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Analysis of Variance

In This Chapter
• Comparing three or 

more population means 
using analysis of variance 
(ANOVA)

• Using the F-distribution to 
perform a hypothesis test 
for ANOVA

• Using Excel to perform a 
one-way ANOVA test

• Comparing pairs of sample 
means using the Scheffé 
test

In Chapter 16, you learned about a hypothesis test where you 
could compare the means of two different populations to see 
whether they were different. But what if you want to compare 
the means of three or more populations? Well, you’ve come to 
the right place because that’s what this chapter is all about.

To perform this new hypothesis test, we need to introduce  
one more probability distribution, known as the 
F-distribution. The test that we will perform has a very 
impressive name associated with it—the analysis of variance.  
This test is so special that it even has its own acronym: 
ANOVA. Sounds like something from outer space … keep 
reading to find out.
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One-Way Analysis of Variance
If you want to compare the means for three or more populations, ANOVA is the test for you. 
Let’s say I’m interested in determining whether there is a difference in consumer satisfaction 
ratings between three fast-food chains. I would collect a sample of satisfaction ratings from each 
chain and test to see whether there is a significant difference between the sample means. Suppose 
my data are as follows:

Population Fast-Food Chain Sample Mean Rating

1 McDoogles 7.8

2 Burger Queen 8.2

3 Windy’s 8.3

My hypothesis statement would be:

H0 : μ1 = μ2 = µ3

H1 : not all μ’s are equal

Essentially, I’m testing to see whether the variations in customer ratings from the previous table 
are due to the fast-food chains or whether the variations are purely random. In other words, do 
customers perceive any differences in satisfaction between the three chains? If I reject the null 
hypothesis, however, my only conclusion is that a difference does exist. One-way analysis of 
variance tells me that a difference exists but does not allow me to compare population means to 
one another to determine where the difference is. That task requires further analysis, such as the 
Scheffé test. 

BOB’S BASICS

To use one-way ANOVA, the following conditions must be satisfied:

• The populations of interest must be normally distributed.

• The samples must be independent of each other.

• Each population must have the same variance.

• The observations must be measured on an interval or ratio level scale.

A factor in ANOVA describes the cause of the variation in the data, like the independent variable. 
In the previous example, the factor would be the fast-food chain. This would be considered a 
one-way ANOVA because we are considering only one factor. More complex types of ANOVA can 
examine multiple factors, but that topic goes beyond the scope of this book.
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A level in ANOVA describes the number of categories within the factor of interest. For our 
example, we have three levels based on the three different fast-food chains we’re examining.

DEFINITION

A factor in ANOVA describes the cause of the variation in the data. When 
only one factor is being considered, the procedure is known as one-way 
ANOVA. A level in ANOVA describes the number of categories within the 
factor of interest.

To demonstrate one-way ANOVA, let’s use the following example. Bob admits, much to Debbie’s 
chagrin, that he is clueless when it comes to lawn care. His motto is, “If it’s green, it’s good.” 
Debbie, on the other hand, knows exactly what type of fertilizer to get and when to apply it 
during the year. Bob hates spreading this stuff on the lawn because it makes the grass grow faster, 
which means he has to cut it more often.

To make matters worse, Bob has a neighbor, Bill, whose yard puts Bob’s yard to shame.  
Mr. Perfect Lawn is out every weekend, meticulously manicuring his domain until it looks like 
the home field for the National Lawn Bowling Association. This gives Debbie a serious case of 
“lawn envy.” 

Anyway, there are several different types of analysis of variance, and covering them all would 
take a book unto itself. So throughout the remainder of this chapter, we’ll use the lawn-care topic 
to describe two basic ANOVA procedures.

Completely Randomized ANOVA
The simplest type of ANOVA is known as completely randomized one-way ANOVA, which involves an 
independent random selection of observations for each level of one factor. Now that’s a mouthful! 
To help explain this, let’s say we’re interested in comparing the effectiveness of three lawn 
fertilizers. Suppose we select 18 random patches of Bob’s lawn and apply either Fertilizer 1, 2, or 
3 to each of them. After a week, we mow the patches and weigh the grass clippings.

DEFINITION

The simplest type of ANOVA is known as completely randomized one-way 
ANOVA, which involves an independent random selection of observations 
for each level of one factor.
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The factor in this example is fertilizer. There are three levels, representing the three types of 
fertilizer we are testing. The table that follows indicates the weight of the clippings in pounds 
from each patch. The mean and variance of each level are also shown.

Data for Lawn Clippings

Fertilizer 1 Fertilizer 2 Fertilizer 3 Total

10.2 11.6 8.1

8.5 12.0 9.0

8.4 9.2 10.7

10.5 10.3 9.1

9.0 9.9 10.5

8.1 12.5 9.5

Total 54.7 65.5 56.9 177.1

Sample Size 6 6 6 18

Mean 9.12 10.92 9.48 = 177.1 /18 = 9.84

Variance 1.01 1.70 0.96

We’ll refer to the data for each type of fertilizer as a sample. From the previous table, we have 
three samples, each consisting of six observations. The hypotheses statement can be stated as:

H0 : μ1 = μ2 = μ3

H1 : not all μ’s are equal

where μ1, μ2, and μ3 are the true population means for the pounds of grass clippings for each type 
of fertilizer.

Partitioning the Sum of Squares
The hypothesis testing for ANOVA compares two types of variations from the samples: variations 
between samples and variations within each sample. The total variations in the data from our 
samples can be divided, or as statisticians like to say, “partitioned,” into these two parts.
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The first part is the variation within each sample, which is officially known as the sum of squares 
within (SSW ). This measures the deviation of each observation from the sample mean and can be 
found using the following equation:

∑= −
=

SSW n s( 1)i i
i

k
2

1

where k = the number of samples (or levels). For the fertilizer example, k = 3 and:

=s 1.011
2  =s 1.702

2  =s 0.963
2

n1 = 6 n2 = 6 n3 = 6

The sum of squares within can now be calculated as:

SSW = (6 – 1)1.01 + (6 – 1)1.70 + (6 – 1)0.96 = 18.35

Some textbooks will also refer to this value as the error sum of squares (SSE).

The second part is the variation among the samples, which is known as the sum of squares 
between (SSB). This measures the deviation of each sample mean from the grand mean and can 
be found by:

∑= −
=

SSB n x x( )i
i

k

i
1

2

where x  is the grand mean or the average value of all the observations. For the fertilizer 
example

=x 9.121  =x 10.922  =x 9.483

We find x , the grand mean, using:

=
∑
=x
x

N

i
i

N

1

where N = the total number of observations from all samples.

RANDOM THOUGHTS

Some textbooks refer to this SSB value as the treatment sum of squares 
(SSTR).
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For the fertilizer example:

= =x 9.84177.1
18

We can now calculate the sum of squares between:

∑= −
=

SSB n x x( )i
i

k

i
1

2

SSB = 6(9.12 – 9.84)2 + 6(10.92 – 9.84)2 + 6(9.48 – 9.84)2 = 10.86

Finally, the total variation of all the observations is known as the total sum of squares (SST) and 
can be found by:

∑∑= −
==

SST x x( )i j
j

b

i

k
2

11

RANDOM THOUGHTS

ANOVA does not require that all the sample sizes are equal, as they are in 
the fertilizer example. See Problem 1 in the Practice Problems section as an 
example of unequal sample sizes.

This equation may look nasty, but it is just the difference between each observation and the 
grand mean squared and then totaled over all of the observations. This is clarified more in the 
following table.

xi j  x −x x( )i j −x x( )i j
2

 

10.2 9.84 0.36 0.1296

8.5 9.84 -1.34 1.7956

8.4 9.84 -1.44 2.0736

10.5 9.84 0.66 0.4356

9.0 9.84 -0.84 0.7056

8.1 9.84 -1.74 3.0276

11.6 9.84 1.76 3.0976

12.0 9.84 2.16 4.6656

9.2 9.84 -0.64 0.4096

10.3 9.84 0.46 0.2116
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xi j  x −x x( )i j −x x( )i j
2

 

9.9 9.84 0.06 0.0036

12.5 9.84 2.66 7.0756

8.1 9.84 -1.74 3.0276

9.0 9.84 -0.84 0.7056

10.7 9.84 0.86 0.7396

9.1 9.84 -0.74 0.5476

10.5 9.84 0.66 0.4356

9.5 9.84 -0.34 0.1156

Total = 29.2028

∑∑= −
==

SST x x( )i j
j

b

i

k
2

11

 = 29.21

This total sum of squares calculation can be confirmed recognizing that:

SST = SSW + SSB

SST = 18.35 + 10.86 = 29.21

TEST YOUR KNOWLEDGE

Do you need to calculate all three sum of squares: SSB, SSW, and SST? 
If you said “no,” then you are correct. Since SST = SSW + SSB, you can just 
calculate SSB and SSW and add them to find SST instead of having to go 
the long way and calculate SST using its own formula, as we did above. 

Note that we can determine the variance of the original 18 observations, s2, by:
= = =− −s 1.72SST
N

2
1

29.21
18 1

This result can be confirmed by using the variance equation that we discussed in Chapter 5 or by 
using Excel.
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Determining the Calculated F-Statistic
To test the hypothesis for ANOVA, we need to compare the calculated test statistic to a critical 
test statistic using the F-distribution. The calculated F-test statistic can be found using the 
equation:

=F MSB
MSW

where MSB is the mean square between (MSB), found by:

= −MSB SSB
k 1

and MSW is the mean square within (MSW), found by:

= −MSW SSW
N k

BOB’S BASICS

The mean square between (MSB) is a measure of variation between the 
sample means. The mean square within (MSW) is a measure of variation 
within each sample. A large MSB variation, relative to the MSW variation, 
indicates that the sample means are not very close to one another. This 
condition will result in a large value of F, the calculated F-test statistic. The 
larger the value of F, the more likely it will exceed the critical F-statistic 
(to be determined shortly), leading us to conclude there is a difference 
between population means.

Now, let’s put these guys to work with our fertilizer example.

= = =− −MSB 5.43SSB
k 1

10.86
3 1

= = =− −MSW 1.22SSW
N k

18.35
18 3

= = =F 4.45MSB
MSW

5.43
1.22

If the variation between the samples (MSB) is much greater than the variation within the samples 
(MSW ), we will tend to reject the null hypothesis and conclude that there is a difference 
between population means. To complete our test for this hypothesis, we need to introduce the 
F-distribution.
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Determining the Critical F-Statistic
We use the F-distribution to determine the critical F-statistic, which is compared to the 
calculated F-test statistic for the ANOVA hypothesis test. The critical F-statistic, Fα, k – 1, N - k, 
depends on two different degrees of freedom—degrees of freedom for the numerator (v1) and 
degrees of freedom for the denominator, (v2)—which are determined by:

v1 = k – 1 and v2 = N – k

For our fertilizer example:

v1 = 3 – 1 = 2 and v2 = 18 – 3 = 15

The critical F-statistic is read from the F-distribution table found in Table 6 in Appendix B of 
this book. Here is an excerpt of this table.

Table of Critical F-Statistics 
α = 0.05

v1 1 2 3 4 5 6 7 8 9 10

v2

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.882 240.543 241.882

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671

continues
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v1 1 2 3 4 5 6 7 8 9 10

v2

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602

15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494

Note that this table is based only on α = 0.05. Other values of α will require a different table. For 
v1 = 2 and v2 = 15, the critical F-statistic, F.05,2,15 = 3.682, is indicated in the underlined part of the 
table. Figure 1.1 shows the results of our hypothesis test.

Figure 1.1 
ANOVA test for the fertilizer example.

According to Figure 1.1, the calculated F-statistic of 4.45 is within the “Reject H0” region, which 
leads us to the conclusion that the population means are not equal. We will always reject H0 as 
long as Fα, k – 1, N – k ≤ F.

BOB’S BASICS

The F-distribution has the following characteristics:

• It is not symmetrical, but rather has a positive skew.

• The shape of the F-distribution will change with the degrees of freedom 
specified by the values of v1 and v2.

• As v1 and v2 increase in size, the shape of the F-distribution becomes 
more symmetrical.

• The total area under the curve is equal to 1.

• The F-distribution mean is approximately equal to 1.

Fc

0.95
1– �
Do Not Reject H0

� = 0.05
Reject H0

0 4.453.682

v1 = 2 v2 = 15 F

Table of Critical F-Statistics (continued)
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Our final conclusion is that one or more of those darn fertilizers is making the grass grow faster 
than the others. 

WRONG NUMBER

Even though we have rejected H0 and concluded that the population means 
are not all equal, ANOVA does not allow us to make comparisons between 
means. In other words, we do not have enough evidence to conclude that 
Fertilizer 2 produces more grass clippings than Fertilizer 1. This requires 
another test known as pairwise comparisons, which we’ll address in the 
next section.

Pairwise Comparisons
Once we have rejected H0 using ANOVA, we can determine which of the sample means are 
different using the Scheffé test. This test compares each pair of sample means from the ANOVA 
procedure. For the fertilizer example, we would compare x1  versus x2 , x1  versus x3 , and  
x2  versus x3  to see whether any differences exist.

BOB’S BASICS

After rejecting H0 using ANOVA, we can determine which of the sample 
means are different using the Scheffé test.

First, the following test statistic for the Scheffé test, FS, is calculated for each of the pairs of 
sample means:

= ( )−

−∑
+













=

Fs
x x

SSW

n n n

2

( 1)

1 1

a b

i
i

k
a b

1

where:

xa , xb  = the sample means being compared

SSW = the sum of squares within from the ANOVA procedure

na, nb = the samples sizes

k = the number of samples (or levels)
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Comparing x1  and x2 , we have:

= =−

+ +
+









Fs
(9.12 10.92)2

18.35
5 5 5

1
6
1
6

3.24
1.22[0.33] = 8.048

Comparing x1  and x3 , we have:

= =−

+ +
+









Fs
(9.12 9.48)2

18.35
5 5 5

1
6
1
6

0.13
1.22[0.33] =

 
0.323

Comparing x2  and x3 , we have:

= =−

+ +
+









Fs
(10.92 9.48)2

18.35
5 5 5

1
6
1
6

2.07
1.22[0.33]  = 5.142

Next the critical value for the Scheffé test, FSC, is determined by multiplying the critical 
F-statistic from the ANOVA test by k – 1 as follows:

FSC = (k – 1)Fα, k – 1, N – k

For the fertilizer example:

F.05, 2, 15 = 3.682

FSC = (3 – 1)(3.682) = 7.364

If FS ≤ FSC, we conclude there is no difference between the sample means; otherwise there is a 
difference. The following table summarizes these results.

Summary of the Scheffé Test

Sample Pair FS FSC Conclusion

x1  and x2  
8.048 7.364 Difference

x1  and x3  
0.323 7.364 No Difference

x2  and x3  
5.142 7.364 No Difference

According to our results, the only statistically significant difference is between Fertilizer 1 
and Fertilizer 2. It appears that Fertilizer 2 is more effective in making grass grow faster when 
compared to Fertilizer 1. 
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TEST YOUR KNOWLEDGE

There is another commonly used test for pairwise comparisons: the Tukey 
test. A main difference between the Scheffé and Tukey tests is that for 
the Tukey test, the sample sizes must be equal. The Scheffé test is more 
general and can be used with unequal sample sizes.

Completely Randomized Block ANOVA
Now let’s modify the original fertilizer example: rather than selecting 18 random samples from 
Bob’s lawn, we are going to collect 3 random samples from 6 different lawns. Using the original 
data, the samples look as follows:

Lawn Fertilizer 1 Fertilizer 2 Fertilizer 3 Block Mean

1 10.2 11.6 8.1 9.97

2 8.5 12.0 9.0 9.83

3 8.4 9.2 10.7 9.43

4 10.5 10.3 9.1 9.97

5 9.0 9.9 10.5 9.80

6 8.1 12.5 9.5 10.03

Fertilizer Mean 9.12 10.92 9.48

One concern in this scenario is that the variations in the lawns will account for some of the varia-
tion in the three fertilizers, which may interfere with our hypothesis test. We can control for this 
possibility by using a completely randomized block ANOVA, which is used in the previous table. The 
type of fertilizer is still the factor, and the lawns are called blocks.

DEFINITION

Completely randomized block ANOVA controls for variations from sources 
other than the factors of interest. This is accomplished by grouping the 
samples using a blocking variable.
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There are two hypotheses for the completely randomized block ANOVA. The first (primary) 
hypothesis tests the equality of the population means, just like we did earlier with one-way 
ANOVA:

H0 : μ1 = μ2 = μ3

H1 : not all μ’s are equal

The secondary hypothesis tests the effectiveness of the blocking variable as follows:

H0’ : the block means are all equal

H1’ : the block means are not all equal

The blocking variable would be an effective contributor to our ANOVA model if we could reject 
H0’ and claim that the block means are not equal to each other.

Partitioning the Sum of Squares
For the completely randomized block ANOVA, the sum of squares total is partitioned into three 
parts according to the following equation:

SST = SSW + SSB + SSBL

where:

SSW = sum of squares within

SSB = sum of squares between

SSBL = sum of squares for the blocking variable (lawns)

Fortunately for us, the calculations for SST and SSW are identical to the one-way ANOVA 
procedure that we’ve already discussed, so those values remain unchanged (SST = 29.21 and  
SSB = 10.86). We can find the sum of squares block (SSBL) by using the equation:

∑= −
=

SSBL k x x( )j
j

b
2

1

where:

x j  = the average observation of each blocking level

b = the number of blocking levels (b = 6 for our example)
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Using the values from the previous table, we have:

SSBL = 3(9.97 – 9.83)2 + 3(9.83 – 9.83)2 + 3(9.43 – 9.83)2 + 3(9.97 – 9.83)2 +3 (9.80 – 9.83)2 
+ 3(10.03 – 9.83)2

SSBL = 0.72

That leaves us with the sum of squares within (SSW ), which we can find using:

SSW = SST – SSB – SSBL

SSW = 29.21 – 10.86 – 0.72 = 17.63

Almost done!

Determining the Calculated F-Statistic
Since we have two hypothesis tests for the completely randomized block ANOVA, we have two 
calculated F-test statistics. The F-test statistic to test the equality of the population means (the 
original hypothesis) is found using:

=F MSB
MSW

where MSB is the mean square between, found by:

= −MSB SSB
k 1

and MSW is the mean square within, found by:

= − −MSW SSW
k b( 1)( 1)

Inserting our fertilizer values into these equations looks like this:

= =− −MSB SSB
k 1

10.86
3 1  = 5.43

= =− − − −MSW SSW
k b( 1)( 1)

17.63
(3 1)(6 1)  = 1.76

= =F MSB
MSW

5.43
1.76

 = 3.09

The second F-test statistic will test the significance of the blocking variable (the second 
hypothesis) and will be denoted F’. We will determine this statistic using:

=F’ MSBL
MSW

where MSBL is the (can you guess?) mean square blocking, found by:

= −MSBL SSBL
b 1
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Plugging our numbers into these guys results in:

= =− −MSBL SSBL
b 1

0.72
6 1  = 0.14

= =F’ MSBL
MSW

0.14
1.76  = 0.08

We now need to sit back, catch our breath, and figure out what all these numbers mean.

To Block or Not to Block, That Is the Question
First, we will examine the primary hypothesis, H0, that all population means are equal using  
α = 0.05. The degrees of freedom for this critical F-statistic would be:

v1 = k – 1 = 3 – 1 = 2

v2 = (k – 1)(b – 1) = (3 – 1)(6 – 1) = 10

The critical F-statistic from Appendix B is F0.05, 2, 10 = 4.103. Since the calculated F-test statistic 
equals 3.09 and is less than this critical F-statistic, we fail to reject H0 and cannot conclude that 
the fertilizer means are different.

We next examine the secondary hypothesis, H0’, concerning the effectiveness of the blocking 
variable, also using α = 0.05. The degrees of freedom for this critical F-statistic would be:

v1’ = b – 1 = 6 – 1 = 5

v2’ = (k – 1)(b – 1) = (3 – 1)(6 – 1) = 10

The critical F-statistic from Appendix B is F0.05, 5, 10 = 3.326. Since the calculated F-test statistic, 
F’, equals 0.08 and is less than this critical F-statistic, we fail to reject H0’ and cannot conclude 
that the block means are different.

What does all this mean? Since we failed to reject H0’, the hypothesis that states the blocking 
means are equal, the blocking variable (lawns) proved not to be effective and should not be 
included in the model. Including an ineffective blocking variable in the ANOVA increases  
the chance of a Type II error in the primary hypothesis, H0. The conclusion of the primary 
hypothesis in this example would be more precise without the blocking variable. In fact, this is 
what essentially happened when we included the blocking variable with the randomized block 
design. With the blocking variable present in the model, we failed to discover a difference in the 
population means. Now go back to the beginning of the chapter. When we tested the population 
means using one-way ANOVA (without a blocking variable), we concluded that the population 
means were indeed different.
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In summary (It’s about time!), if you feel there is a variable present in your model that could 
contribute undesirable variation, such as taking samples from different lawns, use the randomized 
block ANOVA. First test H0’, the blocking hypothesis.

• If you reject H0’, the blocking procedure was effective. Proceed to test H0, the primary 
hypothesis concerning the population means, and draw your conclusions.

• If you fail to reject H0’, the blocking procedure was not effective. Redo the analysis using 
one-way ANOVA (without blocking) and draw your conclusions.

• If all else fails, take two aspirin and call me in the morning.

Using Excel to Perform ANOVA
I’m sure you’ve come to the conclusion that calculating ANOVA manually is a lot of work, and 
I think you’ll be amazed by how easy this procedure is when using Excel. Excel can do both 
types of ANOVA we discussed in this chapter. We will start with the example for the completely 
randomized ANOVA. 

 1. Start by placing the fertilizer data in Columns A, B, and C in a blank sheet.

 2. From the toolbar menu at the top of the Excel window, click on the Data tab, and select 
Data Analysis. (Refer to the section “Installing the Data Analysis Add-In” from Chapter 
2 if you don’t see the Data Analysis command.)

 3. From the Data Analysis dialog box, select Anova: Single Factor as shown in Figure 1.2, 
and click OK.

Figure 1.2 
Setting up Anova: Single Factor in Excel.
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 4. Set up the Anova: Single Factor dialog box according to Figure 1.3.

Figure 1.3 
The Anova: Single Factor dialog box.

 5. Click OK. Figure 1.1 shows the final ANOVA results.

Figure 1.4 
Final results of Anova: Single Factor in Excel.
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Under the ANOVA table, SS stands for the sum of squares, MS stands for the mean square, 
F is the calculated F-test statistic, and F crit is the critical value from the F-distribution. For 
example, 10.85778 is the SSB and 18.345 is the SSW. These results are consistent with what we 
found doing it the hard way in the previous sections. Notice that the p-value = 0.0305 for this 
test, meaning we can reject H0, because this p-value < α. Recall that we set α = 0.05 when we 
stated the hypothesis test.

Now, let’s do the example for the completely randomized block ANOVA. 

 1. Start by placing the data in Columns A, B, C, and D in a blank sheet.

 2. From the toolbar menu at the top of the Excel window, click on the Data tab, and select 
Data Analysis. 

 3. From the Data Analysis dialog box, select Anova: Two-Factor Without Replication as 
shown in Figure 1.5 and click OK.

Figure 1.5 
Setting up Anova: Two-Factor Without Replication in Excel.
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 4. Set up the Anova: Two-Factor Without Replication dialog box according to Figure 1.6.

Figure 1.6 
The Anova: Two-Factor Without Replication dialog box.

 5. Click OK. Figure 1.7 shows the final ANOVA results.

Figure 1.7 
Final results of Anova: Two-Factor Without Replication in Excel.

These results are also consistent with what we found using the formulas in the previous sections. 
You can see how easily Excel can do the ANOVA analysis for us. What would we have done 
without you, Excel?
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Practice Problems
 1. A consumer group is testing the gas mileage of three different models of cars. Several 

cars of each model were driven 500 miles and the mileage was recorded as follows.

Car 1 Car 2 Car 3

22.5 18.7 17.2

20.8 19.8 18.0

22.0 20.4 21.1

23.6 18.0 19.8

21.3 21.4 18.6

22.5 19.7

Note that the size of each sample does not have to be equal for ANOVA.

  Test for a difference between the sample means using α = 0.05.

 2. Perform a pairwise comparison test on the sample means from Problem 1.

 3. A vice president would like to determine whether there is a difference between the aver-
age number of customers per day among four different stores using the following data.

Store 1 Store 2 Store 3 Store 4

36 35 26 26

48 20 20 52

32 31 38 37

28 22 32 36

31 19 37 18

55 42 15 30

29 21

Note that the size of each sample does not have to be equal for ANOVA.

  Test for a difference between sample means using α = 0.05.
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 4. A certain unnamed statistics author and his two sons played golf at four different courses 
with the following scores:

Dad Brian John

Course 1 93 85 80

Course 2 98 87 88

Course 3 89 82 84

Course 4 90 80 82

  Using completely randomized block ANOVA, test for the difference of golf score 
means using α = 0.05 and using the courses as the blocking variable.

The Least You Need to Know
• Analysis of variance, also known as ANOVA, compares the means of three or 

more populations.

• A factor in ANOVA describes the cause of the variation in the data. When only 
one factor is being considered, the procedure is known as a one-way ANOVA.

• A level in ANOVA describes the number of categories within the factor of interest.

• The simplest type of ANOVA is known as completely randomized one-way 
ANOVA, which involves an independent random selection of observations for 
each level of one factor.

• After rejecting H0 using ANOVA, we can determine which of the sample means 
are different using the Scheffé test.

• Completely randomized block ANOVA controls for variations from sources other 
than the factors of interest. This is accomplished by grouping the samples using a 
blocking variable.


