B.Tech-3rd (MME)

Metallurgical Thermodynamics & Kinetics

Full Marks: 50

 $Time: 2\frac{1}{2} \text{ hours}$

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

1. Answer all questions:

 2×5

- (a) Consider a reaction with activation energy of 8.314 kJ/mol that takes place at 300K. If the reaction rate is to be tripled, what should be the temperature of the reaction?
- (b) The melting point and latent heat of fusion of copper are 1356 K and 13 kJ mol, respectively. Assume that the specific heats of solid and liquid are same. Calculate the free energy change for liquid to solid transformation at 1250 K.

- (c) Write any two important features of Ellingham diagram. What are its limitations?
- (d) Derive the combined expression for 1st and 2nd Faraday's laws of electrolysis.
- (e) Differentiate between TGA and DSC, any four differences.
- 2. (a) Prove that (δq) is not perfectly differentiable but $(\delta q/T)$ is perfectly differentiable.
 - (b) State the laws of thermodynamics and write their importance in metallurgy. Derive the necessary equations for the combined statements of first and second laws of thermodynamics.

Or

(a) What is Hess's law, explain with an example? Calculate the heat of the reaction

for the formation of solid WO₃ from solid W and O₂ gas at 298 K. Given the following data at 298 K and 1 atm pressure:

$$\langle W \rangle + (O_2) = \langle WO_2 \rangle; \ \Delta H_{298}^0 = -134 \text{kcal}$$

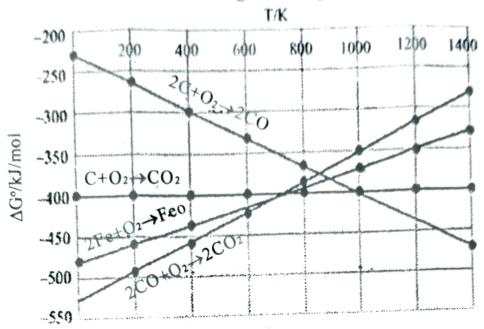
$$\langle W_3 O_8 \rangle = 3 \langle WO_2 \rangle + (O_2); \ \Delta H_{298}^0 = -48.83 \text{kcal}$$

$$3 \langle WO_3 \rangle = \langle W_3 O_8 \rangle + \frac{1}{2} (O_2); \ \Delta H_{298}^0 = -22.17 \text{kcal}$$

- (b) Prove that $C_P C_V = R$ and $C_P > C_V$.
- 3. (a) Calculate the equilibrium constant and equilibrium partial pressure of oxygen at 1800° C for the reaction: $ZrO_2 = Zr + O_2$; $\Delta G^0 = 1087589 + 18.12T \log T 247.36 T$ J. Also predict the possibility of decomposing a pure zirconia crucible under a vacuum of 10^{-5} mm of Hg at that temperature.

(b) Prove that the entropy of a perfect gas is

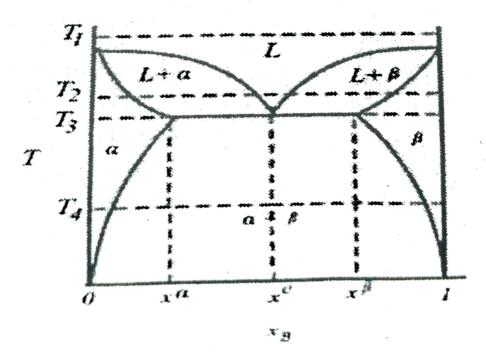
$$\Delta S = S_2 - S_1 = R \ln \left(\frac{V_2}{V_1} \right) = -R \ln \left(\frac{P_2}{P_1} \right). \tag{4}$$


B.Tech- 3rd (MME)/Metall. Thermo. & Kinetics

(Turn Over)

Or

- (a) Derive Gibbs-Duhem equation and express in terms of G, A, H, S.
- Pure orthorhombic sulfur transforms to stable monoclinic sulfur above 368.5K. Using third law of thermodynamics, calculate the value of entropy of transformation at 368.5 K. Given:
 - (i) Entropy change associated with heating orthorhombic sulfur from 0 K to 368.5 K is 36.86 J/K.
 - (ii) Entropy change associated with cooling monoclinic sulfur from 368.5 K to 0 K is -37.8 J/K.
- 4. (a) The following Ellingham diagram depicts the oxidation of 'C', 'CO' and 'Fe'. Which of the following statements are correct, explain with full justification?



- FeO can be reduced by C below 600K.
- II. FeO can be reduced by CO below 600K.
- III. FeO can be reduced by C above 1000K.
- IV. FeO can be reduced by CO above 1000K.
- (b) Derive the relation, $\Delta H^{m} = \Omega X_{A} X_{B}$ using quasi-chemical approach.

Or

- (a) Discuss the steps to determine the point O, H, C and equilibrium gas pressure using Ellingham diagram.
- (b) For the given reaction: Ni + 0.5O₂ = NiO, ΔG^0 = -250000+100T J. At 927°C, calculate the P_{o_2} in equilibrium with Ni/NiO?
- 5. (a) Draw the free energy (G) vs composition (X) diagram for the given phase diagram at temperatures T₁, T₂, T₃, T₄.

5

What is chemical potential? Write the equation of chemical potential of species i and also write the combined equations of 1st law and 2nd law of thermodynamics in relation to chemical potential. What are the applications of chemical potential in metallurgy?

- (a) Draw the free energy-composition curves for a regular solid solution of AB alloy system under below given conditions:
 - i. $\Delta H_{mix} = 0$, at low temperature and higher temperature
 - ii. $\Delta H_{mix} > 0$, at low temperature and higher temperature
 - iii. $\Delta H_{mix} < 0$, at low temperature and higher temperature.
- (b) What is Raoult's law of ideal solutions? Express the Henry's law. What is the

significance of these two laws in forming solid solution in a binary alloy system, explain?

3

6. (a) Draw the cooling curves (i) for a pure metal without supercooling, (ii) for a pure metal with supercooling, (iii) for a solid solution alloy, (iv) for a hypoeutectic alloy. What difference you observe from these cooling curves, explain?

5

What is the voltage required to electronically refine impure copper of activity = 0.9 (Raoultion standard state) to pure copper at 27°C.

3

Or

(a) How the rate-controlling step is determined and state its importance in metallurgy with a suitable example?

(b) State and express Sievert's law. Calculate solubility of N_2 gas under 1 atm pressure & 1600° C in an iron-based alloyed having the composition C = 3.5%, Mn = 1%, Si = 1.2%, P = 0.5%. The interaction parameters for various components are $\epsilon_N^C = 0.25 \times 2.3$, $\epsilon_N^P = 0.51 \times 2.3$, $\epsilon_N^{Mn} = 0.02 \times 2.3$, $\epsilon_N^{Nn} = 0.02 \times 2.3$, Sievert's constant for $N_2(K_P) = 0.045$.