		END SEMESTER EXAMINATION		
COL	JRSI GOR	E NAME: DESIGN AND ANALYSIS OF SEMESTER: 5th	B.T	ech.
BRA	NC	H NAME: IT SPECIALIZ	ZATI	ON:
		SUBJECT NAME: Design and Analysis of Algorithms		
FUL	L M	ARKS: 70	2: 3 H	ours
		Answer All Questions.	1000	
		The figures in the right hand margin indicate Marks. Symbols carry usual meaning.	Daniel Control	741
	,	Any supplementary materials to be provided	2×10]	
Q1.	_	1 Answer all Uniestions	The state of the s	CO1
	a)	Calculate the step count and also write down a tight asymptotic bound for the following code for i=0 to n*2 for j=i to n-3 { int w=1,p=1; while(w<=j) >		
			1/4	
		w*=3; -1	1	1
	2003	pi=1;	1	
	7	printf("%d", p); -1	73	
		3	1	
	b)	Solve using Master's theorem: $T(n) = 10T(n/4) + n^2$ $T(n) = 4T(n/3) + n \log(n^2)$		-CO1
	7	Mention which case it falls into and perform regularity check, if required. Given four items with weight and profit as shown below, what is the maximum profit		-CO2
	(c)	of a fractional knapsack problem?		
				-
		- 11 2 F 4 1		
		profit 7 9 6 1 Knapsack capacity W=5		
	d)	Suppose you are interested in scheduling several competing activities that require exclusive use of a common resource. Below is the start time (si) and finish time (fi) for 11 activities. Find the maximum subset of non intersecting activities that can be scheduled? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-CO2
- 1		Derive the time complexity of the best known algorithm to solve such a Scheduling	1	
1		Derive the time complexity of the best known algorithm to solve such a self-cutting		
		problem on n competing activities? Consider a graph $G=(V,E)$ where $V=\{V_{100}, V_{99},, V_{50}\}$ and $E=\{(V_i,V_j) \mid V_{50}\}$		-co:
	e)	$100 <= i < j <= 50$ } and weight of the edge (V_i, V_j) is $ i-j $. What is the weight of the MST of G2 Give proper reasoning. Note $ i-j $ is the absolute value of $i-j$		
	f)	Which among the following statements are correct? Give proper reasoning.		-CO
	,	1) DFS can be used to compute the shortest distance from a vertex to every other	r	
		vertices of the input graph 2) The BFS will run asymptotically faster than DFS as there are no recursive calls	- 1	
Sign .		in DEC	1	
The last	g)	Eveloin Looking-Class Heuristic and Character-Jump Heuristic in the context of	f	-CC
	67	Boyer-Moore algorithm. (Also called as Mismatched character heuristic)		

					1
	h)	Consider the following pattern for Boyer-Moore Algorithm "REPRESENT" Find the last function value for each character in the pattern		-CO4	1
	i)	Write the decision version of the MAXIMUM INDEPENDENT SET problem and		-COS	1
_		show that the problem is in class NP.			
	j)	Consider the following problems and their characteristics. Problem X is NP-complete	- 1	-CO:	5
		and there exists a polynomial-time verification algorithm for the problems Y and Z. There is a polynomial-time reduction from making Y and Y. There is a polynomial-time reduction from making Y and Y.	- 1		1
		There is a polynomial-time reduction from problem X to W. There is a polynomial-time reduction from problem Y to MST (minimum spanning tree problem). There is a	- 1		
		polynomial-time reduction from problem W to Z. Which among the given problems are			
		in NP, NP hard and NP complete? Give proper reasoning.			
					-
22.					-
	a)/	Give the pseudo code for 4-way merge sort and show a tight analysis on the asymptotic	[5]	-CC	1
-		running time of the algorithm.			
-	b)	Solve using recurrence tree method $T(n) = T(3n/7) + T(4n/7) + n$	[5]	-CC	01
-	-	OR			
	a)	Write pseudo code for the brute-force method of solving the maximum-subarray	[5]	-CC	01
		problem. Tour procedure should run in ()(n²) time. What does the Maximum C. L.	11 57.3		1
-	b)	problem return when all elements of the array are negative?			
K	וטק	Arrays A and B each contain N integers arranged in a random sequence. We want to	[5]	-C	01
		check it A and B have any entries in common. Design an efficient algorithm and show	2		
+	-	the tight asymptotic running time?			
3.					
$\overline{}$	a)	Find the longest common subsequence of strings "example" and "payment" show the	_		
		memo table and the sub problem dependencies as well	1	-C	:02
	b)/	Give an optimal substructure and the recursive subproblem for the (0.1) Knapsock	15	1 -0	002
		problem. Also show the memo table for finding the maximum profit of the given below			
		(0,1)-Knapsack problem instance with 5 elements, with weights (w.) and profits (p.))		
	ı	and capacity W.		1	
		n = 5, W = 10.			
		$(w_1, w_2, w_3, w_4, w_5) = (1, 2, 3, 4, 5).$	1		
		$(p_1, p_2, p_3, p_4, p_5) = (7, 4, 9, 5, 12).$		- 1	
		$(p_1, p_2, p_3, p_4, p_5) = (1, 4, 9, 5, 12).$		1	
+	\dashv	OR		+	
1	a)	Give an optimal substructure and the recursive sub problem for the matrix cha	in	151	-CC
		multiplication problem. Also show the memo table for multiplying the following	5	131	-00
		Matrices (M1 x M2 x M3 x M4 x M5) and the optimal order for the matrix cha	;n		
	1	multiplication as well.			
-		M1 (20 x 30), M2 (30 x 15), M3 (15 x 18), M4 (18 x 10), M5 (10 x 22)	- 1	١	
		111 (20 x 30), 1112 (30 x 13), 1113 (13 x 10), 1114 (10 x 10), 1113 (10 x 22)			
1 7	b)	State four properties of Huffman encoding. Why is Huffman encoding is called	as	[5]	-C
1	2	prefix codes? Consider a statement over the character set {a,b,c,d,e} with 4		GIRT.	
		characters are encoded using Huffman encoding. The probabilities are as follows			
		Character Probability			
1		a 0.26			
1		b 0.16			
	1	c 0.23			
		d 0.14			

	_	6 021	T	
	C	Construct the Huffman tree and compute the number of bits used for a fixed encoding scheme using the minimum number of bits per character and the Huffman encoding for the above data.		
14	+		\int	
Q4. a)	D V	Write the pseudo code for Kruskal's and Prim's MST algorithms and find the MST for the below graph using both the algorithms.	5] -(CO3
		B 3 E 8	[5]	-CO3
1	- 1	Given a graph G and a minimum spanning tree T, suppose that we decrease the weight of one of the edges not in T. Give an efficient algorithm for finding the minimum spanning tree in the modified graph.	[2]	
-		<u> </u>	[5]	-CO3
ε	- '	Show how BFS can be used to detect whether a graph is is 2-colorable or not? How will you solve the single-source shortest path problem in a graph G with negative edge will you solve the single-source shortest path problem in a graph G with negative edge		1
ł	b)]	weights using Dijkstra's algorithm as a black box? Write the pseudo code for Dijkstra's Algorithm and compute the shortest path from the source S to all other vertices of the below graph. Show all intermediate steps and all the variable values used inside the algorithm in each iterations.	[5]	-CO3
	_		1	+
	J		\top	1
Q5.		Give the pseudocode for the Rabin-Karp algorithm and show how to find the pattern 26535 in the text 31415926535826596535. What is the difference between the Monte	[5	5] -CO
ł	6)	Carlo version of Rabin-Karp algorithm and the Las Vegas version of Rabin-Karp? Give a brief overview of the KMP string matcher. What is the prefix function in KMP algorithm? Compute the prefix function for the pattern "requirement"?	[5	5] -CC
_		OR	\perp	
-	1	Derive and solve the recurrence relation for Strassen's Matrix Multiplication. Show an		5] -C
	b)	Show how the Boyer- Moore pattern matching algorithm matches the pattern "NEEDLE" against the text "NEEDTOFINDTHEFINALNEEDLEURGENT" Show all the intermediate steps and the pseudocode.	1 [5) -C

Q6.		the state of the s	FED THE	11
	a)	Define the decision version of the VERTEX COVER problem and show a polynomial time reduction from a known NP hard problem to prove the hardness. (Note that you should show the necessary and sufficient condition)	[5]	-CO5
	b)	Show a 2-approximation algorithm for TSP using MST. Mention all the assumptions/conditions clearly. Give an illustration to support your claims wherever required.	[5]	-CO5
		OR		
	a)	Define the decision version of the CLIQUE problem and show a polynomial time reduction from a known NP hard problem to prove the hardness. (<i>Note that you should show the necessary and sufficient condition</i>)	[5]	-cos
	b)	Show that VERTEXCOVER and CLIQUE problems are in class NP. Show either a non-deterministic polynomial time algorithm or a verifier. Define the input to the "verifier" clearly.	[5]	-CO: