B.Tech-3rd (EE)

Analog and Digital Electronic Circuits

Full Marks: 50

Time: 2.30 hours

Answer all questions.

The figures in the right-hand margin indicate marks.

Symbols carry usual meaning.

1. Answr all questions:

 2×5

- (a) Draw the hybrid equivalent model of a transistor in common emitter configuration.
- (b) State the characteristics of an ideal OPAMP.
- (c) Draw the transfer characteristic of FET.
- (d) Design a half adder circuit with truth table.

(2)

- (e) Differentiate between combinational and sequential logic circuits.
- 2. (a) For a DC bias with voltage feedback circuit of $V_{CC} = 10 \text{ V}$, $\beta = 90$, $R_C = 4.7 \text{ k}\Omega$, $R_E = 1.2 \text{ k}\Omega$, resistance across collector and base = 250 k Ω . Draw the circuit and find I_{BQ} , I_{CQ} , V_{CE} , V_B , V_C , V_E , I_{Csat} .
 - (b) Draw an emitter follower circuit and derive the expression for input impedance Z, of the circuit.

Or

(a) For the network below determine (i) Z_p (ii) Z_0 , (iii) A_v , (iv) A_i

B.Tech-3rd(EE)/A&DEC

(Continued)

(3)

- (b) Draw the frequency response curve and explain the Miller effect on gain at high frequencies.
- 3 (a) Determine the following for the network given below
 - (i) V_{GS}
 - (ii) I_{D}
 - (iii) V_{DS}
 - (iv) V_G

B.Tech-3rd(EE)/A&DEC

(4)

(b) Discuss the magnitude of gain response curve of a RC coupled amplifier and find out its bandwidth.

Or

(a) With a neat diagram analyze an FET in Self-bias configuration.

(5)

- (b) Calculate the voltage gain and output voltage for a two stage cascaded RC coupled amplifier of BJT parameters $V_{CC} = 20 \text{ V}, \beta = 200, V_i = 25 \text{ \muV}, R_1 = 15 \text{ K}\Omega, R_2 = 4.7 \text{ K}\Omega, R_C = 2.2 \text{ K}\Omega, R_E = 1 \text{ K}\Omega.$
- 4. (a) Design a first-order, low-pass filter using OPAMP. State its voltage gain and cutoff frequency.
 - (b) What is a class A power amplifier?

 Derive its conversion efficiency.

Or

(a) What range of output voltage is developed in the circuit below.

B.Tech-3rd(EÉ)/A&DEC

(Continued)

B.Tech-3rd(EE)/A&DEC

(6)

- (b) Discuss OPAMP as an integrator and differentiator.
- **5.** (a) Simplify the following Boolean function F, together with the don't care conditions d.

$$F(A, B, C, D) = \Sigma_m(1, 3, 5, 7, 9, 15)$$

$$d(A, B, C, D) = \Sigma_m(4, 6, 12, 13)$$

B.Tech-3rd(EE)/A&DEC

(Continued)

(7)

(b) Given the Boolean function F = xy'z + x'y'z + w'xy + wx'y + wxy

- (i) Obtain the truth table of the function.
- (ii) Simplify the expression.
- (iii) Draw the logic diagram using logic gates.

Or

- (a) Explain the BCD addition rules and perform the BCD addition for the decimal number 72 + 35.
- (b) Convert the following expressions into sum of products and product of sums:
 - (i) (AB+C)(B+C'D)
 - (ii) x'+x(x+y')(y+z')

B.Tech-3rd(EE)/A&DEC

- 6. (a) What are the different types of shift register. Discuss the operation of 4-bit SISO shift register using J-K flipflop.
 - (b) What is Race-around Condition of J-K flip-flop? Describe J-K flip-flop operation with logic diagram and truth table.

Or

- (a) Implement the following expressions using a multiplexer.
 - (i) $Y(A, B, C) = \Sigma_m(0, 1, 2, 6, 7)$
 - (ii) $Y(A, B, C) = \prod_{M} (0, 1, 4, 5)$
- (b) Implement a 4:16 decoder using 2:4 decoders.