VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Odd Mid Semester Examination for Academic Session 2024-25

COURSE NAME: B.Tech

SEMESTER: 3rd

BRANCH NAME: Metallurgical & Materials Engineering SUBJECT NAME: Metallurgical Thermodynamics & Kinetics

FULL MARKS: 30

TIME: 90 Minutes

Answer All Questions.

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

Q1. Answer all Questions.

 $[2 \times 3]$

- a) A 1 mole piece of copper at 400 K is brought in contact with another 1 mole piece of copper at 300 K and allowed to reach thermal equilibrium. The entropy change for this process is how much? Given: Specific heat capacity, C_p (between 250 500 K) is 22.6 J/K/mol.
- b) At equilibrium, maximum number of phases in a 3-component system at 1 atm pressure is how much? Prove that $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$ and $\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$
- c) State and express third law of thermodynamics. Write the metallurgical consequences CO3 of third law of thermodynamics.

Q2.

[8]

- (a) Prove that the entropy of mixing for an ideal solution is $\Delta S_{ideal}^{mix} = -CO1 R[X_A \ln X_A + X_B \ln X_B]$.
- (b) Calculate the standard enthalpy change for the following reaction at 1523 K. $Cu_2S(s) + 2 Cu_2O(s) = 6 Cu(l) + SO_2(g)$.

Given the values of standard enthalpy changes of formation at 1523 K as follows:

the state of the s				
	$Cu_2S(s)$	$Cu_2O(s)$	Cu (l)	$SO_2(g)$
$\Delta H_{f,1523}^0$, kJ/mol	-86.7	-176.4	0	-278.4
	0.1			

OR

- (a) Find out the increase in molar entropy change of Cu, when it heated from 127° C CO1 to 927° C. The molar sp. heat of Cu is given by Cp = 6.2+0.0017 T.
- (b) Calculate the standard free energy change of the reaction:

$$Ni(s) + \frac{1}{2}O2(g) = NiO(s)$$

At 327°C from the following data:

$$\Delta H^0_{298,NiO(s)} = -240.58 \, kJ/mol \qquad S^0_{298,Ni(s)} = -29.79 \, \frac{J}{K}/mol$$

$$S^0_{298,NiO(s)} = -38.07 \, \frac{J}{K}/mol \qquad S^0_{298,O2(g)} = 205.09 \, \frac{J}{K}/mol$$

$$C_{P,Ni(s)} = 25.23 + 43.68 \times 10^{-6} T^2 - 10.46 \times 10^{-3} T \, \text{J/K/mol}$$

$$C_{P,O2(g)} = 29.96 + 4.18 \times 10^{-3} T - 1.67 \times 10^{5} T^{-2} \, \text{J/K/mol}$$

$$C_{P,NiO(s)} = 54.01 \, \text{J/K/mol}.$$

Q3.

(a) Prove that $\left[\frac{d(\Delta G^0/T)}{dT}\right] = -\left[\frac{\Delta H^0}{T^2}\right]$.