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Scope and Position

This article develops a formal, practical account of System 2 reasoning for large language models
(LLMs) using four mechanisms that have concrete empirical support in the literature: (i) chain-
of-thought prompting (CoT), (ii) self-consistency aggregation (SC), (iii) tree-of-thoughts search
(ToT), and (iv) meta chain-of-thought (Meta-CoT) with process supervision. Each mechanism
is expressed as an optimization over intermediate structures (thought sequences, votes, trees,
latent traces) with provable properties or principled surrogates, and each is connected to reported
measurements in the source papers.

1 Problem Setting

Let x = (x1, . . . , xn) denote an input sequence and y a target. An autoregressive LLM with
parameters θ induces pθ(tk | t<k, x) over tokens tk. A task is an unknown conditional p⋆(y | x);
success is judged by a verifier v(y, ŷ | x) ∈ {0, 1}.

Definition 1.1 (Reasoning Program). A reasoning program Π is any stochastic mapping that
produces an answer by allocating an inference-time compute budget C over proposal, expansion,
evaluation, and verification phases:

Π(x;C) ⇝ ŷ ∈ Y, C =
∑
j

tok(phasej), (1)

where tok(·) counts generated tokens. A procedure is System 2 if C can be adaptively increased
to branch, backtrack, and verify prior to commitment.

We analyze four instances of Π that are widely used in practice and studied in the provided
papers.

2 Chain-of-Thought Prompting

Factorization. Chain-of-thought (CoT) augments inference with an explicit sequence of
intermediate thoughts z1:n before emitting the answer:

pθ(y | x) =
∑
z1:n

pθ(y | x, z1:n) pθ(z1:n | x). (2)

Few-shot demonstrations of z1:n steer generation toward multi-step decompositions, producing
large improvements on arithmetic and symbolic tasks when models are sufficiently large.

Emergence with scale. Empirical evidence shows that providing a handful of CoT exemplars
to a 540B-parameter model achieves state-of-the-art accuracy on GSM8K, surpassing specialized
finetuning baselines.
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Limits. CoT narratives can be post-hoc or incorrect even when answers are correct; annotation
cost and faithfulness are noted limitations.

3 Self-Consistency Aggregation

Voting over sampled chains. Givenm independently sampled reasoning paths {(z(i)1:ni
, a(i))}mi=1,

self-consistency outputs the majority label

âSC = argmax
a

m∑
i=1

1{a(i) = a}. (3)

Length- or confidence-weighted variants replace 1 by wi 1{·} where

wi = exp

(
1

Ki

Ki∑
k=1

log pθ(t
(i)
k | t

(i)
<k, x)

)
. (4)

Risk reduction under independence. If a single path is correct with probability p > 1/2
and samples are i.i.d., the probability that the majority vote is correct is

P[correct] =
m∑

k=⌈(m+1)/2⌉

(
m

k

)
pk(1− p)m−k ≥ 1− exp

(
−2m

(
p− 1

2

)2)
, (5)

by a Chernoff bound, revealing exponential decay of error with m.

Empirical profile. Across arithmetic and commonsense benchmarks, self-consistency yields
striking gains (e.g., GSM8K +17.9 points with PaLM-540B; robust to sampling strategy and
model scale) and outperforms beam search and prompt-ensembles at fixed sample counts. It
also improves zero-shot CoT and equation-style intermediate traces; vote consistency correlates
with accuracy, providing a usable uncertainty proxy.

Compute accounting. Let ctok be the per-token cost and ℓcot the average length of one CoT
decode. Then

E[costSC] = ctok(mE[ℓcot] + ℓvote) , gain(m) ≈ 1− exp
(
−2m

(
p− 1

2

)2)
. (6)

Empirical scaling curves for accuracy vs. #paths support the monotone improvement predicted
by (5).

4 Tree-of-Thoughts Search

State, expansion, heuristic. ToT upgrades chain sampling to stateful search over thoughts.

Let st = (x, z1:t) be a node; successors are candidate next thoughts z
(j)
t+1 ∼ pθ(· | x, z1:t). A

heuristic h(st) ∈ R estimates promise, and a policy (BFS/DFS/beam) expands the frontier F
until a verified solution appears:

F ← TopB
(
F ∪ {(x, z1:t, z(j)t+1)}

k
j=1 ; h

)
, stop if v(x, z1:t, y) = 1. (7)

Empirical evidence. On tasks requiring lookahead (e.g., Game of 24), ToT with GPT-
4 attains ∼ 74% vs. ∼ 4% for plain CoT; it also lifts creative writing and crosswords with
appropriate thought granularity and heuristics.
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Algorithm 1 Tree-of-Thoughts(x,B, k, h)

1: F ← {(x,∅)}
2: while budget not exhausted do
3: select s = (x, z1:t) ∈ F with highest h(s)

4: sample k successors {z(j)t+1}kj=1 ∼ pθ(· | x, z1:t)
5: for j = 1, . . . , k do

6: s′ ← (x, z1:t, z
(j)
t+1); compute h(s′)

7: if s′ yields verified y then return y
8: end if
9: F ← F ∪ {s′}

10: end for
11: F ← TopB(F ;h)
12: end while
13: return best verified candidate (if any)

Complexity profile. Let Bt be the beam width at depth t and ℓstep the expected token cost
per expansion. The token cost is

E[costToT] ≈ ctok

d∑
t=1

E[Bt]E[ℓstep], with E[Bt] controlled by pruning via h. (8)

Reported ablations show accuracy-cost trade-offs by varying k, B, and the evaluation prompt
used to compute h.

5 Meta Chain-of-Thought

Latent-process model. Meta-CoT posits an unseen deliberation trace Z = (zlatent1:K ) that
causally precedes both the visible chain S = (s1:n) and the answer a:

p(a, S | q) =

∫
p(a, S | Z, q) p(Z | q) dZ. (9)

This legitimizes training on linearized search traces and process rewards to internalize System 2
behavior within a single model.

Learning objectives. Two practical objectives arise. Latent-variable ELBO :

max
θ,q

EZ∼q(·|q)
[
log pθ(S | Z, q)

]
− βKL

(
q(Z | q) ∥ pθ(Z | q)

)
. (10)

Process reward maximization with a process reward model rproc(q, S1:t) ∈ [0, 1]:

max
θ

E
[ n∑
t=1

γt−1 rproc(q, S1:t)
]
. (11)

Both support amortizing search into a single autoregressive policy.

Meta-STaR objective. When verified search traces Ẑ, Ŝ are available, a simple objective is

LMeta-STaR(πϕ) = −E
(q,Ẑ,Ŝ)

[
log πϕ(Ŝ, Ẑ | q)

]
, (12)

i.e., teach the model to generate both the hidden search and the visible plan.
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Empirical analyses. Evidence is presented that frontier models exhibit in-context search-like
scaling with inference budget and that search traces can be internalized in small controlled
domains (A* in mazes; Countdown arithmetic), with performance improving as training and
inference compute increase.

6 Generator–Verifier Factorization

Definition 6.1 (Generator and Process Verifier). A generator Gθ induces pθ(S | q); a process
verifier Vϕ scores partial traces S1:t:

Vϕ(q, S1:t) ∈ [0, 1], and max
θ

ES∼pθ(·|q)
[
Vϕ(q, S)

]
. (13)

This decomposition enables guided search (ToT) and process reward training (Meta-CoT),
and mirrors classic generator–value architectures in search and games.

7 Statistical Analyses

7.1 Majority Aggregation and Diversity

Let A be a finite answer set and π(a) = P(a(i) = a) for a single path. The Bayes-optimal 0–1
decision selects a⋆ = argmaxa π(a). The m-sample majority error is

Rm = 1−
m∑

k=⌈(m+1)/2⌉

(
m

k

)
π(a⋆)k

(
1− π(a⋆)

)m−k
, (14)

decreasing in m. Correlated samples reduce the effective m; diverse decoding (temperature,
top-k, nucleus) mitigates correlation—a design principle supported by ablations.

7.2 Faithfulness and Surrogate Rewards

Let R(x, S, a) be the ground-truth process reward available only on a subset of tasks (e.g.,
verifiable math). We optimize a surrogate R̂ = Vϕ(q, S1:t) trained from outcomes; mismatch

|R− R̂| contributes to bias in learned search policies. Meta-CoT proposes to reduce this gap by
modeling latent Z and training on linearized traces.

8 Compute and Complexity

8.1 Test-Time Budgets

Combining (6) and (8) yields a unified notion of test-time compute C:

C = mℓcot + ℓvote (self-consistency), C =
d∑

t=1

Bt ℓstep (tree-of-thoughts). (15)

Empirical curves show monotone accuracy increase with C across models and tasks.

8.2 Search Depth and Branching

For branching factor b and effective depth deff, the open-list size in BFS scales as O(bdeff); beam
search constrains this to O(Bdeff). Heuristics h reduce deff by pruning subtrees whose expected
verification probability is low, a language-native instantiation emphasized in ToT.
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9 Formal Procedures

9.1 Self-Consistency as Approximate Marginalization

Define the CoT-induced posterior over answers

πθ(a | x) =
∑
z1:n

pθ(a | x, z1:n) pθ(z1:n | x). (16)

Sampling m chains and voting approximates argmaxa πθ(a | x), with Monte Carlo error decaying
in m. Beam search concentrates on a narrow mode and under-explores diverse correct chains,
consistent with head-to-head comparisons.

9.2 ToT as Stochastic Planning

Let the transition kernel be T ((x, z1:t) → (x, z1:t, zt+1)) = pθ(zt+1 | x, z1:t) and define a value
surrogate h(x, z1:t) ≈ P(reachable & verifiable | x, z1:t). Then

policy: π(s) = TopB
(
Succ(s);h

)
, stop when v = 1. (17)

Language-native heuristics h provide a practical bridge between LLMs and classical search.

9.3 Meta-CoT as Latent-Variable Inference

Combining (9)–(10), training jointly over S and Z aligns surface plans and hidden deliberation
with process supervision; Section 4 of the source delineates empirical setups (A*, MCTS traces;
Countdown; analyze budget vs. success).

10 Selected Empirical Facts Tied to the Formalism

• CoT with PaLM-540B achieves SOTA on GSM8K with few-shot exemplars; CoT emerges at
large scale.

• Self-consistency delivers large absolute gains across arithmetic and commonsense tasks, robust
across sampling regimes and model scales; it beats beam search and prompt ensembles at
matched budgets.

• ToT reframes reasoning as tree search over thoughts and substantially improves success on
lookahead-heavy tasks (e.g., ∼74% on Game of 24).

• Meta-CoT formalizes latent search and provides training pipelines to internalize search
traces and process rewards; analyses show budget–performance scaling and small-domain
internalization.

11 Limitations and Assumptions

• Faithfulness. Visible chains can be rationalizations; Meta-CoT narrows but does not
eliminate the gap between story and computation.

• Verifier bottlenecks. Many domains lack cheap verifiers; ToT requires useful h or PRMs
to avoid verbosity without accuracy.

• Data quality. Advanced reasoning datasets often contain label noise or insufficient difficulty
diversity, complicating process-supervised training.
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