AC Machines: Synchronous Machine Theory of salient pole machine: Blondel's two reaction theory

Prof. Sidhartha Panda

Department of Electrical Engineering

VSSUT, Burla

Rotor Construction

A synchronous machine with cylindrical rotor has a uniform air-gap, because of which its reactance remains the same, irrespective of the spatial position of the rotor.

DC Supply

A cylindrical rotor machine possesses one axis of symmetry

Fig. - Cylindrical Rotor

Fig. - Salient Pole Rotor

A synchronous machine with salient or projecting poles has non-uniform air-gap due to which its reactance varies with the rotor position.

Salient-pole machine possesses two axes of geometric symmetry (i) field poles axis, called direct axis or d-axis and (ii) axis passing through the centre of the interpolar space, called the quadrature axis or qaxis

Two Reaction Theory of Salient Pole Machine

- ❖ In a salient-pole rotor synchronous machine, the air-gap is highly non-uniform.
- ❖ The axis shown along the axis of the rotor is known as *direct axis* or *d-axis* and the axis perpendicular to the d-axis is called *quadrature axis or q-axis*.
- Small air-gaps are involved in the path of d-axis flux (φd) , thus the reluctance of the path is minimum

The q-axis flux (φq) path has large air-gaps and it is the path of maximum reluctance.

Two Reaction Theory of Salient Pole Machine

- Two mmfs act on the d-axis of a salient-pole synchronous machine i.e. field m.m.f. and armature m.m.f. whereas only one m.m.f., i.e. armature mmf acts on the q-axis, because field mmf has no component in the q-axis.
- ❖ The magnetic reluctance is low along the poles and high between the poles. The above facts form the basis of the two-reaction theory proposed by Blondel
 - (i) armature current I_a can be resolved into two components i.e. I_d perpendicular to E and I_q along E
 - (ii) armature reactance has two components i.e. d-axis armature reactance X_{ad} associated with I_d and q-axis armature reactance X_{aq} linked with I_{α} .

If we include the armature leakage reactance Xl which is the same on both axes, we get: Direct axis synchronous reactance $X_d = X_{ad} + Xl$ and Quadrature axis synchronous reactance Xq = Xaq + Xl

Since reluctance on the q-axis is higher, owing to the larger air-gap, hence,

$$X_{aq} < X_{ad}$$
 or $X_q < X_d$ or $X_d > X_q$

Phasor Diagram of Salient Pole Machine

- \clubsuit Armature current I_a is resolved into two components i.e. I_d and I_q
- $\ \ \, \ \ \,$ Currents I_d and I_q causes voltage drops jI_d X_d and jI_q X_q
- \bullet j I_d X_d and j I_q X_q leads I_d and I_q by 90°
- ❖ Armature resistance drop Ia Ra is drawn parallel to Ia
- Vector for the drop IdXd is drawn perpendicular to Id whereas that for IqXq is drawn perpendicular to Iq. (Id = Ia $\sin \psi$; Iq = Ia $\cos \psi$)
- \bullet E0 = V + IaRa + jId Xd + jIq Xq
- The angle $\Psi = \varphi + \delta$ is not known for a given Vt, Ia and φ .
- \bullet I_d and I_q cannot be found which are needed to draw the phasor diagram.

Calculation for Phasor Diagram

AC is drawn at 90° to the current phasor Ia and CB is drawn at 90° to Ef. In \triangle ODC: \bot OCD=90°- ψ , \bot OCB=90°, \bot OCB=90°, \bot ACB=90°-(90°- ψ)= ψ

 $Id = Ia \sin \psi$; $Iq = Ia \cos \psi$; hence, $Ia = Iq/\cos \psi$, $IaRa \cos \psi = IqRa$

In
$$\triangle$$
 ABC: $\cos \psi = \frac{BC}{AC} = \frac{I_q X_q}{AC}$ $AC = \frac{I_q X_q}{\cos \psi} = I_a X_q$ $AB = I_a X_q \sin \psi = I_d X_q$ $CD = BF = I_d (X_d - X_q)$

Ef = Vt cos
$$\delta + I_q R_a + I_d X_q + I_d (X_d - X_q) = Vt cos \delta + I_q R_a + I_d X_d$$

A synchronous generator has Xd = 0.8 pu and Xq = 0.5 pu. It is supplying full-load at rated voltage at 0.8 lagging pf. Draw the phasor diagram and calculate the excitation emf. Also calculate power angle. Repeat the problem by ignoring Xq and assuming Xs=Xd.

$$\overline{V_t} = 1 \angle 0^\circ \text{ pu}, I_a = 1 \text{ pu } 0.8 \text{ lagging},$$
 $\overline{I_a} = 1 \angle -36.9^\circ \text{ pu}$
 $\overline{E'_f} = \overline{V_t} + j \overline{I_a} X_q$
 $= 1 + j 1 \angle -36.9^\circ \times 0.5 = 1 + 0.5 \angle 53.1^\circ$
 $= 1.30 + j 0.40 = 1.30 \angle 17.1^\circ \text{ pu}$

$$\overline{E}''_f = \overline{V}_t + j \overline{I}_a X_d$$

= 1 + j 1 \(\textsim - 36.9^\circ \times 0.8\)
= 1.48 + j 0.64 = 1.61 \(\textsim 23.4^\circ \)
 $E''_f = 1.61 \text{ pu}, \ \delta' = 23.4^\circ$

$$\delta = 17.1^{\circ}$$
 $\psi = \phi + \delta = 36.9^{\circ} + 17.1^{\circ} = 54^{\circ}$
 $I_d = I_a \sin \psi = 1 \times \sin 54^{\circ} = 0.81$
 $CD = I_d (X_d - X_q)$
 $= 0.81 (0.8 - 0.5) = 0.243$
 $\overline{E}_f = \overline{E}_f' + CD = 1.36 + 0.243 = 1.60 \text{ pu}$

Power Angle Characteristics (P vs δ): Non-salient Pole

- ❖ Fig. above shows the circuit diagrams and phasor diagrams of a synchronous machine in generating mode
- * The machine is connected to infinite bus-bars of voltage Vt.
- * It is easily observed from the phasor diagrams that in generating mode, the excitation emf E_f leads V_t by angle δ.
- ♦ \bot OMP=180-(90-Φ)= 90+ Φ
- From the phasor triangle OMP: OP/($\sin \triangle OMP$)= MP/($\sin \triangle MOP$)

$$\frac{E_f}{\sin(90 \pm \phi)} = \frac{I_a X_s}{\sin \delta}; (90^\circ + \phi), \text{ generating}$$

$$(90^\circ - \phi), \text{ motoring}$$

$$I_a \cos \phi = \frac{E_f}{X_s} \sin \delta$$

Power Angle Characteristics (P vs δ): Non-salient Pole

• Multiplying both sides by
$$V_t$$
: $V_t I_a \cos \phi = \frac{V_t E_f}{X_s} \sin \delta$

$$P_e = \frac{V_t E_f}{X_s} \sin \delta$$

Power-angle characteristic

- $P_e = V_t I_a \cos \varphi = \text{electrical power exchanged with the bus-bars}$
- \bullet δ = Angle between Ef and Vt and is called the power angle
- \bullet The relationship of Pe vs δ is known as the power-angle characteristic of the machine and is plotted for given V_t and E_f.

Power Angle Characteristics (P vs δ): Salient Pole

- Fig. above shows the one-line diagram of a salient pole synchronous machine connected to infinite bus bar of voltage Vb through a line of series reactance Xe.
- The total d- and q-axis reactance are: Xd = Xdg + Xe & Xq = Xqg + Xe
- From phasor diagram

$$P_e = I_d V_b \sin \delta + I_q V_b \cos \delta$$

$$I_d = \frac{E_f - V_b \cos \delta}{X_d}$$

$$I_d = \frac{V_b \sin \delta}{X_d}$$

Power Angle Characteristics (P vs δ): Salient Pole

$$P_e = \frac{E_f V_b}{X_d} \sin \delta + V_b^2 \frac{X_d - X_q}{2X_d X_q} \sin 2\delta$$
Reductance power

- ✓ The second term in above Eq. is known as the reluctance power.
- ✓ The reluctance power varies as sin 2 δ with a maximum value at $\delta = 45^{\circ}$
- ✓ This term is independent of field excitation and would be present even if the field is unexcited

