DIGITAL ELECTRONICS

VEER SURENDRA SAI UNIVERSITY
OF TECHNOLOGY ODISHA BURLA

Lecture of Module |

Introduction to Digital Systems

vV v v v VvV Y

Introduction

Digital and Analog Signals

Logic Levels and Digital Waveforms
Positive and Negative Logics
Combinational and Sequential logics

Types of Logic Devices

Introduction

Digital electronics iIs a field of electronics involving the study of digital
signals and the engineering of devices that use or produce them.

This is in contrast to analog electronics and analog signals.

Digital electronic circuits are usually made from large assemblies of logic
gates, often packaged in integrated circuits.

Complex devices may have simple electronic representations of Boolean
logic functions.

Analog versus Digital

» Most observables are analog
» But the most convenient way to represent and transmit information electronically is digital

» Analog/digital and digital/analog conversion is essential

Analog Signals: The analog signals were used in many systems to produce signals to carry
information. These signals are continuous in both values and time.
In short, analog signals — all signals that are natural or come naturally are analog signals.

Digital Signals: Unlike analog signals, digital signals are not continuous but signals are discrete in
value and time. These signals are represented by binary numbers and consist of different voltage
values.

Difference Between Analog And Digital Signal

Analog Signals

Continuous signals

Represented by sine waves

Human voice, natural sound, analog
electronic devices are few examples

Continuous range of values

Records sound waves as they are

Only be used in analog devices.

Digital Signals

Discrete signals

Represented by square waves

Computers, optical drives, and other
electronic devices

Discontinuous values

Converts into a binary waveform.

Suited for digital electronics like
computers, mobiles and more.

Time |

Continuous in value &
Analog :
time

Digital

Asynchronous : :
Discrete in value

Synchronous

Digital Signal

>
>
>
>

An information variable represented by physical quantity.
For digital systems, the variable takes on discrete values.

Two level, or binary values are the most prevalent values in digital
systems.

Binary values are represented abstractly by:
» digitsOand 1
» words (symbols) False (F) and True (T)
» words (symbols) Low (L) and High (H)
» and words On and Off.

» Binary values are represented by values or ranges of values of physical
quantities

Binary Values: Other Physical Quantities

» What are other physical quantities represent 0 and 1?
» CPU: Woltage Levels
» Disk: Magnetic Field Direction
» CD: Surface Pits/Light
» Dynamic RAM: Electrical charge

Digital System

Takes a set of discrete information inputs and discrete internal information (system state) and
generates a set of discrete information outputs.

Discrete IDifscretet_
Inputs = Pn OrMatlON—y Hiscrete
rocessing Ut
System utputs

i1

System State

Digital representations of logical functions

» Digital signals offer an effective way to execute logic. The formalism for performing logic with binary
variables is called switching algebra or Boolean algebra.

» Digital electronics combines two important properties:
» The ability to represent real functions by coding the information in digital form.

» The ability to control a system by a process of manipulation and evaluation of digital variables
using switching algebra.

Digital signals can be transmitted, received, amplified, and retransmitted with no degradation.
Binary numbers are a natural method of expressing logic variables.
Complex logic functions are easily expressed as binary function.

v v VY

Digital information is easily and inexpensively stored

Logic Levels

In digital circuits, a logic level is one of a finite number of states that a digital signal can inhabit. Logic levels are
usually represented by the voltage difference between the signal and ground, although other standards exist. The
range of voltage levels that represent each state depends on the logic family being used.

In binary logic the two levels are logical high and logical low, which generally correspond to binary numbers 1
and O respectively. Signals with one of these two levels can be used in Boolean algebra for digital circuit design

or analysis.

OUTPUT INPUT
— 5.0 —
Logic level Active-high signal = Active-low signal Hien 40— Hien
Logical high 1 0 B z'g
Logical low 0 1 10—
LOW | 00— LOW

Volts

Combinational Logic Circuit

The outputs of Combinational Logic Circuits are
only determined by the logical function of their
current input state, logic “0” or logic “1”, at any

given Instant in time. E Ccombinational Logic Circuit j
M — > | Arithmetic & D =iz Code
Logcal Functions Transmission Converters
Combinational -) - ’
n' Circuit 'm' l l l
Inputs Dutputs Adders Multiplexers Binary
Subtractors Demultiplexars BC D
- o Comparitors Encoders F-segment
- PLD s Decodars

Seqguential Logic Circuits

the output state of a “sequential logic circuit” is a function of
the following three states, the “present input”, the “past input”
and/or the “past output”. Sequential Logic circuits remember
these conditions and stay fixed in their current state until the
next clock signal changes one of the states, giving sequential
logic circuits “Memory”.

Sequential logic circuits are generally termed as two state or
Bistable devices which can have their output or outputs set in
one of two basic states, a logic level “1” or a logic level “0” and
will remain “latched” (hence the name latch) indefinitely in this
current state or condition until some other input trigger pulse or
signal is applied which will cause the bistable to change its state
once again.

l Sequential Logic Circuit]
|
v ¥ +
Event Driven Clock Driven Bul Dri
(Asynchronous) {(Synchronous) ulse Driven
' |
v
Cyclic Mon-cyclic
Input Qutput
Combinational :>
Logic Circuit Bositive
Feedback
Previous
State
Memory <+— [cio
< ~ Signal
gna

Fixed function Logic devices

Fixed logic device such as a logic gate or a multiplexer or a flip-flop performs a given logic function that is known
at the time of device manufacture

Complexity Classification for Fixed-Function ICs

SSI (Small-scale integration) — 10 gates—

MSI (Medium-scale integration) — 10—100 gates

LSI (Large-scale integration) — 100—10,000 gates

VLSI (Very large-scale integration) — 10,000—100,000 gates
ULSI (Ultra large-scale integration) -- >100,000 gates

Programmable Logic Devices

A programmable logic device can be configured by the user to perform a large variety of logic functions
A programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits

PLD has an undefined function at the time of manufacture

Before using PLD in a circuit it must be programmed (reconfigured) by using a specialized program

Purpose of PLD:

» Permits elaborate digital logic designs to be implemented by the user on a single device.

» Is capable of being erased and reprogrammed with a new design.

Advantages of PLDs

» Programmability
» Re-programmability
» PLDs can be reprogrammed without being removed from the circuit board.
Low cost of design
Immediate hardware implementation
less board space
lower power requirements (i.e., smaller power supplies)
Faster assembly processes

higher reliability (fewer ICs and circuit connections => easier troubleshooting)

vV v v v v VvV Vv

availability of design software

Types of PLDs

» SPLDs (Simple Programmable Logic Devices)
» ROM (Read-Only Memory)
» PLA (Programmable Logic Array) PLD

» PAL (Programmable Array Logic) | |
» GAL (Generic Array Logic) SPLD HCPLD

| 1 1 1 | 1
bl bl bl bl bl

» HCPLD (High Capacity Programmable Logic Device)

: : ROM L PLA L PAL L GAL LCPLD LFPGA
» CPLD (Complex Programmable Logic Device) L ©

» FPGA (Field-Programmable Gate Array)

PLD Configuration

» Combination of a logic device and memory
» Memory stores the pattern the PLD was programmed with
» EPROM
» Non-volatile and reprogrammable
» EEPROM
» Non-volatile and reprogrammable
» Static RAM (SRAM)
» \olatile memory
» Flash memory
» Non-volatile memory
» Antifuse
» Non-volatile and no re-programmability

PLA: A programmable logic array (PLA) has a programmable AND gate array, which links to
a programmable OR gate array

D Z,= AB + A'C’
l l * * D Z,=A'B'C+AB

Array

Electronics Coach

PAL: PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-
AND" plane

[' Example Schematic of a PAL]
X X3 X3

Fo = XXX X XXy

f, = X%, +X0% —x N *—

h

]
;%;ﬁ

12

VUL

7

Py

AND plane

GAL.: An improvement on the PAL was the Generic Array Logic device

This device has the same logical properties as the PAL but can be erased and
reprogrammed

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic
can be corrected by reprogramming

GALs are programmed and reprogrammed using a PAL programmer

» CPLD (Complex Programmable Logic Device)

00 oo oo I'_"II;/L"Q“:

» Lies between PALs and FPGAs in degree of complexity. A
O Block —[] , M|
» Inexpensive oM)W G
» FPGA (Field-Programmable Gate Array) E MR B B E
» Truly parallel design and operation O O
yp 9- P 2 R o
» Fast turnaround design - -
_ SICHCHCE T e
» Array of logic cells surrounded by programmable 1/0 blocks

OO oo oo do

FPGA

Number Systems

» Introduction

» Number Systems [binary, octal and hexadecimal]

» Number System conversions

Introduction

Number System

Code using symbols that refer to a number of items

Decimal Number System

Uses ten symbols (base 10 system)
Binary System
Uses two symbols (base 2 system)

Octal Number System
Uses eight symbols (base 8 system)

Hexadecimal Number System

Uses sixteen symbols (base 16 system)

Binary Number

« Numeric value of symbols in different positions.

« Example - Place value in binary system:

Place Value 8s 45 2s Is
Binary Yes Yes No No
Number |] 0 0

RESULT: Binary 1100 = decimal 8 + 4 + 0 + 0 = decimal 12

BINARY TO DECIMAL CONVERSION

Convert Binary Number 110011 to a Decimal Number:

Binary]] o O 1T 1

A

Decimal 32 +16 +0+ 0+ 2+ 1= 51

Convert the following binary
numbers info decimal numbers:

Binary 1001 =
Binary 1111 =
Binary 0010 =

Convert the following binary
numbers info decimal numbers:

Binary 1001 = 7
Binary 1111 = 19
Binary 0010 = 2

DECIMAL TO BINARY CONVERSION

Divide by 2 Process

Decimal # 13+ 2 =6 remainder 1

6 + 2 =3 remainder 0

3+ 2 =1 remainder 1

1 + 2 = 0remainder 1 —1
\ 4

Convert the following decimal
numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17

Convert the following decimal
numbers into binary:

Decimal 11 = 1011

Decimal 4 = 0100

Decimal 17 = 10001

Binary-to-Decimal Conversion

-—-m------— -0
= . 1 01 (base-22)

L] :

= 0 X 22 =0x0.25 =0

1 X 21" = 1x0.5 0.5

= 1 X 23 = 1x0.125 = 0.125

0.5 +0 + 0.125 = 0.625

0.101, 0.625,,

o

e Convert N =0.6875 to Radix 2
e Solution: Multiply NV by 2 repeatedly & collect integer bits

Converting Decimal Fraction to Binary

— First fraction bit

— J_ast fraction bit

Multiplication New Fraction | Bit -
0.6875 x 2 =1.375 0.375 1
0.375 % 2 =0.75 0.75 o)

0.75%x2=1.5 0.5 ¥ -
0.5x2=1.0 0.0 1

e Stop when new fraction = 0.0, or when enough fraction

bits are obtained

e Therefore, N = 0.6875 = (0.1011),
- Check (0.1011), = 2! + 23 4+ 24 = 0.6875

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System, 0-2, A,B,C,D, E, F

Decimal Binary Hexadecimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0001 0000

el ol
o rEoRREBowomvourwNnERoO
ETMUOOWm>PO0ooNoOoUu~WNRO

HEXADECIMAL AND BINARY CONVERSIONS

e Hexadecimal to Binary Conversion

Hexadecimal C 3
} |
Binary 1100 0011

*Binary to Hexadecimal Conversion
Binary 1110 1010

| |

Hexadecimal E A

DECIMAL TO HEXADECIMAL CONVERSION

Divide by 16 Process

Decimal # 47 = 16 = 2 remainder 15

2 + 16 = 0 remainder 2 —I

1] <

eczzns?Z frocizon 76 Aex

* To convert Decimal fraction into Hex, multiply
fractional part with 16 till you get fractional part o.
* Example : convert o.03125,, to Hex

Integer Part

e ==, Write
0. 03125 * 16 =0.5 o iy
0.5 %16 = 8.0 8 Up to

Down

= 0.03125,, = 0.08 .

HEXADECIMAL TO DECIMAL CONVERSION

Convert hexadecimal number 2DB 1o a decimal number

Place Value 2565 165 s
Hexadecimal 2 D 3
(266 x2) (16x13) (1 x11)

Decimal 512 + 208 + 11 = 731

Hexadecimal System

The weight associated with each symbol in the given hexadecimal number can
be determined by raising 16 to a power equivalent to the position of the digit in
the number.

4A90.2BC

Digit 4 A 9 0 : b B C
Weight 163 162 16! 160 fexadecmal qg1 162 163

Point
Example

The following shows that the number (2AE)16 in hexadecimal is equivalent to
686 in decimal.

16~ 16 16° Place values
- FaN E Number
~N == 2 = 167 -+ 10 < 16" -+ 14 = 16° values

The equivalent decimal numberis N = 512 + 160 + 14 = 686.

Convert Hexadecimal number Aé to Binary

Ab =

(Binary)

Convert Hexadecimal number 16 to Decimal

16 =
(Decimal)

Convert Decimal 63 to Hexadecimal

63 =

(Hexadecimal)

>

>

Translate every hexadecimal digit into its
4-bit binary equivalent

Examples:
(3A5) ;4 (0011 1010 0101),
(12.3D),, = (0001 0010 .0011 1101),
(1.8)44 = (0001 . 1000),

OCTAL NUMBERS

Uses 8 symbols -Base 8 System
0,1,2,3,4,5 6,7

Decimal Binary Octal
000
001
010
011
100
101
110
111
001 000
001 001

© O ~NOO U WNERO
e
RPEvVNouorwndvro

OCTAL AND BINARY CONVERSIONS

e Octal to Binary Conversion

Octal S 6
} }
Binary 101 110
eBinary to Octal Conversion
Binary 100 101
} }

Octal 4 5

DECIMAL TO OCTAL CONVERSION

Divide by 8 Process

Decimal # 129+ 8 = 16 remainder 1

16+ 8 = 2 remainder 0O

2 + 8= 0 remainder 2

Fraction Decimal to Octal
Conversion - Example

Example: convert 0.356,, to octal.

0.356 * 8 = 2.848
0.848 * 8 = 6.784
0.784 * 8 =6.272
0.272*8 =2.176
0.1776 * 8 = 1.408
0.408 * 8 = 3.264

22222

integer
integer
integer
integer
integer
integer

Answer = 0.266213...g

part
part
part
part
part
part

The Hashemite University

W=2NOON

OCTAL TO DECIMAL CONVERSION

Convert octal number 201to a decimal number

Place Value 64s 8s Is

Octal

Decimal

2 0 1

(64x2) (8x0) (1x1)

R

e Octal fraction to decimal

- Example
- Convert (23.25)8 to decimal
e 81 80 - 8—1 8-2
s 3 2.5
(2 x 813 x:8°)+ (2568 A5 x & <)
16+3+0.25+0.07812
(19.32812)10

Binary, Octal, and Hexadecimal

Binary, Octal, and Hexadecimal are related:

Radix 16 = 24 and Radix 8 = 23

Hexadecimal digit = 4 bits and Octal digit = 3 bits

Starting from least-significant bit, group each 4 bits into a hex
digit or each 3 bits into an octal digit

Example: Convert 32-bit number into octal and hex

3 5 3 0 5 5 2 3 6 2 4 Octal
1(1{1/0/11|/0/1|1|0(0(0(1|0(1|1|0|1|0(1(0/0(1{1|1|1|O/0|1|O|1 (00O 32-bit binary
E B 1 6 A i & 9 4 Hexadecimal

Convert 0.10111, to base 8: 0.101_110 = 0.564
Convert 0.1110101 to base 16: 0.1110_1010 = 0.EA;

Arithmetic Operations

» Arithmetic Operations

» Decimal Arithmetic
» Binary Arithmetic
» Signed Binary Numbers

Arithmetic Operations

Addition
> Follow same rules as in decimal addition, with | Carry 1 11 /1/1]1 0
the difference that when sum is 2 indicates a Augend |0 |0 |1 [0 |0 [1
carry (not a 10)
Addend (O |1 |1 |1 |1 |1
» Learn new carry rules Resul PR P P e e
» 0+0=sum O carry 0 esulv - 0P 0910

» 0+1 = 1+0 = sum lcarry 0 ©
111 < Carry Values
» 1+1 =sum O carryl 0101

B +1011
» 1+1+1 =sum lcarryl 10000

Subtraction

» Learn new borrow rules
» 0-0=1-1=0borrow 0
» 1-0=1 borrow 0
» 0-1 =1 borrow 1
The rules of the decimal base applies to binary

as well. To be able to calculate 0-1, we have to
“borrow one” from the next left digit.

Borrow 1(1/0/0
Minuend 1/1/0/1]1
Subtrahend |0 |1 1|01
Result 0O(1(1(1]0
12
0202
1010
S0111

0011

Decimal Subtraction

» 9’s Complement Method

» 10’s Complement Method 72532
9°’s Complement Method +96749
Example: 72532 — 3250 169281
9°s complement of 3250 is T
99999-03250=96749 If Carry, result is positive. 69282
Add carry to the partial result
Example: 3250 — 72532 03250
9’s complement of 72532 is +27467
99999_72532=27467 If no Carry, result is negative. > 30717

Magnitude is 9’s complement of the result
=-69282

Decimal Subtraction

» 9’s Complement Method
» 10’s Complement Method

712532

10’s Complement Method +96750

Example: 72532 — 3250 169282
10’s complement of 3250 is Resultis6 9282
100000-03250=96750 If Carry, result is positive.
Discard the carry

Example: 3250 — 72532 03250
10’s complement of 72532 is +27468

If no Carry, result is negative.

100000-72532=27468 _ _ > 30718
agnitude is 10’s complement of the resul

= -69282

Binary Subtraction

» 1’s Complement Method

» 2’s Complement Method 1010100

1’s Complement Method +0111011

10001111

Example: 1010100 — 1000100 T

1’s complement of 1000100 is 0111011 If Carry, result is positive. 0010000
Add carry to the partial result

Example: 1000100 — 1010100 1000100

1’s complement of 1010100 is 0101011 +0101011

If no Carry, result is negative. 1101111

Magnitude is 1’s complement of the result
=-0010000

Binary Subtraction

» 1’s Complement Method

» 2’s Complement Method 1010100
2’s Complement Method +0111100
10010000
Example: 1010100 — 1000100 -

2’s complement of 1000100 is 0111100 If Carry, result is positive. 0010000
Discard the carry

Example: 1000100 — 1010100 1000100

2’s complement of 1010100 is 0101100 +0101100

If no Carry, result is negative. 51110000

Magnitude is 2’s complement of the result
=-0010000

Signed Binary Numbers

» When a signed binary number is positive

- The MSB is ‘0’ which is the sign bit and rest bits represents the magnitude

» When a signed binary number is negative

- The MSB is ‘1’ which is the sign bit and rest of the bits may be represented
by three different ways

< Signed magnitude representation
< Signed 1’s complement representation

< Signed 2’s complement representation

Signed Binary Numlbers

Signed magnitude representation 11001 01001
Signed 1’s complement representation 10110 0 1001
Signed 2’s complement representation 10111 0 1001
-0 +0
Signed magnitude representation 1 0000 0 0000
Signed 1’s complement representation 1 1111 0 0000

Signed 2’s complement representation -None- 0 0000

Range of Binary Number

Binary Number of n bits

» General binary number: (2% — 1)
» Signed magnitude binary number: — ("1 -1) to +(m1_1)
» Signed 1’s complement binary number: — (-1 1) to +(*1-1)

» Signed 2’s complement binary number: — (2771) to +(l-1)

Signed Binary Numlber Arithmetic

» Add or Subtract two signed binary number including its sign bit either signed 1°’s
complement method or signed 2’s complement method

» The I’s complement and 2’s complement rules of general binary number is applicable
to this

It is Important to decide how many bits we will use to represent the number
Example: Representing +5 and -5 on 8 bits:

— +5: 00000101

~ -5: 10000101

So the very first step we have to decide on the number of bits to represent number

Digital Codes

vV v v v v Vv

Introduction

Binary Coded Decimal Code
EBCDIC Code

Excess-3 Code

Gray Code

ASCII Code

Intfroduction

vV Vv

vV v v VvV

Calculations or computations are not useful until their results can be displayed in a
manner that is meaningful to people.

We also need to store the results of calculations, and provide a means for data input.

Thus, human-understandable characters must be converted to computer-
understandable bit patterns using some sort of character encoding scheme.

As computers have evolved, character codes have evolved.
Larger computer memories and storage devices permit richer character codes.
The earliest computer coding systems used six bits.

Binary-coded decimal (BCD) was one of these early codes. It was used by IBM
mainframes in the 1950s and 1960s.

In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decimal
Interchange Code (EBCDIC).

EBCDIC was one of the first widely-used computer codes that supported upper and
lowercase alphabetic characters, in addition to special characters, such as punctuation

and control characters.
EBCDIC and BCD are still in use by IBM mainframes today.

Other computer manufacturers chose the 7-bit ASCII (American Standard Code for
Information Interchange) as a replacement for 6-bit BCD codes.

While BCD and EBCDIC were based upon punched card codes, ASCII was based upon
telecommunications (Telex) codes.

Until recently, ASCII was the dominant character code outside the IBM mainframe world.

R e mp ——

" -[A.H?}“* Decimal wunber

L
u
u

0010} 10100] 011 1] "Resummatin ™~

Convert 0100 0010 1000 0010 BCD to decimal
0100 0010 1000 0110 BCD
4 2 8 6 Decimal

Decimal

BCD code Representation

o)

0000

0001

0010

0011

0100

0101

0110

0111

1000

ol oo 1| Ov| n]] D e

1001

» Consider5+5

> 5 010l » Had 1010 and want to add 6 or 0110
> o 0L > 50 1010

" otrotaBcodign 0 plus6 0110

» What to do? » Giving 10000

» Tryadding 6?7

» Add7+6

» have7 0111
» plus6 0110

» Giving 1101 and again out
of range

» Adding6 _ 0110

» Giving 10011 soalcarries
out to the next BCD digit

» FINAL BCD answer 0001 0011
or 13,

6

+3

9

0110 BCD for 6

0011 BCD for 3

42 01000010 BCD for 42

+27 00100111 BCD for 27

1001 BCDfor9

69 01101001 BCD for 69

» Add the BCD for 417 to 195 » Had a carry to the 2" BCD digit position

» Would expectto get 612 > 1
» BCD setup - start with Least Significant > 0100 0001 done
Digit > 0001 1001 0010
» 0100 0001 0111 > 1011
» 0001 1001 0101 > Again mustadd 6 0110
> 1100 > Giving 10001
» Adding 6 0110

» And another carry
» Gives 1 0010

» Had a carry to the 3rd BCD digit position

> 1

» 0100 done done
» 0001 0001 0010
» 0110

» And answer is 0110 0001 0010 or the BCD for the base 10 number
612

EBCDIC Code

» The EBCDIC code Is an 8-bit alphanumeric code that was
developed by IBM to represent alphabets, decimal digits and
special characters, including control characters.

» The EBCDIC codes are generally the decimal and the hexadecimal
representation of different characters.

» This code is rarely used by non IBM-compatible computer systems.

The Excess-3- Code

DECIMAL ECD EXCESS-3
0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100
(a) 13 (b) 430
1 3 (b) 4 3 0
+ 3 3 3 3 3
4 6 7 6 3
0100 0110 Excess-3 0111 0110 0011 [Excess-3

» EXxcess-3 code is self complementary code? Justify.

Gray Code

» Gray code is another important code that is also used to convert the decimal
number into 8-bit binary sequence. However, this conversion is carried in a

manner that the contiguous digits of the decimal number differ from each other by
one bit only

» In pure binary coding or 8421 BCD then counting from 7 (0111) to 8 (1000)
requires 4 bits to be changed simultaneously

» Gray coding avoids this since only one bit changes between subsequent numbers

Example:
Binary:

Gray:

® g,

o o

D D

AN AN

(@) e) o)

D D D

Mm N oM o

(@) e)Ne)Ne)

D D D D

< -5 S < <
OO OO0 00 O
D D D D D
n n wnmn wmn N
(@) NO)) NO)NO) Ne)
i un nm n nu
n t /o NN — O
0O O O 0O O

) |

Gray

g2 g1 Yo
0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0
1 0 0
1 0 1

g3
0
0
0
0
0
0
0
0
1
1

Decimal

e
O
L
N
O
>~
~
O

number
0
1
2
3
4
5
G
7
8
9

10
11

12
13
14
15

Reflection of Gray Codes

00 0O 00 0O 000
01 0O 01 0O 001
11 0 11 0 011
10 0O 10 0 010
1 10 0O 110

1 11 0 111

1 01 0 101

1 00 0O 100

1 100

1 101

So, called reflected code 1 111
1 110

1 010

1 011

1 001

1 000

Alohanumeric Codes

» How do you handle alphanumeric data?
» Easy answer!
» Formulate a binary code to represent characters! ©

» For the 26 letter of the alphabet would need 5 bit for
representation.

» But what about the upper case and lower case, and the digits, and
special characters

vV v Vv Vv

ASCII stands for American Standard Code for Information Interchange

The code uses 7 bits to encode 128 unique characters

Formally, work to create this code began in 1960. 15t standard in 1963. Last updated in 1986

Represents the numbers
» All start 011 xxxx and the xxxx is the BCD for the digit
Represent the characters of the alphabet
» Start with either 100, 101, 110, or 111
» A few special characters are in this area
Start with 010 — space and !"#$%&’()*+.-,/
Start with 000 or 001 — control char like ESC

Table 1.7
American Standard Code for Information Interchange (ASCII)

bybsbs

bgbsb,b; 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P p
0001 SOH DCI ! | A Q a q
0010 STX DC2 2 B R b r
0011 ETX DC3 # 3 C S ¢ s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB - 7 G W o w
1000 BS CAN (8 H % h X
1001 HT EM) 9 1 Y i y
1010 LF SUB * :] Z i 7
1011 VT ESC + : K [k {
1100 FF FS < L \ | l
1101 CR GS = = M] m }
1110 SO RS . > N A n ~
111 Sl Us / 9 0 - 0 DEL

Control characters
NUL Null DLE Data-link escape
SOH Start of heading DCI Device control |
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End-of-transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
| Shiftin US Unit separator
Sp Space DEL Delete

ASCII Properties

ASCII has some interesting properties:

Digits 0 to 9 span Hexadecimal values 30,4 to 39,
Upper case A - Zspan 41, t0 DAy,
Lower case a - zspan 61,; to /A
Lower to upper case translation (and vice versa)
occurs by flipping bit 6.

Delete (DEL) is all bits set, a carryover from when

punched paper tape was used to store messages.
Punching all holes in a row erased a mistake!

Lecture of Module 2

Logic Gates

» Introduction

» Logical Operators

» Basic Gates

» Universal Gates

» Realization of Basic Gates using Universal Gates
» Other Logic Gates

Intfroduction

» Binary variables take on one of two values

» Logical operators operate on binary values and binary variables

» Basic logical operators are the logic functions AND, OR and NOT

» Logic gates implement logic functions

»Boolean Algebra: a useful mathematical system for specifying and
transforming logic functions

» We study Boolean algebra as a foundation for designing and analyzing digital
systems

Binary Variables

» Recall that the two binary values have different names:
» True/False
» On/Off
» Yes/No
» 1/0
» We use 1 and 0 to denote the two values.
» Variable identifier examples:
» A B, XY,z orX,, X, etc. for now

Logical Operations

» The three basic logical operations are:
» AND
» OR
» NOT

» AND is denoted by a dot ()

» OR is denoted by a plus (+)

» NOT is denoted by an over bar (), a single quote mark (") after, or (~) before
the variable

Operator

=Operators operate on binary values and binary variables
=Operations are defined on the values "0" and "1" for each operator:

AND OR NOT
0-0=0 0+0=0 0=1
0:-1=0 0+1=1 1=0
1:0=0 1+0=1
1-1=1 1+1=1

» Truth table - a tabular listing of the values of a function for all possible combinations of values

on its arguments

» Example: Truth tables for the basic logic operations:

AND

OR

XY

/ =

X+Y

X
0
0
1
1

—_ O = O |=<
- 1O O O N

R, |O|O|X

R Ol |o|<X

||

Logic Function Implementation

Switches in parallel => OR

» Using Switches -

g - o

» For Inputs:
» logic 1 is switch closed = —
» logic 0 is switch open

» For outputs:
» logic 1 is light on Switches in series => AND
» logic 0 is light off. —o/o—o/o_@_

T

Logic Gates

» In the earliest computers, switches were opened and closed by magnetic
fields produced by energizing coils in relays. The switches in turn opened
and closed the current paths.

» Later, vacuum tubes that open and close current paths electronically replaced
relays.

» Today, transistors are used as electronic switches that open and close current
paths.

» NOT, AND and OR Gates (Basic gates)
» NAND and NOR Gates (Universal logic gates)

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

Boolean Expression Logic Diagram Symbol Truth Table

1 0

AND Gate

If all inputs are 1, the output is 1; otherwise, the output is 0
Or if any input is 0, output is O

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X =2 B) 0 [0 [o0
5 0 1 0
1 0 0
1 1 1

If all inputs are 0, the output is O; otherwise, the output is 1
Or if any input is 1, output will be 1

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X=A+0B :’— 0 0 0
B 0 1 1
1 0 1
1 1 1

Universal Gates

o Universal Logic Gate: Any basic gate or logic function can be
realized using this gate

a Two universal logic gates
< NAND
<+ NOR

NAND Gate

If all inputs are 1, the output is O; otherwise, the output is 1

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X = (A B) 1) o | o |
B 0 1 1
1 0 1
1 1 0

NOR Gate

If all inputs are 0, the output is 1; otherwise, the output is O

Boolean Expression Logic Diagram Symbol Truth Table
A X
X = (A + B) ! 30—

.._L..LOO>
— | O|—=|CO|

o|lo|o|—| X

Realization

NAND gates are sometimes called universal gates because they can be used to
produce the other basic Boolean functions.

CED DD e

Inverter AND gate

A el A il
301:)% A+B

B e | o I B e |

OR gate NOR gate

:}PE:}F A+B

o7

Realization

NOR gates are also universal gates and can form all of the basic gates.

— A
A A o+) > A+B
g By 5 L ‘5

Inverter OR gate

Ae) D A _
5D~ i DD -

AND gate NAND gate

XOR Gate

If odd numbers of inputs are 1, the output is 1; otherwise, the output is O

Boolean Expression Logic Diagram Symbol Truth Table
A A B X
X
X = A®B 0 0 0
s 0 1 1
1 0 1
1 1 0

N — O O

> O A O

P O O v

XNOR

X >

e
O
O
v
O
>
>

Constructing Gates

Transistor

A device that acts either as a wire that conducts electricity or as a resistor that blocks the
flow of electricity, depending on the voltage level of an input signal

A transistor has no moving parts, yet acts like a switch

It is made of a semiconductor material, which is neither a particularly good conductor of
electricity nor a particularly good insulator

A transistor has three terminals
A source
A base
An emitter, typically connected to a ground wire

Source

Output

Base

If the electrical signal is grounded, it is allowed to flow through
an alternative route to the ground (literally) where it can do
no harm

Emitter

Gro-und

NOT gate NAND gate NOR gate
Source
Baoice Vout Source
v
out V4 l Vout
Vin Yy Va
Emitter Vs Emitter Emitter
Ground Emitter Ground Ground

=

Ground

AN D Gate

+Weo

R
I

Transistor
Switches

=
N -—’\/\/\/—@Tz
=
[] :AE

ouT

OR Gate

oo

Transisior
Swilches

ouT
—
0 = A+B

Timing Diagram

Input
signails

Gate
QOutput
Signals

F=A«B
G=A+B
H=A'

Transitions

Basic
Assumption:
Zero time for
signals to
propagate
Through gates

Gate Delay

» In actual physical gates, if one or more input changes causes the output to change, the
output change does not occur instantaneously.

» The delay between an input change(s) and the resulting output change is the gate delay
denoted by t:

1
InpuTO_J ‘
G | 1G | tG =0.3 ns

OTT]
utout ‘ ‘

0 05 1 5 Time (ns)

Boolean Algebra

» Introduction

» Boolean Algebra

» Properties

» Algebraic Manipulation
» De-Morgan Theorem

» Complementation

» Truth Table

Intfroduction

» Understand the relationship between Boolean logic and digital computer circuits.
» Learn how to design simple logic circuits.

» Understand how digital circuits work together to form complex computer systems.

» In the latter part of the nineteenth century, George Boole suggested that logical
thought could be represented through mathematical equations.

» Computers, as we know them today, are implementations of Boole’s Laws of
Thought.

» In this chapter, you will learn the simplicity that constitutes the essence of the
machine (Boolean Algebra).

Boolean algebra

» Boolean algebra iIs a mathematical system for the manipulation of
variables that can have one of two values.
» In formal logic, these values are “true” and “false.”
» In digital systems, these values are “on” and “oft,” 1 and 0, or “high”
and “low.”

» Boolean expressions are created by performing operations on Boolean
variables.
» Common Boolean operators include AND, OR, NOT, XOR, NAND
and NOR

» A Boolean operator can be completely described using a truth

>

table.

The truth table for the Boolean operators AND, OR and NOT are
shown at the right.

The AND operator is also known as a Boolean product.

The OR operator Is the Boolean sum.

The NOT operation is most often designated by an over-bar. It is
sometimes indicated by a prime mark (¢) or an “clbow” (7).

X AND Y

X Y XY
O O 0
o 1 0
1 O o)
1 1 1
X OR Y
X Y X+Y
O O 0)
o 1 1
1 0] 1
1 1 1
NOT X
b4 >
(@) 1
1 ®)

» A Boolean function has:

- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set {0,1}

» It produces an output that is also a member of the set {0,1}

Now you know why the binary numbering system is so
handy in digital systems

Conceptually
Boolean
Algebra
LogicC
Circuit

» Digital computers contain circuits that implement Boolean functions.

» The simpler that we can make a Boolean function, the smaller the circuit
that will result.

» Simpler circuits are cheaper to build, consume less power, and run faster
than complex circuits.

» With this in mind, we always want to reduce our Boolean functions to their
simplest form.

» There are a number of Boolean identities that help us to do this.

Properties of Boolean Algebro

» Most Boolean identities have an AND (product) form as well as an OR
(sum) form.

Identity AND OR
Name Form Form
Identity Law 1x=x 0O+x=x
Null Law Ox=0 l+x=1

Idempotent Law | xx =X X+x=x
Inverse Law xx =0 x+x=1

» Our second group of Boolean identities should be familiar to you
from your study of algebra:

Identity AND OR
Name Form Form
Commutative Law Xy = y¥X X+y = y+x
Associative Law (xy)z=x(yz) (x+y)+tz=x+ (y+2z)
Distributive Law xX+yz = (x+y) (x+z2) | x(y+2) = xy+x2

» Our last group of Boolean identities are perhaps the most useful.

» If you have studied set theory or formal logic, these laws are also familiar to you.

Identity AND OR
Name Form Form
Absorption Law X (x+y) = X+ Xy =X
DeMorgan's Law (xy) =x+YVy (x+y) = XV
Double —_
Complement Law (x) =x

» \We can use Boolean identities to simplify the function:

F(X,Y,2)= (X+Y) (X +Y) (XZ)

as follows:

(X + ¥) (X + Y) (XZ)

(X+Y)(X+Y) (X + 2Z)

(XX + XY + XY + YY) (X + Z)
((X + YY) + X(Y +Y)) (X + 2Z)
((X+0) +X(1))(X+2)

X(X + Z)

XX + XZ

0 + X2Z
X7

Idempotent Law (Rewriting)
DeMorgan's Law

Distributive Law

Commutative & Distributive Laws
Inverse Law

Idempotent Law

Distributive Law

Inverse Law

Idempotent Law

With respect to duality, Identities 1 — 8 have the following
relationship:

1.X+0=X
9. X+1 =1
5. X+X=X &,

7.X+X'=1 8.

2.X*1 =X (dualof)
},X*0 =0 (dualof)
XeX =X (dual of %)
XX’ =0 (dualof ©)

Boolean algebra is a useful tool for simplifying digital circuits.
Why do it? Simpler can mean cheaper, smaller, faster.

Example: Simplify F = x’yz + x’yz’ + Xz.
F=x’yz + X’yZ’ + XZ

=x’y(z+2’) + xz

=x’yel + xz

=X’y + XZ

Example: Prove x’y’z2’+xX’vz’+ xyz’=x’2’+Vy2’
y y y

Proof: x’y’z’+ x’yz’+ xyz’
o X,y,Z, _|_ X,yZ, + X,yZ’ _|_ XyZ,
= X2’ (y’+y) + yZ’ (X’+x)
=x’2’e1 +yz’1
=x’7’ + yZ,

Complementation

» Sometimes it iIs more economical to build a circuit using the complement of a
function (and complementing its result) than it is to implement the function
directly.

» DeMorgan’s law provides an easy way of finding the complement of a Boolean
function.

» DeMorgan’s law states:

(xy) = X + 5_(and (x+y) = :_c{r

» Find the complement of F(x,y,2)=xy’ 2’ +x’y z

> G=F=(xy’z2’ +x’yz)’
= (xy’z’)’ * (x’yz)’
= (x’+y+z) * (x+y’+2°) again

» Note: The complement of a function can also be derived by finding the
function’s dual, and then complementing all of the literals

» Enumerates all possible combinations of variable values
and the corresponding function value

» Truth tables for some arbitrary functions
F.(X,y,2), F,(X,y,2), and F5(X,y,z) are shown to the right.

» Truth table: a unique representation of a Boolean function

» |If two functions have identical truth tables, the functions
are equivalent (and vice-versa).

» Truth tables can be used to prove equality theorems.

» However, the size of a truth table grows exponentially with
the number of variables involved. This motivates the use of
Boolean Algebra.

x|y|z||F|F,|F3
0/0/0||0 |1 |1
0/0/1||0 |0 |1
0/1/0|/|0 |0 |1
O|1/1{/0 |1 |1
1/0/0/|0 |1 |0
1/0/1/|0 |1 |0
1/1/0/|0 |0 |O
1/111||1 |0 |1

Standard SOP and POS

» Introduction
» SOP and POS
» Minterms and Maxterms

» Canonical Forms
» Conversion Between Canonical Forms
» Standard Forms

Intfroduction

» Through our exercises in simplifying Boolean expressions, we
see that there are numerous ways of stating the same Boolean
expression.

» These “synonymous” forms are logically equivalent.
» Logically equivalent expressions have identical truth tables.

» In order to eliminate as much confusion as possible, designers
express Boolean functions in standardized or canonical form.

SOP andi Bt

» There are two canonical forms for Boolean expressions: Sum-Of-Products
(SOP) and Product-Of-Sums (POS).

» Recall the Boolean product is the AND operation and the Boolean sum
IS the OR operation.

» In the Sum-Of-Products form, ANDed variables are ORed together.
» Forexample: p(x,v,z) = xy + xz + vz

» In the Product-Of-Sums form, ORed variables are ANDed together:

> Forexample: gp(x,y,z) = (x+y) (x+z) (y+z)

Definitions

» Literal: A variable or its complement
» Product term: literals connected by °
» Sum term: literals connected by +

» Minterm: a product term in which all the variables appear exactly
once, either complemented or un-complemented

» Maxterm: a sum term in which all the variables appear exactly
once, either complemented or un-complemented

>

>

>

Truth Table notation for Mintermms and Maxterms

Minterms and Maxterms are easy to denote
using a truth table.

Example:
Assume 3 variables x,y,z (order is fixed)

Any Boolean function F() can be expressed as a
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

In other words, every function F() has two
canonical forms:

» Canonical Sum-Of-Products (sum of
minterms)

» Canonical Product-Of-Sums (product of
maxterms)

X |y |z | |Minterm | Maxterm
0|0 |0 | |XyZ=mg |x+y+z=M,
0|0 |1 | |Xyz=m; |x+y+z'= M,
0|1 0| |xXyZz'=m, |x+y+z=M,
0|1 |1 | |Xyz=m3 |x+y'+z'= M3
1 (00 |xy'Z=m; |X+y+z=M,
1 101 | [xy'z=mg |X+y+Z' = Mg
1110 |xyz'=mg |X+y'+z= M,
111 |1 | [xyz=m; |X+y+Z'= M,

Canonical Forms

» Canonical Sum-Of-Products:
The minterms included are those m; such that F() = 1 in row] of the truth table for F()).

» Canonical Product-Of-Sums:
The maxterms included are those M; such that F()) = 0 in row J of the truth table for F().

f,(a,b,c) => m(1,2,4,6), where > indicates that this is a sum-of-products form, and
m(1,2,4,6) indicates that the minterms to be included are m;, m,, m,, and m,.

f,(a,b,c) =] M(0,3,5,7), where |] indicates that this is a product-of-sums form,
and M(0,3,5,7) indicates that the maxterms to be included are M, M, Mc, and M-.

Since m; = My” for any J,
> m(1,2,4,6)=]] M(0,3,5,7) =f,(a,b,c)

Conversion Between Canonical Forms

» Replace > with [] (or vice versa) and replace those j’s that appeared In
the original form with those that do not.

» Example:
f,(a,b,c)=a’b’c+a’bc’ +ab’c’ +abc’
=My + My + My + Mg
=3%(1,2,4,6)
=11(0,3,5,7)
= (atb+c)e(atb’+c’)e(a’+b+c’)e(a’+b’+c’)

F = XYZ + XYZ + XYZ + XYZ =my +m, +m, +m, = » m(0, 2,5,7)

F = XYZ+XYZ+XVZ +XYZ =m, +my+m, +m; = » m(L 3, 4, 6)

F=m+m;+m,+m;

=>F=m+m;+m,+mg=m, -m;-m,-mg
S F=M,-M;-M, My =(X+Y +Z)(X +Y +Z)(X +Y + Z)(X +Y +Z)
-] [M@3.456)

Standard Forms

- Standard forms are “/ike” canonical forms, except that not all
variables need appear in the individual product (SOP) or sum
(POS) terms.

- Example:
f,(a,b,c) =a’b’c + bc’ + ac’
IS a standard sum-of-products form
- f,(a,b,c) = (a+b+c)e(b’+c’)+(a’+c’)
IS a standard product-of-sums form.

Conversion of SOP from standard to canonical form

» Expand non-canonical terms by inserting equivalent of 1 In
each missing variable x:
(x+x’)=1

» Remove duplicate minterms

» f,(a,b,c) =a’b’c + bc’ +ac’
=a’b’c + (a+a’)bc’ + a(b+b’)c’
=a’b’c+abc’+a’bc’+abc’ + ab’c’
=a’b’c +abc’+a’bc’ +ab’c’

Conversion of POS from standard to canonical form

» Expand non-canonical terms by adding O in terms of missing
variables (e.g., xx’ = 0) and using the distributive law

» Remove duplicate maxterms

» f,(a,b,c) = (a+b+cC)s(b’+c’)e(a’+c’)
= (atb+c)e(aa’+b’+c’)e(a’+bb’+C’)
= (atb+c)e(atb’+c’)e(a’+b’+c’)e(a’+b+c’)e(a’+b’+c’)
= (atb+c)s(at+b’+c’)e(a’+b’+c’)*(a’+b+cC’)

Minimization Technigues

Introduction

Karnaugh Map (K-Map)

Simplification Rules

K-Map Simplification for Two Variables
K-Map Simplification for Three Variables
K-Map Simplification for Four Variables

Don’t Care Conditions
Redundancy
Design of Combinational Circuits

Infroduction

Boolean
! Function

Unique Many different expressions exist
Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement

- For a simple function, it is possible to obtain a simple expression for
low cost implementation

- But, with complex functions, it is a very difficult for implementation

Karnaugh Map (K-map) is a simple procedure for simplification of

Boolean expressions.

Boolean
function

Simplified
Karnaugh Boolean
Map Function

Karnaugh Map (K-Map)

» Karnaugh maps (K-maps) are graphical
representations of Boolean functions.

» One map cell corresponds to a row in the truth
table.

» Also, one map cell corresponds to a minterm or
a maxterm in the Boolean expression

» Each term is identified by a decimal number
whose binary representation is identical to the
binary interpretation of the input values of the
term.

A’'B’

A’'B

AB

AB’

K-Map Simplification tor Two Variables

» Of course, the Minterm function that we derived from our

Truth Table was not in simplest terms. Y 4 4
» That’s what we started with in this example. %
. . . 0 0 1
» \We can, however, reduce our complicated expression to its . 4
1

simplest terms by finding adjacent 1s in the K-map that can
be collected into groups that are powers of two.

 |In our example, we have two
such groups.

— Can you find them?@

K-Map Rules

The rules of K-map simplification are:
- Groupings can contain only 1s; no Os.

- The number of 1s in a group must be a power of 2 —even if it v

contains a single 1. X 0 1
- Nearby 1s are to be grouped. 0O O /ﬂ
- Corner 1s are to be grouped. 1/(1 |1 |)

- Group that wraps around the sides of a K-map.
- Diagonal groups are not allowed.

- The groups must be made as large as possible.
- Groups can overlap.

K-Map Rules

» The best way of selecting two groups of 1s form our simple K- < Y 5 1
map is shown.
0 O ’ﬂ
» \We see that both groups are powers of two and that the groups
overlap. 1 LQ)

K-Map Simplification for Two Variables

2-variable Karnaugh maps are trivial but can be used to introduce the
methods you need to learn. The map for a 2-input OR gate looks like this:

0

© >
i

<

ow

>

.‘.

=] Ol O
R O| K| O N
AN el <

- I

K-Map Simplification for Three Variables

» A K-map for three variables is constructed as shown in the diagram below.
» \We have placed each Minterm in the cell that will hold its value.

» Notice that the values for the yz combination at the top of the matrix
form a pattern that is not a normal binary sequence.

Z

2 00 01 11 10
0 XYZ XYZ XYZ XYZ
1 XYZ XYZ XYZ XYZ

» Consider the function:
F(X,Y,Z)=XYZ+X’YZ + XY’Z + XYZ
» Its K-map is given below.

» What is the largest group of 1s that is a power of 2?

YZ
% OO0 01 11 10

0 O 1 1 O
1 O 1 1 O

» This grouping tells us that changes in the variables x and y have no influence upon
the value of the function: They are irrelevant.

» This means that the function, F(X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ
reducesto F = Z.

YZ
You could verify this X 00 01 11 10

reduction with
Boolean Algebra 0 o1 1|0

1 O 1 1) O0

» Now for a more compllcated K- map.. Consider the function:

F(X,Y, 2)= XYZ + XYZ + XYZ + XYZ + XYZ + XYZ

» Its K-map is shown below. There are (only) two groupings of 1s.
» Can you find them?

YZ
) ¢ 00 01 11 10

0 1 1 1 1
1 1 0 0 1

» In this K-map, we see an example of a group that wraps around the

sides of a K-map.

YZ

% 00 01 11 10
o (11 1(1)
1 1)0 ol1

f=>(0,4=BC

f=>@@45=AB

f =3>(0,1,4,5) =B

f=3>(0,1,2,3)=A

BC BC BC BC
AN_ 00 01 11 10 AN_00 01 11 10 AN_ 00 01 11 10 AN_ 00 01 11 10
off1]lo|o]o olo|o|o]oO o1]1]]o0]o off2|2]1]12
1|lo0|0]|o0 1|1)lo]o 1/1]1]lo|o olo|o]|oO
f=y (13) =A'C
it ——— f=>(46)=AC f=3(0,2=AC f=3(02,46)=C
BC BC BC BC
AN_00 01 11 10 AN_00 01 11 10 AN_ 00 01 11 10 AN_ 00 01 11 10
olofr]1]lo olo|lo|lo]|o o|1]o]|o]|l2 o|1]lo|o]|12

0) 0) 0) 0)

1| 1)jo|o|[1]

0) 0) 0) 0]

o [0 x

K-Map Simplification for Four Variables

» The K-map can be extended to accommodate the 16 Minterms that are

produced by a four-input function.
» This is the format for a 16-minterm K-map.

YZ
WX

00
01
11
10

00

WXYZ
WXYZ
WXY?Z

WXYZ

01

WXY?Z
WXYZ
WXYZ
WXYZ

11
WXYZ
WXYZ
WXYZ
WXYZ

10
WXYZ
WXYZ
WXYZ
WXYZ

» \WWe have populated the K-map shown below with the nonzero minterms
from the function:

F(W,X,Y,Z)=WXYZ + WXYZ + WXYZ

+WXYZ + WXYZ + WXYZ + WXYZ
» Can you identify (only) three groups in this K-map?

YZ
WX 00 01 11 10
00 1 1
01
11

10 1 1 1

» Our three groups consist of:
» A purple group entirely within the K-map at the right.
» A pink group that wraps the top and bottom.
» A green group that spans the corners.

» Thus we have three terms in our final function:

Y Z

10/@

YZ
WX

00

01

11
10

» It is possible to have a choice as to how to pick groups within a K-map, while
keeping the groups as large as possible.

» The (different) functions that result from the groupings below are logically
equivalent.

YZ
WX

00
01
11
10

11 10

(I—‘I—ll—'l—')

CD CD CD CD
AB_,00 01 11 10 AN\ 00 01 11 10 AN\ 00 01 11 10 AN\ 00 01 11 10
oof1/lo]o]o ocolo|o|o0|oO oolo|o|o|oO ocolo|o|o|oO
orlo|o|o0]oO o1| o |[1]|o] o0 orlo|o|o0]|oO or|1]lo|o|[1]|
11{o0 |0 |0 |oO 110 1]/o]o 110 (2]|1]lo0 11|00 |0 |oO
10|[1]jo oo 100 |0 |0 |oO 10lo|o0|o0|oO 10lo0 |0 |0 |oO
I
f=—3(08)-BeCeD f=>(513)=BeCeD f =3(13,15)=AeBeD f=>(46)=AeBeD
CD CD CD CD
AN\ 00 01 11 10 AN\ 00 01 11 10 AN\ 00 01 11 10 Ag_00 01 11 10
co|o|olf1]|1 00 olo]o oo|lofoflz1]1 oo|1][ofof 2]
o1|o|of1]1] o1| 1|/ o |0 |[1 | or{o|o|o0]|oO orlo|o|o0|oO
11{0|0|o0|o0 111 |o|o |1] 11{0|0|o0|o0 11{0|0|0]o0
1i0/lo|lo |0 |oO 1000 |O0|oO 1000 |0 |[1]1] 10|1)|ojo|1]
\ \ \

f=>(2,3,6,77=AeC

f=>(4,6,12,14) =BeD

f=3>(2,3,10,11)=BeC

f =>(0,2,8,10)= Be D

CD

AB
0]0)

01
11
10

OO0 O1 11 10

olo|o]|o
‘111 1]
olo|o]|o
olo|o]|o

f=>(4,56,7)=AeB

CD
AB 00O 01 11 10
00| O o 1 o
01| O o 1 o
11| O O 1 6]
10| O 0|10

f=>(3,7,1,15 =CeD

cD

AgN_ 00 01 11 10
ocof1|of1]o
o1|of1)o]1
11{2]lo|1]o
0|0 |a]fo]z

f =>(0,3,5,6,9,10,12,15)
f=A®B®C®D

CD
AB 00O 01 11 10

00 (0] (0]
o1 [a]] o [+
11| O (0]
w020 o
f=>(1,2,4,7,8,11,13,14)
f=A®B®C®D

ol|r|o|r
olr]o|r

CD
AB OO0 01 11 10
0o (0] 1 1 (0]
Oo1| O 1 1 (0]
11| O 1 1 0]
10| O 1 1 (0]
f=>(1,3,57,9,11,13,15)
f=D

CD

AB Y\ 00O O1 11 10 u
00 | 1 0 O 1
o1 1 0] 0] 1
11| 1 0] o 1
10| 1 0 o 1

f =>(0,2,4,68101214)
f=D

CD
AB 00 01 11 10
oolo|o|lo]|oO
o1 ‘1 1| 1 1\
111 |11 |1
10l 0| 0| 0] O
f=>(456,712131415)
f=B

CD
AN\ 00 01 11 10
oof1|21]|1/|1
oLl o|lo|o0o]|oO
11| 0| 0| 0| O
1021|1211
i \
f = 2_(0!112 5318!9 510111)
f=B

Don't Care Conditions

» Real circuits don’t always need to have an output defined for every possible
Input.

» For example, some calculator displays consist of 7-segment LEDs. These
LEDs can display 2 7 patterns but all patterns are not used.

» If a circuit is designed so that a particular set of inputs can never happen, we
call this set of inputs a don t care condition.

» They are very helpful to us in K-map circuit simplification.

» In a K-map, a don’t care condition is identified by an X in the cell of the
minterm(s) for the don’t care inputs, as shown below.

» In performing the simplification, we are free to include or ignore the X’s
when creating our groups.

YZ
WX

00
01
11
10

00
X

X

01
1

X

11

e

10
X

» In one grouping in the K-map below, we have the function:

> F=WX’+YZ

YZ
WX

00
01
11
10

00 01 11 10
(X 1 1] X)
X 1
X 1

=

» A different grouping gives us the function:

F(W,X,Y,Z)= WZ + YZ

YZ

— 00 01 11 10
00 X 1 X
01 X

10

1
1
11 X 1
1
L=

» The truth table of:

FW,X,Y,Z)=WX’+YZ
differs from the truth table of:
F(W,X,Y,Z)=WZ+YZ

» However, the values for which they differ, are the inputs for which we have
don’t care conditions.

YZ
WX

00
01
11
10

YZ

00 01 11 10 WX
(X 1 |1| X 00
X 1 01
X 1 11
1 10
-

00 01

11

10

X [1
X

]x

X

(I—'I—‘I—‘I—'

Redundancy

AB
CD 00 0l 11 10
00 !/ 1
0 4 12] Note: 1's shaded in blue are covered
A g \ by only one prime implicant. All
0] 1 ' 3 otber l.’s are covered by at least two
: - - 4 prime implicants.
L
4 | 55 »
11 01 QJ) Doa——— ACD
N o~ :
3 B el 11

10 1
2 6 14 10

Design of combinational digital circuits

» Steps to design a combinational digital circuit:
» From the problem statement derive the truth table
» From the truth table derive the unsimplified logic expression
» Simplify the logic expression
» From the simplified expression draw the logic circuit
» Example: Design a 3-input (A,B,C) digital circuit that will give at its

output (X) a logic 1 only if the binary number formed at the input has
more ones than zeros.

Inputs Output

A B C X
00 0 O 0
110 0 1 0
210 1 0 0
310 1 1 1
411 0 O 0
511 0 1 1
6|1 1 O 1
711 1 1 1

—> X=) (3,5,6,7)

U

AN 00 01 11 10

BC

0l0(0|1]0

U

1{of11)1] T

X=AC+AB+BC —/

» Example: Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a
logic 1 only if the binary number formed at the input is between 2 and 9 (including).

Inputs Output * }
A B C D X :> X = 2(21314’516’7’8;9))
0|0 0 0 O 0 |
10 0 0 1| o U) > >x
20 0 1 o 1 CD
3]0 0 1 1 1 A\ 00 01 11 10 - L —
40 1 0 o| 1 oo|o|olfz]1 * L >
5|0 1 0 1 1 >
60 1 1 O 1 oij(aj11]1 - ») e
7lo 1 1 1 1 11/0|0|0|o0 L/
8/1 60 0} 1 10z]1) oo)
91 0 0 1 1 ENER T J (i
101 0 1 O 0
111 0 1 1 0 %)
121 1 0 O 0 == — -
X =AC+AB+ABC /\ /\
131 1 0 1 0
14 1 1 1 (0] (0] 0—' 0—' 0—' o—l
151 1 1 1 0 A B C 5 N

» K-maps provide an easy graphical method of simplifying Boolean
expressions.

» A K-map Is a matrix consisting of the outputs of the minterms of a
Boolean function.

» In this section, we have discussed 2- 3- and 4-input K-maps. This
method can be extended to any number of inputs through the use of
multiple tables.

Recapping the rules of K-map simplification:

- Groupings can contain only 1s; no 0s.

- Groups can be formed only at right angles; diagonal groups are not
allowed.

- The number of 1s in a group must be a power of 2 — even If it contains a
single 1.

- The groups must be made as large as possible.

- Groups can overlap and wrap around the sides of the K-map.
- Use don’t care conditions when you can.

- Redundancy must be reduced

Lecture of Module 3

Combinational Circuits

vV vV v vV v v VvV Y

Introduction

Half Adder

Full Adder

Half Subtractor

Full Subtractor
Ripple/Parallel Adder
Adder-Subtractor
Look-ahead carry Adder

Intfroduction

The outputs of Combinational Logic
Circuits are only determined by the logical
function of their current input state(s), logic
“0” or(and) logic ““1”, at any given instant.

Combinational logic circuits give us many
useful devices.

One of the simplest is the half adder, which
finds the sum of two bits.

E Combinational Logic Circuit
Arithmetic & Dhata Code
Logcal Functions Transmission Converters

. A
Audders Multiplexers Binary
Subtractors Demultiplexars BC D
Comparitors Encoders F-segment
PLD s Decodars
—_—= —————
Combinational -
n' Circuit 'm'
Inputs Outputs

Half Adder

Half
Adder

D = = | O

o o ol|lo

For Carry B For Sum
A
0 | 0 0 | 1
0 | 1 1 0
Carry = AB Sum = AB+AB

=ABB

} . ‘_.4|>O_} Sum

Full Adder

Outputs

A C-IN Sum C-Out
0 0 0 0 0
Full Adder 0 0 1 1 0
Cout 0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Aﬁc 0 0 1 10 A0 w1 %, T)D Sum
g 0 1 1 3 'E z O 0 1 TJ 2
Wl g 1q s RN AT
K-map for Sum (§) K-map for Carry (C oul

S = ABC+ABC+ABC+ABC

SSFA®B®C

Fig. 3.17 implementation of full-adder
C=AB+BC+CA

S = ABC+ABC+ABC+ABC

SSFA®B ®C

C=AB+BC+CA

0

\/

Jg

:
A

&
0

EOW LWL,

3

\

5

Sum

Carry

Full Adder using Half Adders

CARRY IN o " Half ® o SUM
Adder
P Harf [° °°—_z>—ocmmv ouT
Adder OR
Q o—@Q co

Halif Adder

I e N~ _
) Si=i L) O

Half Subtractor

A B D B, For D: For b:
= Hatt [g ‘: ‘: f B - B
; Supfmctr | . R A B B A B B
1 1 0 0 — _
TE— Truth Table 8 @ 5 @

A —e

B'——'—ﬂ

o o] -

D=ADB b=A.B

[Logic Circuit of

Half Subtractor

\/

U

Full Subtractor

For D:
INFUT QUTPUT BB;, 35 Be. BB BB
A B Bin D Bout " — T =
0 0 | 0 0 0 . @ @
: A @ @
0 6 | 1 1 i
0 1 | 0 1 1 p=ADEDE
O 1 l 1 0 1 ForB;,:
1 0 | 0 1 0 BB, _ _
; ; ‘ 1 0 0 A B, BB, BB,, BB,
S I
: a A 1 I-
1 T | .8

Bot=AB+(A+B)B,

Full Subtractor using Half Subtractor

|- ___________________________________ 1
||_ ____________________ r nnnnnnnnnnnnnnnnnnnnnnn -! E-l-a---- P ——— i
', Half Subtractor | Half Subtractor ide - r \ :
| | KEY (X&Y)3Bin .i } f Differeace
|
| i i
1
i

Y= BORROW

| BORROW H
| i i
By ! R ! e . » | Boy — Bue—oioimimimimssemisierones ;.-.-.....-.-.-.-.; _______ ')
: : : || ﬁ’;ﬂ: Secnnd Half

| Full Subtractor | Sabiractor

I
| I
I | o i
| | lDII:I:. B
¥ L1y DIFF. /™ DIFF. IF :
] HS | HS | | i
| |Bi | E
] I

Ripple/ Parallel Adder

» Just as we combined half adders to make a full adder, full adders can connected
IN series.

» The carry bit “ripples” from one adder to the next; hence, this configuration is
called a ripple-carry adder.

1l 1l 1l 1l

C3 | Fun Adder C2 |Full Adder | ©1 | Full Adder [€0 | Fun Adder | Cin
< D < c B < A
S3 S2 S1 So

4-bit Ripple Carry Adder

'AAAY

;=B; Y,=B, Y,=B, Y=B,

In order to make an adder/subtractor, it is
necessary to use a gate that can
either pass the value through or generate its
one’s—complement.

The exclusive OR gate, XOR, is exactly what
we need.

Yz Y; Y, Yo
If Neg =0 Then Y; =B,;,Y, =B,,Y; =B,;, and Y,=B,
If Neg =1 Then Y; =B,,Y,=B,.Y; =B,, and Y;=B,
This is controlled by a binary signal: Neg.
Let B = 1011.

If Neg =0, then Y = 1011.
If Neg =1, then Y = 0100.

Adder-Subtractor

BO

B3 A3 B2 A2 B1 Al AD
Sy ay T Hnd
L Y 3
c2 c1 co
Full Adderf= Full Adder| Full Adder [Full Adder |
l l l i Cin
Cout 53 52 51 <0

» In any combinational circuit, the signal must propagate through the gates
before the correct output is available in the output terminal.

» The total propagation time equal to the propagation delay of a typical gate
times multiplied with the gate levels in the circuit.

» The propagation delay time in a parallel adder is the time it takes the
carry to propagate through the full adder.

» In each full adder the carry out from the carry In passes through two gate
levels.

» For n-bit parallel adder the total gate delay will be 2n.

» So, the carry propagation time is a limiting factor on the speed
with which two numbers are added in parallel.

» To avoid that another adder is widely used which employs the
principle of Look-ahead carry.

» The adder designed using the principle of Look-ahead carry Is
called as Look-ahead carry adder or Carry look-ahead adder.

P.=A ®B

Gi - Ai Bi Half Adder bt o ko) i "
A B e—s _E : | : Si

The output Sum and Carry can be] T j) W _,W\/ ;

expressed as: Pz g7 T :

E R e Y

S;=P;@Ci g } o |
Cou= G, PG oy B [d e

G; is called as carry generator and P; is
called as carry propagator.

These equations show that a carry signal will be generated in two cases:
1) if both bits A, and B; are 1
2) if either A, or B, is 1 and the carry-in C; is 1.

Let's apply these equations for a 4-bit adder:

C, =G, + P,C,
C,= G, +P.C, = G, + P,(G, + P,C,) = G, + P,G, + P,P,C,
C,= G, +P,C, =G, +P,G, +P,P,G, + P,P,P,C,

c G, + P,C, = G, + P,G, + P,P,G, + P,P,P,G, + P,P,P,P,C,

« These expressions show that C,, C; and C, do not depend on its previous carry-in.
* Therefore C, does not need to wait for C, to propagate.
* As soon as C, is computed, C,can reach steady state.
* The same is also true for C, and C,
 The general expression is
Cis1= Gi+ PiGiy + PP1Gip + o PiPiy...PoP1Go + PPy ... P1PCy,.
* This is a two level circuit

Carry Look-Ahead Generator

Total 4 gate delay: One gate delay for P; and
generator and one gate delay for Sum generator.

Ag r: ;

Co

G,

_;W

Po

Go

5
y 0

Full Adder with Look-Ahead Carry

G; generator, two gate delay for Carry

Advantages:

*CLA Adders generate the carry-in for each full adder simultaneously, by
using simplified equations involving P;, G;, and C;,..

*This system reduces the propagation delay.

*This is because the output carry at any stage is dependent only on the first
Carry signal given at the input.

*It is the fastest adder when compared to other addition mechanisms.

Disadvantages:

*The carry look-ahead adder circuit gets more complicated as the number of variables
increase.

*The circuit for a carry look-ahead adder is expensive as it involves more hardware.
*As the number of variables increases, the circuit implements more hardware.

*Thus, when the carry look-ahead adder is implemented as an IC, the area is bound to
increase.

Ripple Carry Adder vs. Carry Look Ahead Adder

Ripple Carry Adder Carry Look Ahead Adder
The Carry bit passes through a long logic The Carry bit enters in the system only at the
chain through the entire circuit. input.

As the full adder blocks are dependent on Since the entire system depends on the first
their predecessor blocks' carry value, the carry input, the computations are very
entire system works a little slow. quick, making it the fastest adder.

Has a slightly complicated design with many

It has a simple repetitive design. logic gates

The manufacturing process is expensive as

The system design is cheap to manufacture. compared to other systems.

The ripple carry adder chips have @ The chip area increases, as there are many
considerable size and area. components in the circuit.

Combinational Circuits

» BCD Adder
» BCD Subtractor

» Comparator

» Error detection and correction codes

Decimal BCD
Digit

0

]
2
3
4
5
6
/
8
9

0000
0001
0010
0011
0100
0101
0110
O111
1000
1001

¢ InpUtS: A3A2A1A0, B3B2B1B0, Cin from
previous decade.

* Output: C,,¢ (carry to next decade),
YAYAYAVAY

* |dea: Perform regular binary addition and
then apply a corrective procedure.

BCD Addition Rules

BCD addition

Add two numbers as same as binary addition

Case 1: If the result is less than or equals to 9
and carry is zero then it is valid BCD.

Case 2: If result is greater than 9 and carry is
zero then add 6 in four bit combination.

Case 3: If result is less than or equals to 9 but
carry is 1 then add 6 in four bit combination.

BCD 1
0001 1000 0100 184
0100 011 0110 +376

Binarysum 0111 10000 1010
Add 6 0110 0110
BCDsum OLLL OO 0000 760

09
-
=
)
a
O
af
O
(S
©
c
O
S
af
®)
S
O
Q
=
®
O

™
E . O|=|n|m|s o~ oo
o |~ o0 | | v | e e | v |] e | v |] []
0
a
wlol=|o 0] g2 e ||| o]~ o]
0
Al olol- |lojo|glo|e|d|d|o|o|d|+|o|o
£
E -
2 0
D.___.,q o|o ‘lo|o|E|o|o|o|o|||=|=|o|o
Q J
@ a
” 1))
alololo ‘|7 8|o[o|ojo|o|o|o|o|H|
0
0
a
ujololo JololQ|d|H || ||| |||
1]
T
c
< 2 ol a) m.
T
-
MO0 Jo|=lo|-H|lo|H|o|=|0|=|O]|-
)]
-
32
Nil=ll=1kz 1o|o| g |o|o|||o|o]|H|
£ o
3
)
> Njolo|o ‘o o|o|=|H|H|H|o|o|o|o
m
-
7]
Ni=li=]l= 1 Hid|H|lH|H | H|O|O|0|0
¥ Q|0 Ji= QIOICI0|0|0|H|H|HH

BCD Adder

» In the previous table Decimal sum from O to 9, the Binary sum same as BCD sum. So, no
conversion is needed.

» Apply correction if the Decimal sum is between 10-19.

< The correction is needed (Decimal sum 16-19)when the binary sum has an output carry
K=1

< The correction is needed (Decimal sum 10-15)when Zg =1 and either Z, =1 or Z, = 1.

» So, the condition for a correction and an output carry can be expressed by the Boolean
function:

C=K+ZZ, +ZZ,

» When C =1, it is necessary to add 0110 to the binary sum to get BCD sum and provide an
output carry for the next stage.

Addend Augend

Wl Ll

4 -bit binary Adder Carry; |

Ly Za £z Z

Cout —— C_- h

output
cArry

4 -bit binary Adder

Ss Sa Sz S
Black diagram of a BCD adder

8385 By Bg AzAgAqAg

4- Bit Binary adder

8393519

, d

&

Regdd

Digit 2

)
o
jf LR v
Cout
4~ Bit Binary adder
————|

(Ignored) WIS
S 3 523 1 50
¥

oigit 1

Cin=0

B3 By By By AzAzA1 A

Fig

4- Bit Binary adder &
3231 0O
&
_(-
—@
ey
L 2
]
t oW ‘* N W
>
o 4- Bit Binary adder m
‘-—‘
(Ignored) $,5,5,5,
L 2R 2K 2
A 5 4
Digit 0

B - Bit BCD Adder

BCD Subtraction Rules

Let two BCD numbers are A and B.

B to be subtracted from A. inary equi : Binary equtvalent
BCD number Bmgggq[';ﬂﬂ?:t of 19 Sspg‘é’gmm of 9's complement
(d) 9-d) number

RULES: wx ¥ 2= . G i€ C
* Add 9’s Complement of B to A 0 00 0 0 9 [0 0 1
* Ifresult > 9, Correct by adding 0110 1 0 0 0 1 8 1 0 0 0
 If carry is generated at most significant position : 00 1 0 ! 0 1 11
then the result is positive and the End around carry : c e . - . X
must be added 5 01 0 1 4 0 1 0 0
 If carry is not generated at most significant position 6 0 1 1 0 3 0 0 1 1
then the result 1s negative and the result 1s 9’s ; ? 1; é {l] :11 g g :J ?
complement of original result 9 1 0 0 I 0 0 0 0 0

Regular Subtraction 9's Complement Subtraction

(a) 8 8
_2 + 7

T @ 5

. h+1

6

(b) 28 28
- 13 + 86

15 Q) 14

st g

15

(c) 18 18
- 24 +75

-6 93

—Jﬁ

9's complement of 2

Add carry to resuilt

g complemeni of 13

Add carry to the result

9' complement of 24

9's complement of result
{No carry indicates that the
answer is negative and in
complement form)

E.G. 8 —3=8+[9s COMP.OF 3]
=8+ 06

1110 <« INVALID (=9)
0110 < CORRECTION

(1) 0100
L ——» 1 <« END AROUND CARRY
0101 =5
(b) 3—8=-5 0011
0001
0100

NO CARRY === NEGATIVE
9’s COMP. OF 0100 = 0101 = -5

{(c) 87 39 === 87 + [9s COMP OF 39]

87 1000 0111

60O 0110 0000

—» 1110 0111
INVALID 0110

(]I.) 0100 0111

» 1
0100 1000
= 4 8

?'s Complement Circuit

* 9’complement of 2 is 7
* Binary equivalent of 2 is 0010
* 1’s complement of 0010 is 1101 Logic Y
* Then, 1101
+ 1010

= 0111 which is Binary equivalent of 7
« If carry discard it.

(MSB) A,

(BRI R |
(MSB)

-—a@(
—al((C]
¢_q

* 9°complement of 315 6

* Binary equivalent of 3 is 0011 4-bit binary parallel adder

* 1’s complement of 0011 1s 1100 Cy S 5 8 5

* Then, 1100 ; T 11
+ 1010

= 0110 which is Binary equivalent of 6
« If carry discard it.

BCD Subtractor Circult

; %
L i steioalh e
RULES ﬁ s
Add 9’s Complement of Bto A ==t = -
« Ifresult > 9, Correct by adding 0110 RCD Adder }
« If carry is generated at most significant position I i T
then the result Is positive and the End around = I P R S R S J
carry must be added e V V \? v
« |If carry is not generated at most significant 9 | 1] |
position then the result is negative and the result Cin 4-hit Adder ‘
IS 9’s complement of original result | | | |
—Elliu 2 23 hf:mmdr;l =0

BOTDy Outpuot d

Comparator

» A magnitude digital Comparator is a combinational circuit that compares two digital or
binary numbers in order to find out whether one binary number is equal, less than or
greater than the other binary number.

» We logically design a circuit for which we will have two inputs one for A and other for B
and have three output terminals, one for A > B condition, one for A = B condition and one
for A < B condition.

» A comparator makes use of a cascade connection of identical sub networks similar to the
case of the parallel adder.

A>B
A N - bit
Comparator A=
- A<B

1-Bit Magnitude Comparator

» A comparator used to compare two bits is called a single bit comparator.

» It consists of two inputs each for two single bit numbers and three outputs to
generate less than, equal to and greater than between two binary numbers.

From the above truth table logical expressions for each A B A<BIASBIASE

output can be expressed as follows: unnn“

Hﬂ LH R
A>B: AB' A<B: A'B A=B: A'B' + AB LB EN
e e] &

Logic Diagram

From the above expressions we can derive the By using these Boolean expressions, we can implement a logic
following formula: circuit for this comparator as given below:

(A<B)+(A>B) = A'B+AB'

Taking complement both sides N Iy

((A<B) + (A>B)) = { A'B + AB' B \/ At
e

((A<B) + (A>B)) = (A'BY (AB)' =

/ T ol | A8
((A<B) + {(A=>B) Y ={({ A + B (A' +B) y),_
'\-\.I\Il -If

((A<=B) + {A=8B) ¥ =(AA" + AB + A'BR' +BB") / o

g " ={(AB + AB') / [\ A
A V T .

Thus,

T

{ (A<B) + {A > B)) = (A = B)

A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude
comparator. It consists of four inputs and three outputs to generate less than, equal to and greater

than between two binary numbers.

INPLTT

OUTPLI]

1] |
=

A0 BO

R
@

b
[
o

'HID 11 GHEE

EHID 11 DHEH

-IIH“DDDHH -H

ATAD

From the Truth Table K-map for each output can be drawn as follows:

A=B

B1B0O
00

01

11

10

00 0

0

0

0

01 1

11 "1

o0 1

A>B: A1B1’+ AOB1°’B0’ + A1AOBOQ’

B1BO
ATAD

00

01

A =B

11

10

00

0]

1

T

1

01

]

11

00

A<B: Al’Bl1 + A0’B1B0 + A1’A0’B0

B1BO
ATAD

00

01

11

00

A=B: A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0B1B0 + A1A0’B1B0’

A1’B1’ (A0’BO’ + AOBO) + A1B1 (AOBO + A0’B0?)
(AOBO + A0’B0’) (A1B1 + A1’B1’)

(A0 Ex-Nor B0) (Al Ex-Nor B1)

Logic Diagram

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:
Al AO B1 BO

vabvdbdl

| S —._ A<B

U

ﬂ

— A=B
-

D—\—Y\ A>B

S S

)

:

4-Bit Magnitude Comparator

A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude
comparator.

« It consists of eight inputs each for two four bit numbers.

* Three outputs to generate less than, equal to and greater than between two binary numbers.

In a 4-bit comparator the condition of A = B can be possible in the following four cases:

A = B is possible only when all the individual bits of one number exactly coincide with
corresponding bits of another number.

If A3=B3 and A2 =B2and A1 =B1 and A0 = BO
As the numbers are binary, the digits are either 0 or 1.
The equality relation of each pair of bits can be expressed logically with an equivalence function.
xi = AiBi + Ai’Bi’ 1=0,1,2,3 where xi = 1 if the pair of bits in position i are equal.

So,
(A=B) =x3.x2.x1.x0

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

IfA3=1and B3=0
IfA3=B3,A2=1and B2=0
If A3=B3,A2=B2,Al=1andB1=0
If A3=B3,A2=B2,A1=B1,A0=1and B0=0
The sequential comparison can be expressed logically as:
(A>B) =A3B3’+x3 A2B2’ + x3x2 A1B1’ + x3x2x1 AOB0’

In a 4-bit comparator the condition of A<B can be possible in the following four cases:

IfA3=0and B3=1
If A3=B3,A2=0andB2=1
If A3=B3,A2=B2,Al=0andBl=1
If A3=B3,A2=B2,A1=B1,A0=0and B0 =1
The sequential comparison can be expressed logically as:
(A<B) =A3’B3 +x3 A2’B2 + x3x2 AI’B1 + x3x2x1 A0’B0

Logic Diagram

(A=B)=x3.x2.x1.x0 By~ o]
A, > .
(A>B) =A3B3’+x3 A2B2°+ x3x2 AIBI1’+ x3x2x1 A0B0O’ -
BEX : q E |

(A<B) =A3°B3 +x3 A2’B2 +x3x2 AI’BI + x3x2x1 A0’B0 =

X

0 00

A > B)

e &
5
LI&@

U

4-Bit Magnitude Comparator

Cascading Comparator

A comparator performing the comparison operation to more than four bits by cascading two or more 4-bit
comparators is called cascading comparator.

When two comparators are to be cascaded, the outputs of the lower-order comparator are connected to
corresponding inputs of the higher-order comparator.

L 8
B[] (18] Vee R A3 A2 A1 AO A7 A6 A5 A4
B

a<s)[Z] (1545 ¥ || 0 [> N o

: 12| 12
a3 [12]8; EM |8 EM I

15 |- B Ity 15
a4 rEs 13]A; ; s:v po—j 7 fa
3 1. 1.6 W
] oV AM—- -
Q1 Q1
AelLl [10]4% S a2 o
onpps [518, Q3 I Q3

G b

B3 B2 B1 BO B7 B6 B5 B4

Pin diagram (IC T485)

Applications of Comparators

« Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).

* These are used in control applications in which the binary numbers representing physical
variables such as temperature, position, etc. are compared with a reference value.

« Comparators are also used as process controllers and for Servo motor control.

« Used in password verification and biometric applications.

Error Detection and Correction Codes

» Bits 0 and 1 corresponding to two different range of analog voltages. During transmission of
binary data from one system to the other, the noise may also be added. Due to this, there may
be errors in the received data at other system.

» That means a bit 0 may change to 1 or a bit 1 may change to 0. We can’t avoid the interference
of noise. But, we can get back the original data first by detecting whether any errors present
and then correcting those errors.

» For this purpose, we can use the following codes.
< Error detection codes
< Error correction codes

» Error detection codes — are used to detect the errors present in the received data. These
codes contain some bits, which are included to the original bit stream. These codes detect
the error, if it i1s occurred during transmission of the original data.

Example — Parity code, Hamming code, CRC code etc.

» Error correction codes — are used to correct the errors present in the received data so that,
we will get the original data. Error correction codes also use the similar strategy of error
detection codes.

It also detects the error.
Example — Hamming code, CRC code etc.

» Therefore, to detect and correct the errors, additional bits are appended to the data bits at
the time of transmission.

Parity Code Method

A parity bit is an extra bit included in binary message to make total number of 1’s either odd or even.
Parity word denotes number of 1’s in a binary string.

There are two parity system-Even Parity and Odd Parity.

vV v v Vv

In even parity system 1 is appended to binary string if there is an odd number of 1’s in string otherwise 0
Is appended to make total even number of 1’s.

» In odd parity system, 1 is appended to binary string if there is even a number of 1’s to make an odd
number of 1’s.

» The receiver knows that whether sender is an odd parity generator or even parity generator.

» Suppose if sender is an odd parity generator then there must be an odd number of 1’s in received binary
string.

» If an error occurs to a single bit that is either bit is changed to 1 to 0 or 0 to 1, received binary bit will
have an even number of 1°s which will indicate an error.

O
=pE
L
O
&
O
O
=
G
al

)

4-bit even parity generator

)
)

4-bit odd parity generator

£
“_U._P__I__U_.,Ul O | D~ | DD |
o
<
o
z
M._Pﬂ_llﬂ == = =]
0
-
S8

b7 b6 b5 BA B3 b2 bl bO b7 b6 b3 b4 b3 b2 bl b0

b8 b7 b6 b5 b4 b3 b2 bl b0 ;.bbl b7 b6 bS5 b4 b3 b2 bl b0
~ v
msg transmitted msg transmitted
Even Parity Geneartor Odd Parity Generator
X — — P :
v . Farity Parity C
7 LGenerat::-r Checker

Parity Generator and Checker

7 b6 bS b4 b3 b2 bl boO

Parity Generator

b7 b6 bS b4 b3 2 bl

b

Parity Generator

Parity Checker

b6 b5 bd B3 b2 bl bO

Even Parity Generator and Checker

U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

bs b7 b6 b5 b4 b3 b2 bl

v—

Odd Parity Generator and Checker

Parity Checker

vV v v v v Vv Y

The limitation of this method is that only error in a single bit would be identified.

It does not tell which bit is incorrect .

It also can not correct the incorrect bit.

To overcome this another code called Hamming Code is used to detect an error.
It indicates which bit is in error.

It also correct that error.

Because of this Hamming Code is called as self correcting code.

v

Hamming Code

It was developed by R.W. Hamming for error correction.

Hamming code is useful for both detection and correction of error present in the received
data.

This code uses multiple parity bits and we have to place these parity bits in the positions of
powers of 2.

The minimum value of 'k' for which the following relation is correct is nothing but the
required number of parity bits.

2k > n + k + 1 Where, ‘n’ is the number of bits in the binary code, ‘k’ is the
number of parity bits

Therefore, the number of bits in the Hamming code is equal to n + k.

Based on requirement, we can use either even parity or odd parity while forming a
Hamming code. But, the same parity technique should be used in order to find whether any
error present in the received data.

biswa
Sticky Note
correct equation is :-
2^k >= n+k+1

vV v v v VvV Vv

Let us find the Hamming code for 4-bit binary code

We can find the required number of parity bits by using the following mathematical relation.
2k>n+ Kk +1

Substitute, n = 4 in the above mathematical relation.

=2k>4+k+1=32k>5+Kk

The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity
bits.

Therefore, the number of bits in Hamming code will be 7, since there are 4 bits in binary
code and 3 parity bits.

biswa
Sticky Note
correct equation is :-
2^k >= n+k+1

biswa
Sticky Note
correct equation is :-
2^k >= 4+k+1
=> 2^k >= 5+k
=>k=3

» \We have to place the parity bits and bits of binary code in the Hamming code as shown below.

» Now the Hamming code word format will be d7 d6 d5 p4 d3 p2 pl, where ‘d’ represents the data
bit and ‘p’represents the parity bit.

» The parity bit p1, p2 and p4 are assigned values by the following three parity relations.
» pl=d7 @d5 @d3 p2 =d7 @ d6 & d3 p4 =d7 @d6 Hd5
Example: 1
Construct an even parity seven bit Hamming code for a word 1011.

d7 d6 d5 p4 d3 p2 pl

1 01?2 1 7?2 ?

From first relation to have even parity pl should be 1. From second relation to have even parity p2
should be 0. From third relation to have even parity p4 should be 0. So, the final Hamming code is
1010 101

For finding the position of error the following relations are to be followed.

x=d7 @d5 @ d3 @pl y=d7 @d6 @ d3 @ p2 z=d7 @ d6 @ d5 @D p4a
The parity check may be even parity or odd parity

If parity relation is satisfied then x or y or z equal to 0, otherwise 1.

vV v Vv Y

Example: 2
The Hamming code is received 1010001. What was the correct code transmitted.

The code received d7 d6 d5 p4 d3 p2 pl
1 0 10 0 0 1

Applying first parity relation x = 1. Applying second parity relation y = 1. Applying third parity
relation z = 0.

So, zy x = 011, which is equal to 3, that is, third data bit is erroneous one and should be corrected as
1 instead of 0. Now, the correctcodeis1010101.

Combinational Circuits

v vvyvVvyy

Multiplexer

De-Multiplexer

Decoder

Encoder

Priority Encoder

BCD to Seven Segment Display

>

\ A 4

\ A 4

A Multiplexer or Mux Is a device that has many inputs
and a single output.

It selects a single input to the output from several inputs.
The particular input chosen for output is determined by
the value of the multiplexer’s control lines.

To be able to select among n inputs, log,n control lines
are needed.

A multiplexer is also called as a data selector.

The main purpose of Mux is to perform high speed
switching.

In analog applications, these are made up of transistor
switches and relays, whereas in digital applications,
these are made up of logic gates.

I, —»| Multiplexer |Output
I,— (MUx)

S1 S

Control lines

Block diagram of Multiplexer

4-1t0-1 multiplexer

» This is what a 4-to-1 multiplexer looks like on
the inside.

» The 4X1 multiplexer comprises 4-input bits, 1-
output bit, and 2- control bits.

» The control bit AB decides which of the i/p
data bit should transmit the output.

» For example, when the control bits AB =00,
then the higher AND gate are allowed while
remaining AND gates are restricted. Thus, data
input dO is transmitted to the output ‘q”

d(0]

df1]

d(2)

d[3]

PV L

8-to-1 multiplexer

Enable E Ao }
A —H
AT—» 1 } A7
A—> & Ol
plexer
AS—P A3 AE >
A 8x1 > Y A, ¥ :
As——1 Multiplexer] * |
A:: 2
A—» 5 S—] Multiplexer |——>Y
A ——» A ;
‘ D — S lo
) : D—
7
l[‘[] A
S 58 151% S e
S $ So A‘ A Multiplexer 5
Select lines A |
LT |

16-to-1 multiplexer

h s 81
Aa A‘IE—)’ f
0 A, Multiplexer
AE A'I
i? 16x1 :Z
' —F 3 .
\ Multiplexer [&, X o,
A A5 Multiplexer [
M Ag)| |
M Ay Y ¥ 0
A Ag
A Ay
A Mg
Ay 8x1
{ ‘ ‘ { s Ay—— Multiplexer 5
P
A3 Aj—p
S 5 H % Ay Ao ,

Applications

» A Multiplexer is used in various applications wherein multiple data can be transmitted
using a single line.

» A Multiplexer is used to increase the efficiency of the communication system by
allowing the transmission of data, such as audio & video data from different channels
via cables and single lines.

» A Multiplexer is used in computer memory to decrease the number of copper lines
necessary to connect the memory to other parts of the computer.

» A multiplexer is used in telephone networks to integrate the multiple audio signals on a
single line of transmission.

» A Multiplexer is used to transmit the data signals from the computer system of a
satellite to the ground system by using a GSM (Global System for Mobile
communication) communication.

Implemented by MUX + Equation Y=AB Y=(A+B)
Y=output = A
0o — 10 B. 10 B 10
() =—t 10
. 21 .
21 v Y va Y — Mux ¥
Y Marx Muzx B 11
Mux B—n 0 | 11
] — 11 S5
g 5
5
| A
A A Y = ADEB = AB + AB
A
Y=A Y=A+B Y=(A.B)
]. . ID _
| e—d 10 B =——t 10 B + 10
2:1
21 . 21 v B Mz ¥ o '
M Mux B —1t 11 B [11
[y m— |] — 11
5 s
5 5
| A A
A A Y = AOQB = AB + AB

Multiplexer Example

Implement the following Boolean function using a 4x1 Mux;

F(xy,z) =Z(1,2,6,7)

Solution
x y z|F
0000 ,_
00 1|1 '=¢
01 01 :
01 1o Foe
10 00
10 1|0 F=0
1 101
1 1 1 |3 F=1

(a) Truth table

4§ X 1MUX

(b) Multiplexer implementation

itol
illThs

LYlZ| G Xy
0 0[0 u} - | [
Loyl I
oafofo)
01(1]0] &
Tole] 1Y —— d,
RUEY A ¢
110]1 L ;
Lififof 85 = 1T L

out

Example

Example: Implementation of given function using & to 1 multiplexer lement e foloving Boolean functon usig 8- 1 MUX

FABCD)= (13411 2131415

| Imclementation Taole F{F\:B,C,D) =7 mm:1 :2:4:5:9:12:14]
Solution.
+ Tt e ofvablen =4 ABCD) bbb bl kb b g
v Number of selectngs: n-1=3(B,C.D) A 0@ 2@@ 5 § 7 SekctinesareB, CandD

Follow all the steps as per above points.

o The given function has 4 variable, s0 16 possible minterms ({ - 13) are enterad in the implementation table [EIEN B @ @@ @

v Allthe minterms are divided into 2 groups TR

o The first group (0-7) minterms are entered in the first row (Vanable A=() b bk kT
0 2 B 5 i b

o The second group (8-15) minterms are entered in the second row (Variable A= 1) Sien it 531 = — = : =
A O(32)3 (4 5 (8 7

v Circle the minterm number as per function, which you have to implement (in tis case its 134 1112,13,14 13) L aleBn @@ s
e \g O

v Find out the multiplexer input as per above given steps. 0) (15010 10

Rules: M]

* If two min-terms are not circled in a coloumn,
apply 0 to Mux input.

 If two min-terms are circled in a coloumn,
apply 1 to Mux input.

* If bottom one is circled and top one is not
circled in a column, apply A to Mux input.

* If bottom one is not circled and top one is
circled in a column, apply A’ to Mux input.

' g €D
\ il

MUK -1 81 f
. bl MU
[§ -

= |
I_EI I_I | —
| .

Demultiplexer

» A Demultiplexer or Demux is a circuit which can distribute or

deliver multiple outputs from a single input.
» It can perform as single input many output switch. M Control fines
» The output lines of demultiplexer are ‘N’ in number, select line ‘ ‘ ‘
» The control signal or select input code decides the output line to
which the input has to be transmitted.
» Itisalso called as Data distributor. |
| NQutputsignals
% 1:2 Demultiplexer or 1-to-2 Demultiplexer Sgpal
< 1.4 Demultiplexer
< 1.8 Demultiplexer

number is ‘M’ and N = 2M,
» There are several types of Demultiplexers Linput et DEMUX
< 1:16 Demultiplexer

1:2 Demultiplexer

lo |
D—3 1:2 "‘D"_L

DEMUX

(a) (b)

1:4 Demultiplexer

- The input bit is Data D with two
select lines A and B.

* The input bit D is transmitted to four
output bits YO, Y1, Y2, and Y3.

* When AB is 00 the upper AND
gate is enabled while the other AND
gates are disabled. Thus, the data is
transmitted to YO.

* If D is low, then YO is low and if D
Is high, YO is high. The value of YO
depends on the value of D.

DATAD

S1

SO

YUUUUUUU

Yo

YI

Y2

Y3

Y4

Y6

X7

Dis Din .
1:4 — W
DEMUX —
A E ;
Si So L
B
C
S1 Sa Ys
Din .
1:4 Xt
DEMUX —
E
prem—

>

Applications of Demultiplexer (Demux)

Demux are widely used in microprocessor, computers and digital electronics.

Demultiplexer and Multiplexer both are used in communication systems to carry multiple data signals
(i.e. audio, video etc) using single line for transmission.

In Arithmetic logic unit (ALU), the output of ALU can be stored in storage unit (multiple registers) by
using Demultiplexer.

It is also used

>

v vvyyvVvyy

To enable the different rows of memory chips depends on the address. Also to chose different banks of
memory.

To enable different functional unit in the system
To select different 10 devices for data transfer
Data acquisition systems

Automatic test equipment systems

Security monitoring systems

Decoder

» Decoder is a combinational logic
circuit whose purpose is to decode the

. . Ay
information. V =
» It is comprised of n number of input §7

lines and 2" number of output lines. — ¥,
Y
» In every probable input condition, A — Y404 - 2

among the various output signals, onl >)
° i d K X Decoder

one output signal will produce the
logic one.

— Y}

» So, this is n-to-2" decoder, where n : , — |
input lines and 2" output lines.

» Generally, there are 3 types of line
decoders (2-to-4, 3-to-8 and 4-t0-16).

00000001

Z0

Z1

22

Z3

Z5

Z6

Z7

N

2t04

Decoder

—> Y7
—> Y¢
—> Y5

—> Y

h 4

h 4

h 4

2t0 4

Decoder

— Y3
—> Y
— Y
—> Y

y

A A 4

A 4

3to8

Decoder

Y

y

Y

3to8

Decoder

An n-t0-2" line decoder is a minterm generator.

By using or-gates in conjunction with an n-to-2" line decoder, realizations
of Boolean functions are possible.

Do not correspond to minimal sum-of-products.

Are simple to produce. Particularly convenient when several functions of
the same variable have to be realized.

Realization of the Boolean expressions
(X, %,) = =2m(1,2,4,5) and
f2(X2.X1,Xo) == 2/77(1,5,7)

3-to-8
DEC

w sk W N

o)

T

Implementation of a Full Adder circuit using Decoder.
S(Xg, Xy, Xo) =3(1,2,4,7)
C(Xgs X1y %9) = 2.(3,5, 6, 7)

Xp

X2

3-to-8
DEC

a Wnw kA W N

~]

— >

P RPPRPPOOOOX

PP OORPFOOK

P ORFRPOPRFRPORFO|N

RPRFRPPFPOPFRPOOO|IN

P OOFRPROFRLEFLPOW

Decoders with enable inpufts

» When disabled, all outputs of the decoder can either be at logic-0 or logic-1.
» Enable input provides the decoder with additional flexibility.
» ldea: if data is applied to the enable input.
» Process is known as demultiplexing.
» Now Decoder works as Demultiplexer. XoX1E
2-to-4
vo— g DEC 0 20 If xo = 0,x; = 0 then
, % data appears on
i ! line z,.
2 ~2
Enable | E
(E) 3 23
Data

» Enable inputs are useful when constructing larger decoders from smaller decoders.

—> Y7
»
, 2to 4 > Ve
Decoder
—> Y5
—> Y4
)
—> Y3
)
2to 4 Y,
> Decoder
—> Yy
—> Yj

Y V. Y

Y

3to 8

Decoder

Y. Y VY

Y

3to8

Decoder

Applications

» In digital electronic decoder play an important role. It is used to convert the data from
one form to another form.

» Generally, these are frequently used in the communication systems like
telecommunication, networking, and transfer the data from one end to the other end.

» In the same way it is also used in the digital domain for easy transmission of data.
» Itisalso used as

Binary to Octal converter

BCD to Decimal converter

BCD to Seven Segment Display
» Boolean functions can be implemented using decoder.

» The Seven segment display is most frequently used the digital display in a
calculators, digital counters, digital clocks, measuring instruments, etc. f I Ib
g

t
;¥

|
f

Y
"’.r'l “}’l

» Usually, the displays like LED’s as well as LCD’s are used to display the
characters as well as numerical numbers. EI ,
d

§

's

» These displays are frequently driven by the output phases of —
digital integrated circuits like decade counters as well as latches.

f,

» However, the outputs of these are in the type of 4-bit BCD (Binary Coded -
Decimal), so not appropriate for directly operating the seven segment . A
display. ot < D

C
D

Signal BCD

7-Segment
Decoder

» For that, a display decoder can be employed for converting BCD code to
seven segment code.

Outputs

EEEERN

» Generally, it has four input lines as well as seven output lines.

d
b
c
d . 7-Segment
=
f
g

» The Decoder is an essential component in BCD to seven segment display.

.f"
ae |v|""F +
b .—H—u
C
d
g
f o |y
o
g1
Common
Cathode

Wt [[t

/t,, .
M

» The circuit design, as well as operation, mainly depends on the concepts of Boolean
Algebra as well as logic gates.

» The common terminals are either anode or cathode. So, it may be common cathode type
or common anode type.

Decimal | Input lines Output lines Display a

¢=F7(A,B,C,D)=Ym (2,3,4,5,6,8,9)

Digit FATEB]Cc|[Dlalblc|d]|e|f]g]|Pattern R . "
0 ofofofolt[t[1[11]1]o] 7 f‘ ‘b) g_
1 olojol1]ol1|1]ol0o]0]0 ! 9 _ e ¢
2 ofolietrlel i [t]e[1] 2 E‘ ‘c ——D °
3 ofo [ttt]elo["] 3 S
4 o1 ofofolr[t]ofo[1][1| 4
5 o[r]olr[rfol1]r]e[1]1] g a=Fl(A,B,C,D)=3>m(0,2,3,5,6,7,8,9)
R e N b=F2(A,B,C,D)=Ym (0, 1,2,3,4,7,8,9)
5 ¢c=F3(A,B,C,D)=Ym (0, 1,3,4,5,6,7,8,9)
7 o(1 |1 |1]1]|1|1]0]|0|0]|0O '} d=F4(A,B,C,D)=>m(0,2,3,5,6,8,9)
e=F5 (A, B,C,D)=Ym (0, 2, 6, 8)
8 1lololol1[1[a]1]1]1]1
8 f=F6 (A, B,C,D)=Ym (0,4, 5, 6, 8, 9)

a=A+C+BD+BD

d

S 00, 01 11 10

00 ll

0
01 0 [1\ 0 1
X

111 (X

~
10 | L1 1 X “Xl

d=A+BD+BC+CD+BCD

00

01

11

10

00 | 01 11 , 10
BEEEKN G

0 0 0 1

X X X X
ﬂ 0 x |f

e=BD + CD

c=B+C+D
Do 01 11 10
00 r 111 o 0 0
01 [1 11l o 1
11 kx x| x X]
wofla/] 1+ | x| xJ

f=A+BC+BD+CD

01

11

10

1] 1] o |1
x | x/| x | x]

g=A+BC+BC+CD

BD
. . - B D
= S AL SN C U > m— e >——a
CD
3 N ¢
r SO
1
Cﬁ} \-}
=
— [ten] D
L _BcC L
=2 =
5%
———— B

a=A+C+BD+BD

b=B+CD+CD

g=A+BC+BC+CD

4 SPST Switches

Feto Rz
{22042 - to - 4T70403)

= 3800 to OO0

Common Ancde
Display

Common Cathode
Cisplay

$35835%

s.,l s.:l S“’l S"l 2| 16l s
v 4N L[
REO
rd
A ; 7ALSAT
B BCD to
C 2 T-sament
[=] Decoder
o
Snd
s ov
H_I o Hq e
TkL: each
+ 8
) |
CT wveo BC
switches
— =7 A 4511
oo —| BcDto
-—:.--"‘""- | 7-sement
| P} : C Decoder
:.--"'""-] ‘D
e
4-bit BCD LE cnd
InpLt

4x 1kO2

QUTPUTS

Veeo f g a b d e

<
|16 |15 |14 |13 |12 I1I 10 9

HEEEE
7447 |

[]]

1 2 Is |4 |5 [7 [a
B C LAMP BI‘RBO RBI D A GND
INpUTS TEST INPUTS

» An Encoder is a combinational circuit that performs
the reverse operation of Decoder.

» It has maximum of 2N input lines and ‘N’ output
lines, hence it encodes the information from 2N
Inputs into an N-bit code.

» It will produce a binary code equivalent to the
Input.

N
2 input Lines

ENCODER

N output lines

~
/

The 4 to 2 Encoder consists of four inputs Y3,
Y2,Y1, Y0 and two outputs Al and AO.

At any time, only one of these 4 inputs can be ‘1’
In order to get the respective binary code at the
output.

The 8 to 3 Encoder or octal to Binary encoder
consists of 8 inputs : Y7 to YO and 3 outputs :
A2, Al & AO.

Each input line corresponds to each octal digit and
three outputs generate corresponding binary code.

4:2 Encoder A0

4 to 2 Encoder

8:3 Encoder

8 to 3 Encoder

4-t0-2 Binary Encoder

Wi Wy W1 Wo | V1 Vo W,

0 0 0 1 0 0

00 1 0 | 0 1 "1 D— Yo
0 1 0 0 1 0

1 0 0 0 11 "2

8-to-3 Binary Encoder

At any one time, only Do
one input line has a value of 1.) C(Dy +D3+D5+Dy)
1
Inputs Outputs D,
Do Dy D, D3 Dy, Ds Dg Dy A B C
1 00 00 O0O0OUO 000 D3 : B (D, + D; + Dg + D)
O 1.0 0 0 O O O 0 01
O 01 00 0 0 O 010 Dy
o 0o 01 0 O O O 0 11
O 0 0 01 0 0 O 1 00 D,]
SRR ER R
Dg —
O 0 0O 00O 0 0 1 1 11

Priority Encoder

» One of the main disadvantages of standard digital encoder is that they can generate
the wrong output code when there is more than one input present at logic level “1”.

» One simple way to overcome this problem is to “Prioritize” the level of each input
pin.

» If there is more than one input at logic level “1” at the same time, the actual output code
would only correspond to the input with the highest designated priority.

» This type of digital encoder is known as Priority Encoder or P-Encoder for short.
» The Priority Encoder solves the problems by allocating a priority level to each input.

» The priority encoders output corresponds to the currently active input which has the highest
priority.

» So, when an input with a higher priority is present, all other inputs with a lower priority will
be ignored.

Yo

Y1

S
O
L
O
O
o
LL]
=
=
O
o
o
O
e
4

W3 W, W; Wy

0
0

|0
0

0000

Truth Table

0001

O01 x

Y0

wo 1

w3 Wy Wy

Y1)o

w3 Wy Wi W

01 xx

0

0O 0 0 O

1

0O 0 O

X
0

0O 0 0 O

0

1

0 0 O

2l o —
N
HO — — — W
+
—_— o
00 — — — W
I
< S X/l/ = =
=
< S = = <9
~N
=
o
=
< [X O —|O O O — - |
= |X O O~ ~ =— - - -
%01 ~|o+~ o0 o - O
w,.n...n. - 00 « @) ~ O
%UU Ol «~ + o O |~
W3_UU oloo o - - -

i = — W2
_ +
S S
(e — — VI
Y S o = =
o~
=
o
=
S [x o - O O O |+ -
UHVAU QO |~ - o | -—
(o]
WU1 — (O O «— O -—
w,.n...n. - O ~ « O —
%UU O~ - «~ |O ®)
W3_UU oo O O -

Circuit for the 4-to-2 priority encoder

3-10-3 Priority Encoder

Lowest Priority Inputs Outputs o
Output » From the truth table of the Priority
Dy —» » O DpDs D50, 0 0 B0y Q0 Encoder, the Boolean expression
I ‘ 000000O071(000 with data inputs D, to D, and
D, > > 0 000000 1x!00 1 outputs Q,, Q,, Q, is given as:
Dg—rpﬂ_*?w SRR RRERS IR
rorty —» U; _ S D:D.D N

e 0000 1xxx|011 Qo E(DE(D4DED1+D4D3+D5J+D?)
D: —p 000 1xxxx|100 Q :2(5554(D2+D3)+D5+Dr)
De — 001xxxxx|101
0, — D1y xxxxx| 110 QE:E(Dd-I-DE-I-DEi-I-DT)

Highest Priarty Txxxxxxx|111

Kodonicam

Applications

» Keyboard Encoder

» Interrupt Requests

» Octal to Binary Encoder

» Decimal to Binary Encoder
» Decimal to BCD Encoder

Lecture of Module 4

Sequential Circuits
(Latch/Flip Flop)

vV v vV v v vV VY

Introduction
Latch
Flip Flops

Triggering of Flip Flop

SR, D, JK, T Flip Flop

Master Slave Flip Flop

Characteristic Table and Characteristic Equation
Excitation Table

Seqguential Logic Circuits

The output state of a “sequential logic circuit” is a function of
the following three states, the “present input”, the “past input”
and/or the “past output”. Sequential Logic circuits remember
these conditions and stay fixed in their current state until the
next clock signal changes.

Sequential logic circuits are generally termed as two state or
Bistable devices. Outputs set in one of two basic states, a logic
level “1” or a logic level “0” and will remain “latched” (hence
the name is latch) indefinitely in this current state or condition
until some other input trigger pulse or signal is applied which
will cause the bistable to change its state once again.

l Sequential Logic Circuit]
|
v ¥ +
Event Driven Clock Driven Bul Dri
(Asynchronous) {(Synchronous) ulse Driven
' |
v
Cyclic Mon-cyclic
Input Qutput
Combinational :>
Logic Circuit Bositive
Feedback
Previous
State
Memory <+— [cio
< ~ Signal
gna

Sequential Logic: Concept

» Sequential Logic circuits remember past inputs and past circuit state.
» Outputs from the system are “fed back™ as new inputs.
» The storage elements are circuits that are capable of storing binary information: Memory.

The basic sequential circuit elements can be divided in two categories:
» Level-sensitive (Latches)

» High-level sensitive

» Low-level sensitive
» Edge-triggered (Flip-flops)

» Rising (positive) edge triggered

» Falling (negative) edge triggered

» Dual-edge triggered

Sequential circuits can be Asynchronous or Synchronous.

Asynchronous sequential circuits change their states and output values whenever a change in
input values occurs. Circuit output can change at any time (clock less).

Synchronous sequential circuits change their states and output values at fixed points of time.
This type of circuits achieves synchronization by using a timing signal called the clock.

Clock signals.

e
h‘
N

Clock generator: Periodic train of clock pulses

Memory Devices

Latches: A latch is a memory element whose excitation signals control the state of the
device. A latch has two stages set and reset. Set stage sets the output to 1. Reset stage set
the output to 0.

Latches are also called level triggered flip flops, because the change on the outputs will
follow the changes of the inputs as long as the Enable input is set.

< This causes synchronization problems.

Solution: use latches to create flip-flops that can respond (update) only on specific times
(instead of any time).

Flip-flops: A flip-flop is a memory device that has clock signals control the state of the
device.

Flip Flops are Edge triggered that change there outputs only at the transition of the clock
signal.

Latch Vs. Flip Flop

L.atches Flip Flops

Latches are building blocks of seguential | Flip flops are also building blocks ocof
circuits and these can be built from logic | seguential circuits. But, these can be built

cates from the latches.

Latch continuously checks its inputs and | Flip flop continuously checks its inputs

changes its output correspondingly. and changes its output correspondingly
only at times determined by clocking
signal

The latch is sensitive to the duration of the | Flipflop is sensitive to a signal change.
pulse and can send or receive the data | They can transfer data only at the single
when the switch is on instant and data cannot be changed until
next signal change. Flip flops areused as a
register.

It is based on the enable function input It works on the basis of clock pulses

It is a level triggered. it means that the It is an edge triggered. it means that the
output of the present state and input of the | output and the next state inputchanges
next state depends on the lewvel thatis when there is a change in clock pulse

binary input 1 or O. whether itmavw a +ve or -ve clock pulse.

Synchronous Sequential Circuifs:

Flip tflops as state memory

Inputs ———m - » Outputs
Combinational

circuit

Flip-flops

Clock pulses

(a) Block diagram

(b) Timing diagram of clock pulses

®m The flip-flops receive their inputs from the combinational circuit and also from a clock
signal with pulses that occur at fixed intervals of time, as shown in the timing diagram.

S-R Latch(NOR version)

R=0
Reset Last State Last State Forbidden
Recall... = SAFTTT Time R S Q__Q Comment
ODl 0| 0| ? | ? Storedstate unknown
0 0 1 110 "“Set" Qto 1
. 0O 0/ 1! 0 NowQ “remembers” 1|
DQ— a | 1/ 0/0 1“Reset"Qto0
R (reset) 0 0 0 1 ! !
} 1 1 0 0 Both
0 0 ? ? IUnstablel

S-R Latch(NAND version)

Q Q

Rl
0
1 1 O Set
0
1

Characteristic Table

X_Y|NAND
00

01
10
11

O~ k=

S-R Latch(NAND version)

15 o s R |Q Q
: 00
e 0 1
10
bR }L_ < 11 1 O Last State
X YINAND Characteristic Table
00| 1
01 1
10 1
11 0]

S-R Latch(NAND version)

1 S S Ro Q Q,
Q0 -
-] 0 1
— 10 | O 1 Reset
0 R r—at L
X YINAND Characteristic Table
00
01

—
@
Ol—-\p—.\l—-\

S-R Latch Flop(NAND version)

1 S > S RIQQ
< 00
e 01
10
1 R }J’_Q 11
O 1 Last State

Characteristic Table

X _Y INAND
00| 1
01, 1
10| 1
11| O

S-R Latch(NAND version)

X _Y INAND
00| 1
01| 1
10| 1
11 O

— =00 W

R Q Q
0 1 1 Forbidden
1
0]
1

Characteristic Table

R ! Next state of Q

0 Mo change

Q = 0; Reset state
0 | Q= 1; Set state

1 Undefined

- a2 O O \|n

S-R Latch(NAND version)

S 3; S R | Next state of Q
Dc I Q 0 0 | Nochange
o 0 1 | Q=0;Reset state
><“-x_, 1 0 | Q=1;Setstate
1 1 | Undefined

Y

=i,

Function table
Logic diagram

S-R Flip Flop with Clock signal

s C S R | Nextstate of Q
) :lc * Q 0 X X | Nochange
//J 1 0O 0 | Nochange
C—s >‘< 1 0 1 | Q=0;Reset state
\l 1 1 0 | Q=1; Set state
)= o— Q 1 1 1 | Undefined
R
(a) Logic diagram (b) Function table

Latch is sensitive to input changes ONLY when C=1

S-R Flip Flop with Clock signal

Next state of Q

No change

Q(t)

No change

Q = 0; Reset state
Q = 1, Set state
Undefined

- = a0 0
- a2 O O X |tn
- 0O = O X |7

Q(t)

Logic diagram Function table

Latch is sensitive to input changes ONLY when C=1

Set —

Reset —b 0
RS Q Q
00 Q G
0 1 1 0
i 8 0 |1
I 1 Notallowed

—= Highoor low

— Low or high

(pand OU

are initial conditions
(not defined)

=_oOo o o o]0

e e

Negative Status

1
0

1

o S = — R o B = SRR = O
= O = O = O = O 2

Negative Status

Characteristic Table

R

Qt+1)=5+RQ
SR=0

Characteristic Equation

Set —

Q = High or low

Reset — Q —= Low or high
R § Q Q
00 Q Q
0 1 1 0
i 0 9 1
1 1 Notallowed

Qyand Qy

are initial conditions
(not defined)

Triggers on this edge
of the clock pulse

—1 CLK

— Qpb—

Level Triggering

Triggers on this edge
of the clock pulse

-

> CLK

1 7) B
P> Cclk

Q— _— o —

Positive Edge Triggering

Negative Edge Triggering

D Flip Flop

» One way to eliminate the undesirable indeterminate state in the RS flip flop
IS to ensure that inputs S and R are never 1 simultaneously:.

D § } b D—— —AQ
. 8 o f—
) —Q
z CWSRF'F lop {: D

Q = 0; Reset state

e Flip-Flop
0 ><q____1 & Qbsr f——-)
—0Q
S C D Next state of Q
DG }T} 0 X Mo change
1 0
1 1

Q = 1; Set state

Characteristics table

Qn D | Q(n+1)

= = O O

= O = O

0

1
0
1

0 1
0 1
0 1
Q(n+l)=D

Characteristic Equation

v v v Y

In SR Flip Flop S=R=1 should be
avoided.

To overcome that JK Flip Flop
developed.

Both the S and the R inputs of the
previous SR bistable have now been
replaced by two inputs called
the J and K inputs respectively after its
inventor Jack Kilby. Then this may
equatesto: J=Sand K =R.

When J=0, K=0, no change in state.
When J=0, K=1, Q will reset.
When J=1, K=0, Q will set.

When J=1, K=1, Toggle i.e Q’,

Toggles on leading edge

SR flip-flop

of clock signal /
L e
se—| sk |—ea \ D”_ 1o
Rip-flop _§ ' :
Clk @—{> Clke— | i
K @— —'-"::_l Ko : _ :F’ ‘: .ﬁ
[—: B |
mbol Circuit
K | g |10 0]Q|Q |Nochengein
P sate
LLO IO |1 |ResetsQtol
P — & T 010 [sesQul
L1111 - | Toggles

» When J=1, K=1, Togglei.e Q’,

» For JK flip-flop if J, K and Clock are equal to 1 the —>
state of flip-flop keeps on toggling which leads to — K Ql—
uncertainty in determining the output of the flip- "
flop. This problem Is called Race

1 1 stable stmble

1§ Race-around) {memory) Race-anound {mcTmory)

1 condition | st=be for conaibom state for
CLOCK = () ORI = ()

around the condition. K Type
» This can be avoided by : ; . ;
< Using Edge triggering of JK Flip Flop crLocK \ \
< Enhancing the propagation delay o : : :
< Using Master-Slave Flip Flop “ mal_lj_l_li I ‘ | ‘ \

Master-Slave Flip Flop

» Master-slave flip flop is designed using two
separate flip flops. Out of these, one acts as the Master Slave
master and the other as a slave. S [+ *® g
» The J-K flip flops are presented in a series CLK s P i
connection. feser = . =
» The output of the master J-K flip flop is fed to
the input of the slave J-K flip flop. >
» The output of the slave J-K flip flop is given as a
feedback to the input of the master J-K flip flop. “Master Latch” “Slave Latch”
il ™,
» The clock pulse [CIK] is given to the master J-K ===k . —
flip flop and it is sent through a NOT Gate and ! 'ij—f :)" ’: b : eQ
thus inverted before passing it to the slave J-K ik ._i . :) : |
flip flop. i | i |
» Itavoids the race around condition of J-K Flip Ke _:}_:_ | }D : o
Flop “‘T}:J =

Characteristic Equation of J-K Flip Flop

Characteristic Table i«
Q |J K |Q(+1) Q JK UK UK JK
O |0 |0 |o 2 T | 1]
0 0 1 0 1 1
o |1 |o |1 .
o [1 |1 |1 K Map
1 0 0 1
1 0 1 0 Q(+1) =JQ' +K'Q
1 1 0 1 Characteristic Equation
1 1 1 0]

JK flip-flop

T Flip Flop

We can construct the "T Flip Flop" by
making changes in the "JK Flip Flop".

The "T Flip Flop™ has only one input, which
Is constructed by connecting the input of JK
Flip Flop.

This single input is called T.

Sometimes the "T Flip Flop™ is referred to
as single input "JK Flip Flop".

In T flip flop, "T" defines the term "Toggle"

a | T | Q(+1)
0 0 0
0 1 1
1 0 i
1 1 0

Clk——

(K)

T

ol

Toggle or
riggle Input

Clk

Characteristic Table

Q(t+1) =TQ +TQ

Q T Q(t+1)
0 0 0
0 1 1
1 0 1
1 1 0

T flip-flop

Characteristic Equation

Excitation Table

The characteristic table is useful for analysis
and for defining the operation of flip flop.

It specifies the next state when the inputs and
present state are known.

During design process we usually know the
transition from present state to next state.

So, we want to know the flip flop input
conditions that will cause the required
transition.

Therefore, we need a table that lists the required
inputs for a given change of states.

Such table is called as Excitation Table.

SR Flip-flop D Flip-flop
Qi) Q+l) 8§ R Q) Q+) D
0 0 0 X 0 0 0
0 1 1 0 0 1]
| 0 0 1 1 0 0
I 1 X 0 1 1 1
JK flip-flop T flip-flop
Qu Q1) I K Qu Ql) T
0 0 0 X 0 0 0
0 1 | X 0 1 1
| 0 X 1] 0 I
| 1 X 0 1 1 0

Excitation Table for different Flip Flops

Sequential Circuit Design

Example:
B’C’ B’C BC B’C’ B’C BC BC’ B’C’ B’C BC BC’

. IIIII -EODE - N
T 1

A B cC TA TB TC A

0 0 0 0 0 1

TA=BC TB=C TC=1
0 0 1 0 1 1
0 1 0 0 0 1

1 —
0 Y T I A I 5 c
TA 'TB 1—T1cC
1 0 0 0 0 1 ! 2 !
1 0 1 0 1 1 o o =
O T R O - A o
CLK

1 1 1 1 1 1

Example:
L et the state equations are:
A (t+1)=A’B’CD + A’B’C + ACD + AC’D’
B (t+1)=A’C + CD’ + A’BC’
C(+1)=8B
D (t+1) =D’
The above equation can be rearranged in the form of
characteristic equation of J-K flip flop.
Characteristic equation of J-K flip flop is

Q(t+1) = JQ' +K'Q

A(t+l)=AB’CD +A’B’C+ACD + AC’D’
=(B’CD +B’C)A’+ (CD + C’'D’)A

So,J=B’CD+B’C=B’C

K=(CD+CD)=CD+CD’

B (t+1)=A’C + CD’ + A’BC’
=(A’C+CD’)(B+B’) + A’BC’
=(A’C+CD)B’+(A’C+CD’)B+A’BC’
=(AC+CD)B’+(A’C+CD’+A’C’)B

S0,]=AC+CD’

K=(AC+CD’+AC’)’=AC+AD

C (t+1) =B =B(C+C’)=BC’+ BC
So,J=B

K=B’
D (t+1)=D’=(1) D’+ (0) D
So,J=1

K=1
So, finally
JA=B’C KA=C'D+CD’
JB=AC+CD’ KB=AC+AD
JC=B KC=PB’
JD=1 KD=1

Setup time and Hold time

The Clocking event can be either from low to high or
from high to low. The input signal around clocking
event must remain unchanged in order to have a /

correct effect on the outcome of the new state.

» T.. the minimum time interval preceding the input
clocking event the input signal must remain
available and unchanged.

» T,:the minimum time interval after edge of the
clocking event, the input signals must remain
unchanged

Glock

Applications

Flip flops will find their use in many of the fields in digital electronics. Flip flops are the
main components of sequential circuits. Particularly, edge triggered flip flops are very
resourceful devices that can be used in wide range of applications like storing of binary data
and transferring binary data from one location to other etc. Some of the most common
applications of flip flops are

Shift Register
Counter

Storage Registers
Memory

Data transfer

vV v v vV v Vv

Frequency Dividers etc.

Sequential Circuits
(Shift Register)

» Register

» Shift Register

» Types of Shift Register

» Bidirectional Shift Register
» Universal Shift Register

» Typical ICs for Shift register

Regqister

vV v vV v VvV Y

v

The filp flops are essential component in clocked sequential circuits.
Circuits that include filp flops are usually classified by the function they perform.

Two such circuits are registers and counters.

Ann-bit register consists of a group of n flip flops capable of storing n bits of binary information.
So, Register is a collection of flip flops.

A flip flop is used to store single bit digital data. For storing a large number of bits, the storage
capacity is increased by grouping more than one flip flops.

It is used to perform simple data storage, movement, manipulation and processing operations (e.g.
load, increment, shift, add, etc.)

The computer processes data by performing operations on registers, e.g. ADD A, B where A and B
are the registers.

A register capable of shifting its binary information in one or both direction is called a shift register.
All flip-flops receive common clock pulses, which activate the shift from one stage to the next.

biswa
Highlight

Shift Register

Parallel In — Serial Out shift register

> C > C > C > C
Parallel In — Parallel Out shift register r r r
CLK

4-Bit Shift Register

» The simplest possible shift register is one that uses only flip-flops, as shown in Fig.

» Each clock pulse shifts the contents of the register one bit position to the right.

» The serial input determines what goes into the leftmost flip-flop during the shift.

» The serial output is taken from the output of the rightmost flip-flop.

» Following are the four types of shift registers based on applying inputs and accessing of outputs.
» Serial In — Serial Out shift register

» Serial In — Parallel Out shift register Islf;ﬂl oLp b b b S0
>

>

Serial In — Serial Out (SISO) shift register

» The shift register, which allows serial input and produces serial output is known as Serial In — Serial
Out (SISO) shift register.

» This block diagram consists of three D flip-flops, which are cascaded. That means, output of one D flip-flop
IS connected as the input of next D flip-flop.

» All these flip-flops are synchronous with each other since, the same clock signal is applied to each one.

» In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence, this input is
also called as serial input.

» For every positive edge triggering of clock signal, the data shifts from one stage to the next. So, we can
receive the bits serially from the output of right most D flip-flop. Hence, this output is also called as serial
output.

l O l Serial D> Q> D; Qs Do Qo Serial
Input Output
D D D

Flip-Fl Flip-Fl Flip-Fl
>lp op >|p op >|p op

clk

Serial In — Parallel Out (SIPO) shift register

» The shift register, which allows serial input and produces parallel output is known as Serial In —
Parallel Out (SIPO) shift register.

» In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence,
this input is also called as serial input.

» For every positive edge triggering of clock signal, the data shifts from one stage to the next.

» In this case, we can access the outputs of each D flip-flop in parallel. So, we will get parallel
outputs from this shift register.

Paraliel

Output
: Qo |—
101 Serial D> Qs Dy Qs Do
Input
D D D

Flip-Fl ip- Flip-F
> p-Flop > Flip-Flop > p-Flop

clk

Parallel In — Serial Out (PISO) shift register

» Inthe "Parallel In Serial Out' register, the data is entered in a parallel way, and the outcome
comes serially.

» The shift mode and the load mode are the two modes in which the ""PI1SO"" circuit works.

B

FParallel Inputs

EC' Bl B2
Shift/Load I

T

Dutpwut
e

Clk

Parallel In — Parallel Out (PIPO) shift register

» In""Parallel In Parallel Out", the inputs and the outputs come in a parallel way in the register.

» The inputs B,, B,;, B,, and B,, are directly passed to the data inputs D,, D;, D,, and D5 of the
respective flip flop.

» The bits of the binary input is loaded to the flip flops when the negative clock edge is applied. The
clock pulse is required for loading all the bits. At the output side, the loaded bits appear.

B, B, B, B,
LD: ﬂ,_\—)nz Q| Ln, Q| LDo Q|
FF-3 FF-2 FF-1 FF-0
|70' |7|3 |7:)
Clk
L
Q3 Ql Q1 Ql}

Bidirectional Shift Register

» Below is the diagram of 4-bit "'bidirectional’ shift register where Dy is the "serial right shift data
input™, D, is the "left shift data input', and M is the "*'mode select input™.

shift (L/R)

LDOE « Input Dy
.np% [1 [1
AR

D Qs > Dy Q Dy Q, Dg Qg
FF-3 FF-2 FF-1 FF-0

b -

Clr

Universal Shift Register

A shift-right control to enable the shift operation and the serial input and output lines associated with the shift right.
A shift-left control to enable the shift operation and the serial input and output lines associated with the shift left.

A parallel-load control to enable a parallel transfer and the n input lines associated with the parallel transfer.

vV v v Vv

If the Shift register has the capability of
Serial In — Serial Out
Serial In — Parallel Out
Parallel In — Serial Out
Parallel In — Parallel Out
and act as Bidirectional shift register is referred as a universal shift register.

» Shift registers are often used to interface digital system situated remotely from each other. If the distance is far, it
will be expensive to use n lines to transmit the n bits in parallel.

» Transmitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel conversion.

R/L

SH/LOAD
SR

-

CLK

Ds Dg Dcl
P i
W W
01l Ml | -
[[
DU | (DU | [
_ w sh
] 2 b il cascade
D al ‘ D Qrl D @
> Ck > Ck > Ck
SL
cascade
-+
Qp ¥ Qg I Qg

Shift left/ right/ load

Universal Shift Register using MUX

Parallel outputs

Mode Control
“lear 1€ » r <, r < 5 L B : ; RGngtef omﬁtlon
| | !

LK
0 0 NoChange
P I, | — " . 0 1 Shiftright
MUX | mux | mux | mMux '
Su—bszz{) la210 13210 laz1e ! 0 ShiftLek
[] [1 | { 1 Parallel oad
Serial
input for - Serial
shift-right £ 5 1 I input for
shift-left

Parallel inputs

Typical I1Cs for Shift register

Commonly available SISO IC is 74HC595, which is 8-bit.

Commonly available SIPO IC’s include the standard 8-bit 74L.S164, 74L.5594.
Commonly available PISO IC is 74HC166, which is 8-Dit.

Commonly available PIPO IC’s include the standard 8-bit M54HC195, M74HC195.

Today, there are many high speed bi-directional or ‘“universal” type Shift
Registers available such as the TTL 74LS194, 74L.S195 or the CMOS 4035 which are
available as 4-bit multi-function devices that can be used in either serial-to-serial, left
shifting, right shifting, serial-to-parallel, parallel-to-serial, or as a parallel-to-parallel
multifunction data register, hence their name “Universal”.

» The 74HC299 is an 8-bit Universal Shift register.
» The 745299 is an 8-bit Universal Shift and Storage Register.

vV v v VvV Y

Lecture of Module 5

Sequential Circuits
(Counter)

vV v v vV v v VvV Y

Introduction

Synchronous counter
Asynchronous counter
Up counter

Down counter

Decade counter

Ring counter

Johnson counter

Intfroduction

= Counter essentially a register that goes through predetermined sequence of states upon the application of
input pulses.

= A counter is a device which can count any particular event on the basis of how many times the particular
event(s) is occurred.

= |n a digital logic system or computers, this counter can count and store the number of time any particular
event or process have occurred, depending on a clock signal.

= Most common type of counter is sequential digital logic circuit with a single clock input and multiple
outputs.

= The outputs represent binary or binary coded decimal numbers.
= Each clock pulse either increase the number or decrease the number.
= Modulus of a counter is the total number of states through which a counter can progress.
= Two types of counters:
< Synchronous (parallel) counters
< Asynchronous (ripple) counters

Synchronous Counter

= Synchronous counter known as parallel counter.

= All flip flops of the counter changes their states at the same time in synchronous with the
input clock signal.

= All flip-flops of the counter driven by same clock.
= Circuit delay is equal to the propagation delay of one flip flop.

Asynchronous Counter

= Known as Ripple counter.

= Also known as Serial counter.

= Qutput of one flip flop is used as clock input of other flip flop.

= Circuit delay is equal to the sum of propagation delay of all flip flops.

Synchronous Counter

Binary Counter

B’C” B’C BC B’C’ B’C_ BC BC’ B’C’ B’C BC BC’
A Y |/ N7 ‘
A
"“‘ HODE - DD
A [Al 1 1 1
A B C TA TB TC
o o o0 o0 0 1 TA=BC TB=C TC=1
0 0 1 0 1 1 ﬂr
47
0 1 0 0 0 1 R I . .
0 1 1 1 1 1 TA Q B Q 1—rc Q
1 0 0 0 0 1
Q_ Q'_ Q_
1 0 1 0 1 1 ;’|\ /’|\ /‘\
1 1 0 0 o0 1 CLK
1 1 1 1 1 1

Decade or BCD synchronous counter

» A 4-bit decade synchronous counter can also be built using synchronous binary counters to produce a count
sequence from 0 to 9.

» A standard binary counter can be converted to a decade (decimal 10) counter with the aid of some additional
logic to implement the desired state sequence.

» After reaching the count of “1001”, the counter recycles back to “0000”. We now have a decade or Modulo-
10 counter or MOD-10 counter.

Stat Count Truth Table Qa Qg Qc Qp
count | Qo Qc Qe Qa [I ,T
ofstat]] 0 0 0 0
A 1|10 0 o0 1 '
2 0 0 1 0 Logic FFA FFB FFLC FFD
Reset Coune 30 0 1 1 T 1y o J a () Qc J Qo
for nextoycle 4 |0 1 0 O
5 0 1 0 1 — CLK CLK H CLK CLK
6 0 1 1 0 K K Kk K Og
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1 |
10 [new 0 0 0 0 ClockPulse
cycle

Binary Ripple Counter

Asynchronous Counter

>

vV vyvyy

\ A 4

Ripple counter is an Asynchronous counter. It got its name because the clock pulse ripples through the
circuit.

It is an asynchronous counter.
Different flip-flops are used with a different clock pulse.
All the flip-flops are used in toggle mode.

Only one flip-flop is applied with an external clock pulse and another flip-flop clock is obtained from the
output of the previous flip-flop.

The flip-flop applied with external clock pulse act as LSB (Least Significant Bit) in the counting sequence.

A counter may be an up counter that counts upwards or can be a down counter that counts downwards or
can do both i.e. count up as well as count downwards depending on the input control.

When counting up, for n-bit counter the count sequence goes from 000, 001, 010, ... 110, 111, 000, 001, ...
etc.

When counting down the count sequence goes in the opposite manner: 111, 110, ... 010, 001, 000, 111, 110,
... etc.

Ripple Counter

Count Up: When counting up, for n-bit counter HIGH 9 a, Q,
the count sequence goes from 000, 001, 010, ...

110, 111, 000, 001, ... etc.
4, o J a1~—‘ J; Q,l—
CLOCK ‘
Counter State | Q; Q Qg ruses— TP FF, o> FF, o> FF,

0 0 0 0
{ 0 0 1 Ko er Ky er Ks e
2 0 1 0 CLEAR |
3 0 1 {
) ! 0 0 ak | LI 1LJT L] L1 I
g 1 0 1 b | . 3 1 =t
5 1 1 : age o [la[leo[Llel o

1 1 1

1 1 1 1

@]

[

o

(]
(]
(]
(]
Q

Ripple Counter

Count Down: When counting down the count

sequence goes in the opposite manner: 111, 110, ...
010, 001, 000, 111, 110, ... etc.

Q0
m [J QJ [J Q
States 14> CLK o> CLK
7 1

Clock
Pulze

Qo 1 [0 |1 [0 |1 [0]1 0O

Q. 1 1|0 o1 1|0 @

O L, N W DM Ul O
O O O O L P,

©O O P P O O F K
©O B O P O Fr O K

O 1 1 1 1|0 0 0 0

Up/Down Counter (Asynchronous)

Up i":ls Q, Q.
D H e
High T High High

Set

) Set = ; Set =i 0 % &1
Clnck__ﬂ> h> h>
K cip @ —L K cir @ K ¢ @
FFO } FF1 | E FF2

Decade or BCD asynchronous counter

If we take the modulo-16 asynchronous counter and modify it with additional logic gates it can be made to
give a Decade counter output for use in standard decimal counting and arithmetic circuits. Such counters
are generally referred to as Decade Counters or BCD Counters.

A decade counter requires resetting to zero after the output count reaches the decimal value of 9, i.e. when
DCBA = 1001.

This type of asynchronous counter counts upwards on each input clock signal starting from 0000 until it
reaches an output 1001 (decimal 9).

When it is 1001, both outputs QA and QD are now equal to logic “1”. On the application of the next clock
pulse, by connection NAND gate to QA and QD, the output from the NAND gate changes state from logic
“1” to a logic “0” level.

The output of NAND gate is connected to CLEAR inputs of flip flpos.

As, the output of the NAND gate is connected to the CLEAR (CLR) inputs of all the flip-flops, this signal
causes all of the Q outputs to be reset back to binary 0000 after the count 9.

So, the counter restarts again from 0000. We now have a decade or Modulo-10 up-counter.

lsb)

BR=

QI} 1

[

| I I I I
QB |

|
ac |

: |
QD I

| Reset Pulse

CLR|

msb)

II:l:ltl:l a0 000 0011 M0l 0101 o110 Q11 1000 10M
Count 1 2 3 4 5% & 7 8 %

0000 03O1 OM0 00N 0100 @A 0110
01 2 3 4 5 6

Qs (g Qe Qppeg)
Ve +5y A A i A
I _e'lﬂ
741510
b Qb—s +— 0} J Q= J Q =
_* 741573 741573 741573 741573
CLK CLK CLK CLK
m| "o ‘R ‘R
l Rese!
Clock

Up/Down Counter (Synchronous)

-oge QA QB QC
4y Al J QB J ac
UP/OOWN FFA ZD{ FFB :D—f FFC
— 1 ek CLK CLK
|k QA —L L K QB _L L K Qc |

-
ClockPulse

v v Vv .y

Ring Counter

A ring counter is a type of counter composed of flip flops working as shift register, with the output
of the last flip-flop fed to the input of the first, making a "circular” or "ring" structure.

There are two types of ring counters:

A straight ring counter, connects the output of the last shift register to the first shift register input
and circulates a single one bit around the ring.

A twisted ring counter, also called switch-tail ring counter, Johnson counter connects the
complement of the output of the last shift register to the input of the first register and circulates a
stream of ones followed by zeros around the ring.

The straight and twisted forms have different properties, and relative advantages and disadvantages.
A binary counter can represent 2N states, where N is the number of bits (flip flops).

Whereas a straight ring counter can represent only N states.

Johnson counter can represent 2N states.

Johnson counters are sometimes favored, because they offer twice as many count states from the
same number of flip flops in the shift registers, and because they are able to self-initialize from the
all-zeros state, without requiring the first count bit to be injected externally at start-up.

The Johnson counter generates a code in which adjacent states differ by only one bit (that is, have
a Hamming distance of 1), as in a Gray code, which is advantageous in communication system.

When a fully decoded representation of the counter state is needed, as in some sequence controllers,
the straight ring counter is preferred.

There are two types of ring counters:
Straight ring counter

Twisted ring counter

Straight ring counter

Johnson counter

State Q0 Q1 @ Q2

Q3

SR ——
Ak G ﬂ 5

Ring Counter

#‘rl\'l EF

‘—*DSD'—FDEQ

DF
R

:

L.

—*‘D 5 ﬂ'—"[.'l

s'ﬂ—

BEQ

5

[]

__%_

Johnson Counter

5

4

3

UV

1

1

“11007, “1110~, “1111>, *“0111”, “0011>, “0001”,
i

Johnson ring counter has sequences like “1000”,
“0000.

Timing Diagram of Johnson Counter

+IIII —_— = = = | == —_—

ing Diagram of Ring Counter

m

Ti

Ring counter has 4 sequences: 1000, 0100, 0010,
3
0
0
1
e

0001.

Differences:

SYNCHRONOUS COUNTERS

The propagation delay is very
low.

Its operational frequency is
very high.

These are faster than that of
ripple counters.

Large number of logic gates
are required to design

High cost.

Synchronous circuits are easy
to design.

Standard logic packages
available for synchronous.

ASYNCHRONOUS COUNTERS

Propagation delay is higher
than that of synchronous
counters.

The maximum frequency of
operation is very low.

These are slow in operation.

Less number of logic gates
required.

Low cost.

Complex to design.

For asynchronous counters,
Standard logic packages are
not available.

Applications

Some of the counter applications are listed below.

>
>
>

Frequency counters
Digital clocks

With some changes in their design, counters can be used as frequency divider
circuits. The frequency divider circuit is that which divides the input frequency
exactly by ‘2.

Counter used as a timer in electronic devices like ovens and washing machines

Alarm Clock, AC Timer, timer in camera to take the picture, flashing light
Indicator in automobiles, car parking control etc.

Counting the time allotted for special process or event by the scheduler.
They are also used in machine moving control.

