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1 Introduction
There is an increasing interest from the industry to shift from
monolithic application architectures to microservice-based
architectures [10]. A microservice architecture consists of
multiple interconnected, self-contained services (“microser-
vices”), each responsible for one small task; such an archi-
tecture enables significant scalability and modularity in ap-
plication design and deployment. The traffic between mi-
croservices usually exhibits (or can be designed to exhibit)
more well-defined patterns than general network traffic, sim-
ply by the fact that microservices are components in the same
system. How do we take advantage of such patterns as mi-
croservice architecture designers? One way is through re-
dundancy elimination (RE), which aims to reduce bandwidth
consumption by identifying and eliminating duplicate data in
communication.

There has been plenty of work on redundancy elimination
for general, end-to-end traffic (e.g., [14] and [30]). However,
work specifically targeting microservice traffic is relatively
scarce, despite the opportunity to make use of the known
patterns of, and control over, such traffic. In this paper, we
will:

• examine some existing works on redundancy elimina-
tion and how they relate to RE under the microservice
setting;

• propose 3 RE algorithms for microservice architectures
and explain their implementation in a specific architec-
ture (Istio’s BookInfo [6][4]);

• evaluate our Transport-layer RE implementation

• discuss our design choices and possible next steps.

The source code of our implementations is available on
GitHub:

• Application-layer RE: https://github.com/peter1357908/HTTP-
RE-for-Istio-BookInfo

• Transport-layer RE: https://github.com/JBYoshi/istio-proxy

2 Background and Approaches
For this paper, we focus on the sidecar-based microservice
architectures. In such architectures, services run in “contain-
ers” or “pods” (in Kubernetes terms [11]), each consisting of

one service coupled with a “sidecar”. The service container
primarily contains application logic independent of the net-
work behavior. The communication logic (such as routing
and telemetry) is outsourced to the sidecar, which serves as a
mediator for all traffic into and out of the service. Having de-
fined our focus, we are ready to examine some related works
on RE for how they fit in the microservice context and how
they inspired our approaches.

2.1 Web Proxy Caching
There are some widely adopted application-layer RE algo-
rithms that can serve as good RE baselines. For example,
web proxy caching is an object-level caching algorithm that
operates at the application layer. It stores caches of static
web content (“object”) close to the clients (usually at a proxy
server) so as to avoid duplicate requests for and transmis-
sions of the same data from the servers, reducing latency and
bandwidth at the same time. This idea has a few limitations,
namely the fact that it relies on the object being static and
cannot take advantage of redundancy over multiple objects –
an object different by just one byte would need to be cached
separately (e.g., an edited version of a previously sent text
message).

3.2.2 demonstrates an implementation that incorporates this
approach into the microservice architecture, caching static
HTTP responses from an upstream service using the sidecar
of a downstream service. Since sidecars essentially function
as proxies, this approach is natural and simple to implement,
and it bears some benefits specific to the microservice archi-
tecture that we’ll discuss in 3.2.2.

2.2 HTTP Compression
Another popular application-layer RE algorithm is HTTP com-
pression, which focuses on reducing the size of individual
HTTP requests and responses. HTTP compression can be
implemented as a combination of two forms, body compres-
sion and header compression. Header compression applies
specifically to the HTTP headers. In HTTP 2.0, header com-
pression is able to track redundancies across multiple re-
quests and responses. [24] However, it requires that both the
client and server support HTTP/2, and it does not address
redundancies in payloads across requests. In body compres-
sion, a compression algorithm is applied to an individual

https://github.com/peter1357908/HTTP-RE-for-Istio-BookInfo
https://github.com/peter1357908/HTTP-RE-for-Istio-BookInfo
https://github.com/JBYoshi/istio-proxy


HTTP request or response payload to optimize for redun-
dancy within the specific payload. [2] This RE approach is
orthogonal to Web Proxy Caching, but has a similar limita-
tion – it cannot take advantage of redundancy over multiple
HTTP bodies. Further, some bodies are too small to benefit
from compression.

3.2.1 demonstrates an implementation of custom HTTP
body compression that’s transparent to the communicating
microservices (typical HTTP body compression/decompression
would be done by the endpoints themselves as opposed to by
proxies).

3.3, in turn, also addresses the aforementioned limitations
by essentially aggregating the HTTP bodies and compress-
ing the aggregation, building on the intuition that service-
to-service communications tend to have similar data types
– it specifically targets redundancy across multiple bodies,
which comes with a desirable side effect: now bodies that
are too small to compress individually may introduce room
for compression as part of the aggregation.

2.3 Packet-level RE
There are also some protocol-independent RE techniques for
the general network. One interesting approach introduced by
[29] works at the network layer, aiming to achieve packet-
level redundancy elimination that takes advantage of redun-
dancy over multiple packets. Their algorithm compresses
and decompresses packets on a hop-by-hop basis. Each node
using the algorithm would cache a queue of most recent pack-
ets. For each packet seen, it would have computed a set
of fingerprints by hashing each fixed-length substring of the
packet (it uses Rabin fingerprints [27] to compute such hashes
efficiently), storing a number of those fingerprints as indices
to the cached packets. If a new packet contains byte strings
that are shared by cached packets, the algorithm will be able
to identify those through matching fingerprints and then re-
place them with short shims to achieve compression – down-
stream nodes will be able to decompress the packet with their
own cached packets and information stored in the shims.

This algorithm’s assumptions fit the sidecar-based archi-
tectures well – the sidecars have full control over the network
layer and the service-to-service communication are hop-by-
hop in nature. However, this approach doesn’t really take ad-
vantage of properties of the microservices architectures: the
microservice traffic won’t benefit from it much more than a
general network traffic would. Further, this algorithm has
only been evaluated in an ideal, unconstrained setting and
face some practical challenges [17][18]. All factors consid-
ered, we decided not to build on this approach.

3 Implementation
As mentioned in the previous section, we took inspiration
from existing RE approaches and implemented 2 application-
layer RE algorithms and 1 transport-layer RE algorithm. In
this section, we will first go over our implementation envi-
ronment (Istio and BookInfo) and then explain the details of

Figure 1: Istio Architecture [3]

our implementations.

3.1 Environment
3.1.1 Istio and Envoy

We chose to implement our algorithms in the Istio service
mesh [6] in the form of “Envoy Filters”. The Istio service
mesh (Figure 1) consists of a data plane and a control plane:
the data plane is supported by the Envoy proxies deployed
as sidecars, while the control plane manages and configures
those proxies. Specifically, each Envoy proxy can be figured
individually through the application of “filters” that act on
the traffic passing through the proxy. Oftentimes multiple
filters are chained together, in the same fashion as multiple
Linux commands chained by pipes. Istio allows operators
to apply or modify existing Envoy filters through its “En-
voy Filter” interface [5] (confusingly named). We configured
existing programmable filters to implement our application-
layer RE algorithms, while we built a custom Envoy filter to
implement our transport-layer RE algorithm.

3.1.2 BookInfo

BookInfo is a sample Istio application composed of four sep-
arate microservices [4]; it displays information about a book,
having different underlying microservices contribute differ-
ent components of that information. As shown in Figure
2, ingress traffic to the BookInfo application arrives at the
productpage microservice (akin to a front-end server),
which requests data from the details and reviews mi-
croservices. There are three versions of the reviews mi-
croservice, two of which request data from the ratings
microservice. We tested all of our implementations on the
BookInfo application.

3.2 Application-layer RE
3.2.1 HTTP Compression

First, we’ll go over our HTTP compression algorithm, imple-
mented by configuring the programmable Lua filter [9]. The



Figure 2: “Versioned app graph” of the BookInfo Appli-
cation generated by Kiali

Lua filter allows running custom Lua scripts on both HTTP
requests and responses. We implemented our algorithm as
the following Lua scripts:

• for a response (by the current microservice) to an in-
bound request (from a downstream microservice), com-
press the HTTP body

• for a response (from an upstream microservice) to an
outbound request (by the current microservice), decom-
press the HTTP body.

The main advantages of this approach compared with reg-
ular HTTP body compression is that the compression is han-
dled in the sidecars and transparent to the microservices.
Complying with the segregation philosophy behind sidecar-
based architectures, the compression algorithm can be con-
figured dynamically, separate from the application logic.

A downside specific to our implementation is that we need
to inline the compression algorithm, since the Lua filters do
not retain state across different invocations [7] and importing
an external library is not well supported [8]. Of course, such
a downside is not fundamental to the algorithm and can be
avoided through alternative, albeit more involved implemen-
tation choices (like recompiling Envoy with a custom C++
filter as in 3.3 or compiling Rust/Go code to WebAssembly
and use the Wasm filter [13]).

During evaluation, we observed that the payloads from
BookInfo microservices are too small to compress. Specifi-
cally, the response body from the v3 reviews microservice
and the detailsmicroservice only have 437 bytes and 178
bytes, respectively; our chosen compression algorithm [12]
ended up refusing to replace the original body with the “com-
pressed” body since the latter would be longer (due to the
compression overhead). We would like to contrast this result
with the high compression yield from our transport-layer RE
in 4. The contrast demonstrates the importance of taking ad-
vantage of patterns specific to microservice architectures (by
compressing across multiple bodies rather than one body).

3.2.2 HTTP Caching

Next, we present our HTTP Caching algorithm, building on
top of the existing SimpleHttpCache filter [1]. We con-
figured the SimpleHttpCache filter to cache HTTP re-
sponses to outbound requests in-memory, respecting the Cache
-Control header specified in the response (which speci-
fies, e.g., the cache’s Time-to-Live). Meanwhile, we con-
figured a Lua filter for the upstream sidecars to control the
Cache-Control header. For example, using this algo-
rithm, when productpage tries to request data from reviews
and the sidecar for productpage contains a valid cache of
that data, it will directly return that response to productpage
and prevent a duplicate request from being sent.

Similar to our HTTP Compression algorithm, our HTTP
Caching algorithm executes in the sidecars and is transparent
to the microservices, thus granting modularity. One interest-
ing use case of this algorithm is to serve as a part of another
service mesh control algorithm. For example, we can expand
the Lua script to allow adjusting a cache’s TTL based on the
performance of the service mesh (we can cache some con-
tent longer if we want to reduce bandwidth consumption, at
the cost of freshness of that content).

The evaluation of this implementation is trivial in our set-
up, because BookInfo’s responses are fully static. To clar-
ify, while there are multiple versions of the reviews mi-
croservice (routed to in a Round Robin fashion), caching a
response from one version prevents requests to all versions
of that microservice, by design.

Note that we cannot use Lua filters to write the caching
algorithm itself, due to the aforementioned statelessness of
Lua filters.

3.3 Transport-layer RE
Finally, we showcase our transport-layer RE, a compression
algorithm that involves combining HTTP messages between
each pair of services into a single stream of data that is com-
pressed as a whole. The intuition behind this approach is
that since each node runs a specific service, requests made
between a pair of nodes are likely to model similar data
types. These requests and responses will likely have repeated
keys and data structures, so the repeated requests will have
redundant data. By combining the requests and responses
along a single stream of data, we can apply conventional data
compression algorithms to detect and eliminate those redun-
dancies, regardless of the specific format of the data being
passed. A graphical diagram of this approach is shown in in
Figure 3.

To handle connection multiplexing, we configured the En-
voy proxies within Istio to reroute all internal HTTP traffic
through HTTP/2. In HTTP 1.0, every request is made over a
separate TCP connection. HTTP 1.1 added support for keep-
alive connections, which allow multiple requests to be pro-
cessed in sequence along a single connection; however, the
server must send all responses in the same order that the re-
quests were made. This means that a single slow request will



Figure 3: Architecture of our transport-layer RE algorithm.

block all subsequent requests on the same connection; even
if the server processes requests in parallel, it cannot send re-
sponse data for later requests until it finishes processing the
earlier request. HTTP 2.0 allows requests and responses to
be sent asynchronously and in different orders.

Since not all HTTP software uses HTTP/2 by default, we
set up Envoy to intercept all outbound HTTP requests in the
sidecar and combine those along a connection to the same
service. By default, Envoy passes along outbound HTTP re-
quests unmodified, so a service that makes calls to another
service over HTTP 1.0 or 1.1 would end up with multiple
connections to the destination service, and stream compres-
sion algorithms would not be able to detect redundancies
across the different connections. Our implementation detects
those HTTP requests in Envoy before being sent across the
network and passes them through an Envoy HTTP connec-
tion pool set to only use HTTP/2, reducing the number of
independent connections.

Using HTTP/2 provides some level of redundancy elim-
ination by itself, even before doing further compression on
our part. HTTP/2 uses a binary encoding for headers instead
of the text-based format used by HTTP 1.0 and 1.1, which
takes up less space in the output. Headers within a connec-
tion are compressed using the HPACK algorithm, which de-
tects repeated header names and values and replaces them
with references to previous occurrences of those values. For
example, if services authenticate to each other using persis-
tent access tokens in an HTTP header, HTTP/2 would only
transmit the full token once, and then subsequent requests
would indicate that the original value should be reused. For
services with patterns of many requests with short payloads,
this reduction can be significant in and of itself.

To handle redundancies within the payloads, we added
a further layer of compression around the entire HTTP/2
stream. Our implementation for this uses the well-known
GZIP compression format, which is flexible enough to work
with arbitrary payloads. GZIP is implemented on top of the
DEFLATE algorithm, which uses a combination of Huff-

man coding to compact individual bytes and backreferences
to detect repeated bytes. We implemented this compres-
sion as an Envoy network filter written in C++ that com-
presses and decompresses data as it passes through the side-
car. Compression is applied after the requests are combined
into an HTTP/2 connection, and decompression is applied as
the connection is received, before the individual requests are
split up and routed to the service.

Notably, our algorithm differs from the standardized GZIP
support in HTTP due to its ability to detect redundancies
across different requests. Most HTTP clients and servers
already support GZIP compression, but compression is ap-
plied independently to individual request and response pay-
loads. In communications with end hosts, which have tradi-
tionally been more common with HTTP, different payloads
correspond to different objects that don’t have many redun-
dancies in common. For example, when a web browser re-
quests a web page, some response bodies will contain HTML
markup, while others will contain supplementary JavaScript,
CSS, fonts, or images. In microservice environments, pay-
loads are more uniform, so there are more redundancies be-
tween different file types that standard HTTP compression
will not detect. Implementing compression on the entire
stream allows our algorithm to work more effectively on the
microservice use case.

4 Evaluation

We evaluated our transport-layer compression system on Is-
tio’s sample BookInfo application, which is designed to show
the interaction between different microservices within Istio.
We configured the microservice mesh to apply our compres-
sion algorithm on all communications within the application,
including both inter-service communication and communi-
cation between the Istio ingress gateway and the service im-
plementing the application front-end.



4.1 Compression
To test the effectiveness of our algorithm, we made 500 HTTP
requests in series to the HTML service endpoint. We mea-
sured the amount of data transferred through the service mesh
using a logging system in each Envoy proxy, in terms of both
compressed and uncompressed data. We did not request sup-
plementary CSS, JavaScript, or images that would be dis-
played in a browser, since those would only be served by the
frontend service and would not demonstrate the interactions
between microservices. We also ran the same test on the de-
fault Istio configuration as a control, only modified to log the
amount of data transferred.

With no compression applied, our system transferred 7059
KB of data between the nodes. Recordings of the traffic
transferred during the experiment indicated that all requests
in this test were made over HTTP 1.1 and that no requests
reused existing connections.

Our full compression scheme transferred 498 KB of data
during the test after compression, for a reduction of 92.9%.
This indicates that there was a very high level of redundancy
in the requests and responses transferred in the test.

When the effects of the GZIP stage were excluded, our test
transferred 3104 KB of uncompressed data. This provided a
56.0% reduction in data transferred over the unmodified test.
Since HTTP/2 does not modify request and response pay-
loads, this indicates that much of the data transferred in the
unmodified case was through the HTTP 1.1 header format.
Comparing this amount to the amount of data transferred af-
ter compression indicates that adding GZIP compression re-
duced the amount of data transferred by 84.0%, so the header
format alone did not account for all of the redundancy.

4.2 Performance
To test the performance of our transport-layer compression
system, we re-ran the compression tests while measuring the
end-to-end response time of the requests. To minimize the
effect of network latency, we made these requests from a
machine in the same network as the service mesh, directing
those requests through the ingress gateway to the frontend.

With compression disabled, the average end-to-end request
time was 1.18 seconds. With our full compression algorithm
enabled, the average end-to-end request time was 1.12 sec-
onds, for a time savings of 5.1%. This suggests that our com-
pression algorithm can cause small improvements in overall
application performance.

5 Discussion
5.1 GZIP
For the transport layer redundancy elimination algorithm,
we chose GZIP because it is a standardized and well-known
format for compression. However, alternative compression
methods have been proposed that improve on compression
ratio, speed, and memory usage (such as EndRE [14] and
Brotli). In this paper, we focused solely on compression ratio
since that was easiest to measure. For future work, it would

be interesting to compare the effects of different algorithms
specifically on microservice traffic.

5.2 Implications of Aggregation
The aggregation process of our transport layer RE algorithm
can also have negative effects on performance in certain cir-
cumstances. Unless service clients natively use HTTP/2, the
sidecar on the outgoing machine needs to re-parse each re-
quest and send it as HTTP/2, which requires additional pro-
cessing power on the sidecar. In addition, because HTTP/2
sends multiple requests over a single TCP connection, if one
packet is dropped, then the stream needs to wait for that
packet to be retransmitted before any later requests can be
handled. However, in data center environments, round trip
times are lower than over the general Internet due to the
physical proximity of servers [15], so this may not be as sig-
nificant of an issue. The recently-standardized HTTP version
3.0 [19] uses UDP for the transport layer to allow different
streams to run independently and ensure that dropped pack-
ets only affect the specific connections that those packets
contain data for, not for other connections in the stream. Our
system cannot directly adapt to these changes since general-
purpose compression algorithms like GZIP can only com-
press on one stream at a time. Algorithms like EndRE [14]
may be more suitable for these protocols.

5.3 Limitation of Analysis
A limitation of our analysis is that Istio’s BookInfo applica-
tion is not designed to have a realistic distribution of data.
We had hoped to test on a more realistic benchmarking sys-
tem like DeathStarBench [21], but we did not have time to
integrate our system with it.

5.4 Pitfall Avoided?
In our project proposal, we mentioned a potential pitfall of
eliminating deliberate redundancy, such as redundancy intro-
duced to increase resilience/reliability of the service mesh.
This turned out to be a non-issue, since our focus lied in
eliminating redundancies in payloads, whereas deliberate re-
dundancy tends to be in terms of additional Kubernetes nodes,
duplicate servers on standby, etc. – they are on a layer differ-
ent from our concerns. Careful readers may recall that our
HTTP cache algorithm prevented access to different versions
of the same microservice given a valid cache. This behavior
is okay, by definition of “valid cache”; we can easily con-
figure the implementation to distinguish between responses
from different versions of the microservice if this behavior is
undesirable. In words, our algorithms do not fundamentally
interfere with any deliberate redundancy; such redundancy is
either on a separate layer or can be accounted for by properly
configuring our algorithms.

5.5 Security Connotations
General-purpose compression algorithms are known to intro-
duce security vulnerabilities when used in conjunction with
encryption. If an attacker is able to both observe the amount



of data transferred through the network and modify a portion
of a compressed and encrypted piece of that data, then it is
possible to extract secrets by using the length of the data as
a hint at the amount of redundancy. [23] This was used in
the well-publicized CRIME and BREACH attacks [28, 22,
26]. Workarounds for this generally include either separat-
ing secret data from the rest of the surrounding environment
and compressing it separately [16], increasing the granular-
ity of compressed data (as in HTTP/2’s HPACK algorithm
[24]; also used in [20]), or injecting randomness into the
algorithm to make it harder for an attacker to measure re-
dundancy [25]. The latter approach could be provided auto-
matically for microservice traffic, since large-scale services
handle traffic from large numbers of users at once; if it is
hard for an attacker to distinguish their own traffic from other
users’ traffic, then traffic from other users could serve as the
randomness. However, we have not verified this assumption,
and the amount of effective randomness can vary based on
the application and the usage.

6 Conclusion
In this paper we surveyed different existing network Redun-
dancy Elimination efforts and explained how they inspired
our approaches and implementations. We notice that some
RE techniques can benefit (or fail to benefit) the microser-
vice framework similarly to how they interact with general
network traffic (e.g., the Application-layer RE algorithms),
while other RE techniques take advantage of patterns unique
to microservice architectures (our Transport-layer RE algo-
rithm).

We then discussed in detail our implementations of mi-
croservice RE algorithms. Our results suggest that redun-
dancy elimination at the transport layer can reduce the amount
of traffic flowing in a service mesh by up to 92.9% by tak-
ing advantage of redundancies unique to the traffic patterns
in microservices. While there is a need for more analysis
of these approaches in terms of their performance in more
realistic systems and in terms of their security implications,
we believe this is a promising field of research that deserves
more attention than it currently receives.
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