it generalizes the Herbrand ψ-function
(as defined in [4], Chapter 4) for strictly deeply ramified towers.

Suppose that L/K is APF, and let (κn)n≥0 be the tower of fixed fields of
the ramification groups GaKGL/GL, a ∈ Q≥0. We say that L/K is strictly APF

if there exists a real number c > 0 such that, for all n,

c(κn+1/κn)

e(κn+1/K)
> c.

This generalizes the definition of [5], Section 1.4.1, since in the perfect residue
field case, the extensions κn+1/κn, n ≥ 2, are totally ramified.

Corollary 3.5. If L/K is strictly deeply ramified, then it is strictly APF.

Proof. Since the filtration (GaKGL/GL)a≥0 is exhaustive, for each integer n ≥ 0
there exists an integer m ≥ 0 such that κn ⊃ Km. The claim follows from
Proposition 3.2 together with the lower bound of c(Km/K) > n determined in
the proof of Lemma 3.1.

Remark 3.6. The group G1+
K GL/GL is pro-p, and hence if L/K is APF, the

extensions κn+1/κn, n ≥ 2, are p-extensions. We therefore expect a converse
of Corollary 3.5 to be true as well, under some assumptions (for instance, kL
must be the perfect closure of kκn , for n sufficiently large). If kK is perfect,
this is already the case: assuming κn+1/κn is Galois, we have Gal(κn+1/κn) '
(Z/pZ)dn , for some dn ≥ 1 ([4], Chapter IV, Corollary 3 to Proposition 7). For
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i = 0, . . . , dn, letting Kn,i denote the subfield of κn+1 fixed by (Z/pZ)dn−i, the
Hilbert formula (loc.cit., Proposition 4) gives the equality vp(DKn,i+1/Kn,i

) =
c(Kn,i+1/Kn,i)·(p−1)/eK ·[Kn,i+1 : K], where DKn,i+1/Kn,i

denotes the different
of the extension Kn,i+1/Kn,i (the annihilator of Ω(Kn,i+1/Kn,i)). Using the
strict APF condition, it follows that L/K is strictly deeply ramified.

3.2 Extensions of norm fields

In this section, we assume that K is a d-big local field of characteristic zero, for
some integer d ≥ 0. Let K• = (K ⊆ K1 ⊆ . . . ⊂ K∞ =

⋃
Kn) be a strictly

deeply ramified tower, and denote by K its equivalence class (cf. Section 2.2).
Let X = XK be the field of norms of K. Recall that to a finite separable
extension Y/X there is a unique finite extension L∞ of K∞ with XK(L∞) = Y .
Let X• = (X ⊆ X1 ⊆ . . . ⊂ X∞ =

⋃
Xn) be a tower of finite separable

extensions of X . For each m ≥ 0, let L∞,m be the separable extension of
K∞ such that XK(L∞,m) = Xm, and, for some finite extension L0,m of K, let
L•,m = (KnL0,m)n≥0 be the corresponding strictly deeply ramified tower. Let
M∞ =

⋃
m L∞,m, and note that if M∞/K∞ is Galois, we have an isomorphism

Gal(M∞/K∞) ' Gal(X∞/X). We say that X• is strictly deeply ramified if
there exists integers n0,m0 ≥ 0 and ideals ξ ⊂ OKn0

and ξ′ ⊂ OLm0
such that

(K•, n0, ξ) and (Ln0,•,m0, ξ
′) are strictly deeply ramified. This is well-defined,

since the property holds independently of the choice of L0,i, and since for any
n ≥ n0, (Ln,•,m0, ξ

′) is also strictly deeply ramified. [We refer to the tuple
(X•, n0,m0, ξ, ξ

′) as being strictly deeply ramified.] Clearly, for M sufficiently
large, the truncated and renumbered tower ((Xm+M )m≥0, n0,m

′
0, ξ, ξ

′) is strictly
deeply ramified with m′

0 = 0, so that in fact ξ′ is an ideal OKn0
.

Theorem 3.7. Suppose that M∞/K is Galois, and that (X•, n0,m0, ξ, ξ
′) is

strictly deeply ramified, with n0 = m0 = 0 and ξ = ξ′. Set G = Gal(M∞/K),
H = Gal(M∞/K∞), and H = Gal(X∞/X). Equip H with the filtration induced

by the the ramification filtration of H via the isomorphism H ' H. Then, for

all a ∈ Q≥0, G
a ∩H = HψK∞/K(a).

Proof. Let b = ψK∞/K(a), and let σ ∈ H . We must show that σ ∈ Hb if and
only if σ ∈ Ga. Since X∞/X is Galois, we may assume that Xi/X is Galois, for
all i ≥ 0; set Hn,i = Gal(Ln,i/Kn), Hn = Gal(Ln,∞/Kn), Gn = Gal(Ln,∞/K),
and Hi = Gal(Xi/X). By Proposition 3.2, and by the Herbrand property, we
have Gan ∩Hn = Hb

n. Since Ga = lim
←−

Gan, and Hn ' H , the claim follows from
the following lemma.

Lemma 3.8. For all n ≥ 0, the isomorphisms XK(−) : Hn,i → Hi preserve the

ramification filtration, i.e. XK(Han,i) = Ha
i , for all a ∈ Q≥0.

Proof. Fix a set of generators Zn,i for the OKn -algebra OLn,i , and, for a fixed a,

let Xa
n,i = Xa

Zn,i
be the corresponding affinoid subdomain of Dd+1

Kn
, as defined in

Section 2.1. Let (xn)n≥0 and (yn)n≥0 be a system of points xn, yn ∈ O
d+1 such

that, for all n, xn and yn belong to Xa
n,i, and such that xpn+1 ≡ xn (mod ξ),

and ypn+1 ≡ yn (mod ξ).
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Claim. If x0 and y0 belong to the same connected component of Xa
0,i, then xm

and ym belong to the same connected of Xa
m,i, for all m ≥ 0.

Proof. Let In denote the kernel of the natural surjection OKn [X1, . . . , Xd+1]→
OLn,i defined by Zn,i; in fact we can assume that In = (fn,1, . . . , fn,d+1), since
OLn,i is a complete intersection over OKn ([1], Lemma 7.1). Let fan : Dd+1

Kn
→

Dd+1
Kn

be the map defined by the polynomials fn,1, . . . , fn,d+1, and let ϕan :

Xa
Zn,i

→ D
d+1,(a)
Kn

be the induced map. Since e(Kn+1/Kn) = p, Frobenius

induces a surjection D
d+1,(a)
Kn+1

→ D
d+1,(a)
Kn

= D
d+1,(pa)
Kn+1

, and the result follows

since ϕan(xp) ≡ ϕan+1(x)
p (mod ξ).

The Lemma now follows by taking σ ∈ Ha
i , x0 = Z0,i and y0 = σ(x0); this also

completes the proof of the Theorem.

Corollary 3.9. Let M∞/K∞ be an infinite extension, union of finite extensions

L∞,n of K∞, and let XM/X be the corresponding extension of norm fields. If

M∞/K is strictly deeply ramified, then XM/X is strictly APF. Conversely, if

XM/X is strictly deeply ramified, then M∞/K is strictly APF.

Proof. Possibly after truncating towers, we may throughout assume that strictly
deeply ramified conditions are satisfied at n0 = 0. Let M ′

∞ be a Galois ex-
tension of K such that M ′

∞/M∞ is finite, and set G = Gal(M ′
∞/K), H =

Gal(M ′
∞/K∞), H ′ = Gal(M ′

∞/M∞). By Theorem 3.7, if (Ha)a≥0 is the filtra-
tion induced by the ramification filtration of Gal(XM/X), then, for all a ∈ Q≥0,
Ga ∩H = HψK∞/K(a), and hence [G : H ′Ga] = [G : HGa][H : HψK∞/K(a)H ′].
The first part follows from Lemma 3.1, since K∞/K and M∞/K are strictly
deeply ramified, hence APF. For the second part, it suffices to show that XM/X
is APF, which is immediate from the isomorphism Gal(XM/X) ' Gal(L∞

0 /K)
preserving the ramification filtration (cf. the proof of Theorem 3.7) and the fact
that M∞

0 /K is strictly deeply ramified, hence strictly APF.

Remark 3.10. Since kK∞
is perfect, we may assume, possibly after truncation

of the tower X•, that kM∞
= kK∞

, the perfect closure of kKn , for n sufficiently
large. Hence, as remarked in 3.6, we could expect that M∞/K is strictly deeply
ramified if and only if XM/X is strictly deeply ramified, and that the field of
norms of M∞/K is identified with the field of norms of XM/X , for a suitable
definition of the latter, an obvious candidate for this being the projective limit
of the field of norms of the towers Ln,•.
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